
FOLDINGS, GRAPHS OF GROUPS AND THE MEMBERSHIP
PROBLEM

ILYA KAPOVICH, ALEXEI MYASNIKOV, AND RICHARD WEIDMANN

Abstract. We use Stallings-Bestvina-Feighn-Dunwoody folding sequences to
analyze the solvability of the subgroup membership problem for fundamental
groups of graphs of groups.

1. Introduction

The idea of using foldings to study group actions on trees was introduced by
J. Stallings in a seminal paper [41], where he applied foldings to investigate free
groups. Free groups are exactly those groups that admit free actions on simplicial
trees. Later J. Stallings [42] offered a way to extend these ideas to non-free actions
of groups on graphs and trees. M. Bestvina and M. Feighn [5] and, independently,
M. Dunwoody [18] gave a systematic treatment of Stalling’s approach in the context
of graphs of groups and groups acting on simplicial trees and obtained a number
of interesting applications. For example, M. Bestvina and M. Feighn [5] proved a
far-reaching generalization of Dunwoody’s accessibility results for finitely presented
groups; M. Dunwoody [19] used foldings to construct a small unstable action on an
R-tree. Some other applications of foldings in the graph of groups context can be
found in [35, 37, 38, 16, 17, 24, 25, 12, 11].

In this paper we apply foldings to more computational questions, such as the
subgroup membership problem. Recall that a finitely generated group

G = 〈x1, . . . , xk | r1, r2, . . . , 〉
is said to have solvable membership problem (or solvable uniform membership prob-
lem) if there is an algorithm which, for any finite family of words u,w1, . . . , wn in
{x1, . . . , xk}±1 decides whether or not the element of G represented by u belongs
to the subgroup of G generated by the elements of G corresponding to w1, . . . , wn

(it is easy to see that this definition does not depend on the choice of a finite gener-
ating set for G). Similarly, if H ≤ G is a specific subgroup, then H is said to have
solvable membership problem in G if there is an algorithm deciding for any word u
in {x1, . . . , xk}±1 whether u represents an element of H.

Amalgamated free products, HNN-extensions and more generally, fundamental
groups of graphs of groups play a very important role in group theory. However,
till now there has been relatively little understanding of how these fundamental
constructions affect the subgroup membership problem. One of the first results in
this direction is due to K. Mihailova, who proved [33, 34] that if A and B have
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solvable membership problem then so does their free product A ∗ B (see also the
subsequent work of Y. Boydron [13]). K. Mihailova [32] also produced some im-
portant counter-examples demonstrating the difficulty of the membership problem.
Namely, she proved that the direct product G = F (a, b)×F (x, y) of two free groups
of rank two possesses a finitely generated subgroup H with unsolvable membership
problem in G. This direct product can be thought of as a double HNN-extension
of F (a, b):

G = 〈F (a, b), x, y |, x−1fx = f, y−1fy = f for any f ∈ F (a, b)〉.
It is well-known that a finitely generated free group has uniform membership prob-
lem solvable in quadratic time in terms of |u|+|w1|+· · ·+|wn|. Thus even seemingly
innocuous free constructions have the potential of greatly affecting the complexity
of the membership problem. Another important example which to this date is not
at all understood is that of the mapping torus of a free group automorphism.

Namely, let G be a group and let φ : G → G be an automorphism of G. Then
the HNN-extension of G along φ

Mφ := 〈G, t | t−1gt = φ(g), for every g ∈ G 〉 = Goφ Z.

is called the mapping torus group of φ. Despite their importance in 3-dimensional
topology, apart from a few obvious cases nothing is known about the solvability of
the membership problem for mapping tori of free group automorphisms (or more
generally, mapping tori of automorphisms of surface groups).

A substantial amount of work on the membership problem for amalgamated
products and HNN-extension was done by V. N. Bezverkhnii [7, 8, 9, 10]. However,
he did not use the machinery of Bass-Serre theory of graphs of groups and groups
acting on trees. Consequently, all of his results have to rely on Britton’s lemma
and the normal form theorem for amalgamated products, which makes his proofs
extremely technical and statements of most results quite special.

Our goal is to present a more geometric and unified approach to this topic which
relies on Bass-Serre theory [39, 4] as well as the foldings technique of Stallings-
Bestvina-Feighn-Dunwoody. When performing a sequence of folding moves, we
have to keep a very careful track of what foldings of Bass-Serre trees do to quotient
graphs of groups and to record what kind of conditions are necessary to be able to
perform each folding step algorithmically, as well as for the process to terminate
in a finite number of steps. The full list of these conditions turns out to be rather
cumbersome (see Definition 6.4 and Theorem 6.13 below), so we will formulate a
corollary of the main technical result instead.

Theorem 1.1. Let A be a finite graph of groups such that:
(1) For every vertex v of A the vertex group Av is either locally quasiconvex

word-hyperbolic or polycyclic-by-finite.
(2) Every edge group of A is polycyclic-by-finite.

Then for any vertex v0 ∈ V A the uniform membership problem for G = π1(A, v0)
is solvable.

The above situation applies to a wide variety of situations. For example, it is
applicable to a finite graph of groups where all vertex groups are virtually abelian
or where all vertex groups are virtually free and edge groups are virtually cyclic. In
particular, the mapping torus of an automorphism of a free abelian group of finite
rank (or in fact of any virtually polycyclic group) falls into this category, as do the
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so called “tubular” groups (that is, multiple HNN-extensions of free abelian groups
with cyclic associated subgroups). While Theorem 1.1 does not say anything about
the computational complexity of the algorithm solving the membership problem, we
believe that in many specific cases this complexity can be analyzed and estimated
explicitly. Indeed, the intrinsic complexity of the folding algorithm is quadratic and
the complexity of each individual folding move can be estimated in terms of the
properties of the vertex and edge groups of A. For example, in the case when all
vertex groups are free and edge groups are cyclic, the folding algorithm provided
by Theorem 1.1 appears to have polynomial complexity. This is confirmed by
independent results of Paul Schupp [40] (in preparation) who used folding ideas to
show that the uniform membership problem for multiple HNN-extensions of free
groups with cyclic associated subgroups is solvable in polynomial time.

As an illustration of the usefulness of Theorem 1.1, we apply it to graph products
and right-angled Artin groups. Recall that if Γ is a finite simple graph with a group
Gv associated to each vertex of Γ then the graph product group G(Γ) is defined as
the free product ∗v∈V ΓGv modulo the relations [Gv, Gu] = 1 whenever u and v
are adjacent vertices in Γ. In particular, when each Gv is an infinite cyclic group,
G(Γ, (Gv)v∈V Γ)) is a right-angled Artin group.

Corollary 1.2. Let T be a finite tree such that for every vertex v ∈ V T there is an
associated finitely generated abelian group Gv. Then the graph product group G(T )
has solvable membership problem.

Proof. Note that for any groups K, H we can write the direct product H ×K as
an amalgam:

H ×K = H ∗H H ×K ∗K K.

Let v1, . . . , vn be the vertices of T . Let T ′ be the barycentric subdivision of
T . We give T ′ the structure of a graph of groups as follows. For each vertex
vi of T assign the vertex group T ′vi

:= Gvi . For each barycenter v of an edge
[vi, vj ] of T assign the vertex group T ′v := Gvi × Gvj . Also, for ei = [vi, v] ∈ ET ′

and ej = [vj , v] ∈ ET ′ put T ′ei
:= Gvi and T ′ej

:= Gvj . Finally, we define the edge-
monomorphisms T ′ei

→ Tv and T ′ei
→ Tvi to be the inclusion maps Gvi → Gvi×Gvj

and gvj → Gvi ×Gvj . This defines a graph of groups T′ where all the vertex groups
are finitely generated abelian. Moreover, we have G(T ) ∼= π1(T′, v1).

Hence by Theorem 1.1 the group G(T ) has solvable membership problem. ¤

Corollary 1.2 applies to many right-angled Artin groups, for example to any
right-angled Artin group where the underlying graph is a tree. Note that if Γ is a
square then the right-angled Artin group based on Γ is G ∼= F (a, b)× F (x, y) and
hence by Mihailova’s theorem G has unsolvable membership problem. Thus if Γ is
not a tree, the statement of Corollary 1.2 need not hold in general.

The first author is grateful to Paul Schupp for helpful discussions.

2. Graphs of groups, subgroups and induced splittings

We refer the reader to the book of J.-P. Serre [39] as well as to [2, 4, 14, 36] for
detailed background information regarding groups acting on trees and the Bass-
Serre theory.

Convention 2.1 (Graph of groups notations). For a graph of groups A we will
denote the underlying graph by A. For each edge e ∈ EA the initial vertex of e is
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denoted o(e) and the terminal vertex of e is t(e). The graph-of-groups A has vertex
groups Av for v ∈ V A, edge groups Ae for e ∈ EA and boundary monomorphisms
αe : Ae → Ao(e) and ωe : Ae → At(e) for all e ∈ EA. If e−1 is the inverse edge of e
then we assume that Ae−1 = Ae, αe−1 = ωe and ωe−1 = αe.

Recall that in Bass-Serre theory an A-path of length k ≥ 0 from v to v′ is a
sequence

p = a0, e1, a1, . . . , es, as

where s ≥ 0 is an integer, e1, . . . , es is an edge-path in A from v to v′, where
a0 ∈ Av, as ∈ Av′ and ai ∈ At(ei) = Ao(ei+1) for 0 < i < k. We will denote the
length k of p by |p|. If p is an A-path from v to v′ and q is an A-path from v′ to
v′′, then the concatenation pq of p and q is defined in the obvious way and is an
A-path from v to v′′ of length |p|+ |q|.

The following notion plays a very important role in Bass-Serre theory.

Definition 2.2 (Fundamental group of a graph of groups). Let A be a graph of
groups.

Let ∼ be the equivalence relation on the set of A-path generated (modulo con-
catenation) by:

e, ωe(c), e−1 ∼ αe(c), where e ∈ EA, c ∈ Ae.

If p is an A-path, we will denote the ∼-equivalence class of p by p̄. Note that if
p ∼ p′ then p, p′ have the same initial and the same terminal vertex in V A.

Let v0 ∈ V A be a vertex of A. We define the fundamental group π1(A, v0) as the
set of ∼-equivalence classes of A-paths from v0 to v0. It can be shown that G is in
fact a group with multiplication corresponding to concatenation of paths.

Proposition 2.3 (Normal Form Theorem). Let A be a graph of groups. Then:
(1) If a ∈ Av, a 6= 1 is a nontrivial vertex group element then the length zero

path a from v to v is not ∼-equivalent to the trivial path 1 from v to v.
(2) Suppose p = a0, e1, a1, . . . , ek, ak is a reduced A-path from v to v′ with k > 0.

Then p is not ∼-equivalent to a shorter path from v to v′. Moreover, if p
is equivalent to a reduced A-path p′ from v to v′ then p′ has underlying
edge-path e1, e2, . . . , ek.

(3) Suppose T is a maximal subtree of A and let v0 ∈ V A be a vertex of V . Let
G = π1(A, v0). For x, y ∈ V A we denote by [x, y]T the T -geodesic edge-path
in T . Then G is generated by the set S̄ where

S = ∪
e∈E(A−Y )

[v0, o(e)]T e[t(e), v0]T
⋃

∪
v∈V A

[v0, v]T Av[v, v0]T

We also need to recall the explicit construction of the Bass-Serre universal cov-
ering tree for a graph of groups.

Definition 2.4 (Bass-Serre covering tree). Let A be a graph of groups with base-
vertex v0 ∈ V A. We define an equivalence relation ≈ on the set of A-paths origi-
nating at v0 to be generated by ∼ and the condition

p ≈ pa, where p is an A-path from v0 to v ∈ V A, and a ∈ Av.

Thus if p is an A-path from v0 to v, we shall denote the ≈-equivalence class of
p by p̄Av.
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We now define the Bass-Serre tree (̃A, v0) as follows. The vertices of (̃A, v0) are

≈-equivalence classes of A-path originating at v0. Thus each vertex of (̃A, v0) has
the form p̄Av, where p is an A-path from v0 to a vertex v ∈ V A. (Hence we can in
fact choose p to be already A-reduced and such that the last group-element in p is
equal to 1.)

Two vertices x, x′ of (̃A, v0) are connected by an edge if and only if we can express
x, x′ as x = p̄Av, x′ = paeAv′ , where p is an A-path from v0 to v and where a ∈ Av,
e ∈ EA with o(e) = v, t(e) = v′.

It follows from the basic results of Bass-Serre theory that (̃A, v0) is indeed a
tree. This tree has a natural base-vertex, namely x0 = 1̄Av0 corresponding to the
≈-equivalence class of the trivial path 1 from v0 to v0.

Moreover, the group G = π1(A, v0) has a natural simplicial action on (̃A, v0)
defined as follows:

If g = q ∈ G (where q is an A-path from v0 to v0) and u = pAv (where p is an A-
path from v0 to v ∈ V A), then g·u := qpAv. It is not hard to check that the action is

well-defined on the set of vertices of (̃A, v0) and that it preserves adjacency relation.

Thus G in fact has a canonical simplicial action without inversions on (̃A, v0).

It can be shown that if p is an A-path from v0 to v then the map Av → G,
a → pap−1 is an embedding. Moreover, in this case the G-stabilizer of the vertex
p̄Av of (̃A, v0) is equal to the image of the above map, that is to pAvp−1. Simi-

larly, the G-stabilizer of an edge in (̃A, v0) connecting p̄Av to paeAv′ is equal to
p̄(aαe(Ae)a−1)p̄−1.

The following well-known statement lies at the foundation of Bass-Serre theory
and provides a duality between group actions on trees and fundamental groups of
graphs of groups.

Proposition 2.5. Let U be a group acting on a simplicial tree X without inver-
sions. Suppose Y is a U -invariant subtree with base-vertexv0. Then the graph
B = Y/U has a natural graph-of-groups structure B such that U is canonically iso-
morphic to π1(B, v′0) and Y is U -equivariantly isometric to the universal covering
Bass-Serre tree of B (here v′0 is the image of v0 in B).

Remark 2.6. We want to remind an explicit construction of B. Let T2 ⊆ Y be
a subtree of Y which is a fundamental domain for the action of U on Y . Namely,
UT2 = Y and no two distinct edges of T2 are U -equivalent. Therefore for some
subtree T1 ⊆ T2 we have:
(1) No two vertices of T1 are U -equivalent and U(V T1) = V Y .
(2) For every vertex v ∈ T2 − T1 the vertex v is connected by an edge to a vertex
of T1.
(3) For every vertex of v ∈ T2 − T1 there is a unique vertex x(v) ∈ V T1 which is
U -equivalent to v.

For each vertex v ∈ T2−T1 choose an element tv ∈ U such that tvv = x(v). The
graph of groups B is then defined as follows.

(1) The graph B = Y/U is obtained from T2 by identifying v with x(v) for
each vertex v ∈ T2 − T1. Thus we can assume that T1 is a subgraph of B
(in fact a spanning tree of B) and that v′0 = v0. Similarly, we assume that
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EB = ET2. If an edge e = [z, v] of T2 has z ∈ T1 and v ∈ T2 − T1, we set
oB(e) = z and tB(e) = x(v).

(2) For each vertex v ∈ V T1 we set Bv := StabU (v), where StabU (v) is the
U -stabilizer of v ∈ X.

(3) For each edge e = [z, v] ∈ ET2 we set Be := StabU (e).
(4) For each edge e = [z, v] ∈ ET1 the boundary monomorphisms αB

e : Be →
Bz and ωB

e : Be → Bv are defined as inclusions of StabU (e) in StabU (z)
and StabU (v) accordingly.

(5) Suppose e = [z, v] is an edge of T2 with z ∈ T1, v ∈ T2 − T1. We set the
boundary monomorphism αB

e : Be → Bz to be the inclusion of StabU (e) in
StabU (z). We set the boundary monomorphism ωB

e : Be → Bx(v) to be the
map g 7→ tvgt−1

v , g ∈ Bx(v).

Definition 2.7 (Induced splitting). Let A be a graph of groups with a base-vertex

v0. Let G = π1(A, v0) and let X = (̃A, v0) be the universal Bass-Serre covering tree
of the based graph-of-groups (A, v0). Thus X has a base-vertex x0 mapping to v0

under the natural quotient map.
Suppose U ≤ G is a subgroup of G and Y ⊂ X is a U -invariant subtree. Then

the graph-of-groups splitting B of U obtained as in Proposition 2.5 on the quotient
graph B = Y/U is said to be an induced splitting of U ≤ G with respect to Y
corresponding to the splitting G = π1(A, v0).

If U without fixed point then here is a preferred choice of a U -invariant subtree
of X, namely the smallest U -invariant subtree containing x0, which will be denoted
XU :

XU := ∪u∈U [x0, ux0]

Notice that because of the explicit construction of B each vertex groups of B
fixes a vertex of X and hence is conjugate to a subgroup of a vertex group of A.
Similarly, edge groups of B are conjugate to subgroups of edge groups of A. In
practice we will often choose Y to be the smallest among U -invariant subtrees of
X which contain x0.

3. A-graphs

In this section we introduce the combinatorial notion of an A-graph. These
A-graphs will approximate induced splittings of subgroups of π1(A, v0). In good
situations, namely when an A-graph is “folded”, an induced splitting can be directly
read off a A-graph.

Definition 3.1 (A-graph). Let A be a graph of groups. An A-graph B consists of
an underlying graph B with the following additional data:

(1) A graph-morphism [ . ] : B → A.
(2) Each vertex u ∈ V B has an associated group Bu, where Bu ≤ A[u].
(3) To each edge f ∈ EB there are two associated group elements fo ∈ A[o(f)]

and ft ∈ A[t(f)] such that (f−1)o = (ft)−1 for all f ∈ EB.

Convention 3.2. If f ∈ EB and u ∈ V B, we shall refer to e = [f ] ∈ EA and
v = [u] ∈ V A as the type of f and u accordingly. Also, especially when representing
A-graphs by pictures, we will sometimes say that an edge f of an A-graph B has
label (fo, [e], ft). Similarly, we will say that a vertex u ∈ V B has label (Bu, [u]).

To any A-graph we can associate in a natural way a graph of groups:
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Definition 3.3 (Graph of groups defined by an A-graph). Let B be a A-graph.
The associated graph of groups B is defined as follows:

(1) The underlying graph of B is the graph B.
(2) For each u ∈ V B we put the vertex group of u to be Bu.
(3) For each f ∈ EB we define the edge group of f in B as

Bf := α−1
[f ] (f

−1
o Bo(f)fo) ∪ ω−1

[f ] (ftBo(f)f
−1
t ) ≤ A[f ].

(4) For each f ∈ EB the vertex monomorphism αf : Bf → Bo(f) is defined as

αf (g) = fo

(
α[f ](g)

)
f−1

o for everyg ∈ Bf .

Convention 3.4. Suppose u, u′ ∈ V B and p is a B-path from u to u′. Thus p has
the form:

p = b0, f1, b1, . . . , fs, bs

where s ≥ 0 is an integer, f1, . . . , fs is an edge path in B from u to u′, where
b0 ∈ Bu, bs ∈ Bu′ and bi ∈ Bt(fi) = Bo(fi+1) for 0 < i < s. Recall that each edge fi

has a label gieiki in B, where ei = [fi], gi = (fi)o and ki = (fi)t.
Hence the B-path p determines the A-path µ(p) from [u] to [u′] in A defined as

follows:
µ(p) = (b0g1), e1, (k1b1g2), e2, . . . , (ks−1bs−1gs), es, (ksbs)

Notice that |p| = |µ(p)|.
We also want to think about an A-graph as an “automaton” over A which “ac-

cepts” a certain subgroup of the fundamental group of A.

Definition 3.5. Let B be an A-graph with a base-vertex u0 ∈ V B.
We define the language L(B, u0) as

L(B, u0) := {µ(p)| p is a reduced B− path from u0 to u0 in B}
Thus L(B, u0) consists of A-paths from v0 := [uo] to v0.

A simple but valuable observation states that the language of an A-graph rep-
resents a subgroup in the fundamental group of A.

Proposition 3.6. Let B be an A-graph, u0 ∈ V B, v0 = [u0] and G = π1(A, v0).
Then:

(1) If p, p′ are ∼-equivalent B-paths, then µ(p) ∼ µ(p′) as A-paths.
(2) The map µ restricted to the set of B-paths from u0 to u0 factors through to a
homomorphism ν : π1(B, u0) → G.
(3) We have L(B, u0) = ν(π1(B, u0)). In particular, L(B, u0) is a subgroup of G.

(4) There is a canonical ν-equivariant simplicial map φ : (̃B, u0) → (̃A, v0) respect-
ing the base-points.

Proof. Part (1) follows directly from the definitions of ∼ and B. Part (1) immedi-
ately implies parts (2) and (3).

To establish (4) we will provide a direct construction of ν which will rely on the
explicit definition of Bass-Serre tree for a graph of groups given earlier. Denote
X = (̃A, v0) and Y = (̃B, u0). Let y = pBu be a vertex of Y , where p is a B-path
from u0 to u ∈ V B. Denote v = [u] ∈ V A. We put φ(y) := µ(p)Av ∈ V X. First,
note that this definition does not depend on the choice of p. Indeed, suppose p′

is another B-path from u0 to u. Then by the normal form theorem p′ = pb for
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some b ∈ Bu ≤ Av. Hence µ(p)Av = µ(p)bAv = µ(pb)Av = µ(p′)Av. Thus φ is
well-defined on the vertex set of Y .

It remains to check that φ preserves the adjacency relation. Let y = pBu ∈ V Y
be as above and let y′ = pbfBu ∈ V Y be an adjacent vertex of Y , where b ∈
Bu ≤ Av and where f ∈ EB is an edge of type e ∈ EA with o(f) = u. Thus
o(e) = v ∈ V A. We already know that φ(y) = µ(p)Av. Denote u′ = t(f) and
v′ = t(e), so that [u′] = v′. Also denote g = fo ∈ Av and h = ft ∈ Av′ . Then pbf
is an B-path from u0 to u′.

Therefore
φ(y′) = µ(pbf)Av′ = µ(p)bgehAv′ = µ(p)bgeAv′

is an adjacent vertex of φ(y) = µ(p)Av since bg ∈ Av. Thus indeed φ is a well-
defined simplicial map from Y to X. We leave checking the equivariance properties
of φ to the reader. ¤

We shall see that every subgroup of G = π1(A, v0) arises in this fashion. More-
over, for an “efficient” choice of B the corresponding graph-of-groups B represents
the induced splitting of the subgroup H = L(B, u0) ≤ G with respect to the action
of H on the Bass-Serre covering tree of A.

The following lemma is an immediate corollary of Proposition 2.3 and Proposi-
tion 3.6:

Lemma 3.7. Let B be an A-graph with a base-vertex u0 of type v0. Let T ⊆ B be
a spanning tree. For any two vertices u, u′ ∈ T denote by [u, u′]T the T -geodesic
path from u to u′.

Then π1(B, u0) is generated by ST where ST is the following set:

ST := ∪u∈V B

(
[u0, u]T Bu[u, u0]T

) ⋃
{[u0, o(e)]T e[t(e), u0]T | e ∈ E(B − T )}.

In particular, L(B, u0) ≤ π1(A, v0) is generated by µ(ST ) = ν(ST ).

4. Folding moves and folded graphs

Definition 4.1 (Folded A-graph). Let B be an A-graph.
We will say that B is not folded if at least one of the following applies:
(1) There are two distinct edges f1, f2 with o(f1) = o(f2) = z and labels

(a1, e, b1), (a2, e, b2) accordingly, such that z has label (A′, u) and a2 =
a′a1αe(c) for some c ∈ Ae and a′ ∈ A′.

(2) There is an edge f with label (a, e, b), with o(f) labeled (A′, u) and t(f)
labeled (B′, v) such that α−1

e (a−1A′a) 6= ω−1
e (bB′b−1).

Otherwise we will say that B is folded.

It is easy to see that if B is folded then any reduced B-path translates into a
reduced A-path.

Lemma 4.2. Let B be a folded A-graph defining the graph of groups B. Suppose p
is a reduced B-path. Then the corresponding A-path µ(p) is A-reduced.

Proof. Suppose p is a B-reduced B-path and µ(p) is the corresponding A-path.
Assume that µ(p) is not reduced. Then p has a subsequence of the form f, a1, f

′

where f−1, f are edges of B of the same type e ∈ EA such that the label of f−1

is aeb, the label of f ′ is a′eb′, where v ∈ V A is the type of o(f ′) = t(f) ∈ V B,
a, a′ ∈ Av, a1 ∈ Bt(f) ≤ Av and the A-path e−1, a−1a1a

′, e is not A-reduced.
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This means that for some c ∈ Ae we have a−1a1a
′ = αe(c), that is a1a

′ =
aαe(c). If f−1 and f ′ are two distinct edges of B, this contradicts our assumption
that B is folded. Thus f−1 = f ′, so that a = a′, b = b′. Therefore a−1a1a =
αe(c). Recall that since B is folded, part (2) of Definition 4.1 does not apply.
Therefore the edge group in B is Bf ′ = α−1

e (a−1A1a) and so c ∈ Bf ′ . Moreover,
the edge-monomorphism of f ′ in B was defined as αB

f ′(c) = aαe(c)a−1. Thus
a1 = aαe(c)a−1 ∈ αB

f ′(Bf ′). Hence f, a1, f
′ is not B-reduced, contrary to our

assumptions. ¤

The above lemma easily implies the following important fact:

Proposition 4.3. Let B be a folded A-graph defining the graph of groups B. Let
u0 be a vertex of B of type v0 ∈ V A. Denote G = π1(A, v0) and U = L(B, u0) ≤ G.

Then the epimorphism ν : π1(B, u0) → U is an isomorphism and the graph map

φ between the Bass-Serre covering trees φ : (̃B, u0) → (̃A, v0) is injective.

The above Proposition essentially says that if B is a folded A-graph defining a
subgroup U ≤ G, then U = π1(B, u0) is an induced splitting for U ≤ G = π1(A, v0).

We will now describe certain moves, called folding moves on A-graphs, which
preserve the corresponding subgroups of the fundamental group of A. These fold-
ing moves are a more combinatorial version of the folding moves of M.Bestvina-
M.Feighn [5] and M.Dunwoody [18].

Whenever we make changes to the label of an edge f of an A-graph we assume
that the corresponding changes are made to the label of f−1.

4.1. Auxiliary moves.

Definition 4.4 (Roll-over move A0). Let B be an A-graph. Suppose f is an edge
of B with the label (a, e, b) such that the edge e of A is not a loop. Let the label
of o(f) be (A1, y) and the label of t(f) be (B1, v). Thus A1 ≤ Ay, B1 ≤ Av,
a ∈ Ay, b ∈ Av, where y, v ∈ V A.

Let B′ be the A-graph obtained from B as follows:

(1) replace the label of the edge f by (a, e, 1);
(2) replace the label of t(f) by (bB1b

−1, v);
(3) for each non-loop edge f ′ 6= f−1 with origin t(f) in B and label (b′, e′, b′′)

replace the label of f ′ by (bb′, e′, b′′).
(4) for each loop f ′ with origin t(f) in B and label (b′, e′, b′′) we replace the

label of f ′ by (bb′, e′, b′′b−1).

In this case we will say that B′ is obtained from B by a folding move of type A0.
Suppose u0 ∈ B is a fixed base-vertex. If f is an edge as above and t(f) 6= u0,

we will say that the roll-over move A0 along f is admissible with respect to u0.

Definition 4.5 (Roll-over move A0). Let B be an A-graph. Suppose f is a non-loop
edge of B. Let b = ft

Let B′ be the A-graph obtained from B as follows:

(1) replace ft by 1.
(2) replace Bt(f) by bBt(f)b

−1;
(3) for each non-loop edge f ′ 6= f−1 of B with o(f ′) = t(f) replace fo with ffo.
(4) for each loop f ′ with origin t(f) in B replace fo with ffo and ft with ftb

−1.
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In this case we will say that B′ is obtained from B by a folding move of type A0.
Suppose u0 ∈ B is a fixed base-vertex. If f is an edge as above and t(f) 6= u0,

we will say that the roll-over move A0 along f is admissible with respect to u0.

Definition 4.6 (Bass-Serre move A1). Let B be an A-graph. Suppose f is an edge
of B with the label (a, e, b). Let the type of o(f) be u ∈ V A and the type of t(f)
be v ∈ V A. Suppose a = a′c′ where c′ = αe(c) for some c ∈ Ae. Put c′′ = ωe(c).

Let B′ be the A-graph obtained from B by replacing the label of f with (a′, e, c′′b).
In this case we will say that B′ is obtained from B by a folding move of type A1.

Definition 4.7 (Bass-Serre move A1). Let B be an A-graph. Suppose f is an edge
of B and that c ∈ A[f ].

Let B′ be the A-graph obtained from B by replacing fo with foαe(c)−1 and ft

with ωe(c)ft.
In this case we will say that B′ is obtained from B by a folding move of type A1.

Definition 4.8 (Simple adjustment A2). Let B be an A-graph. Suppose f is an
edge of B with the label (a, e, b). Let the label of o(f) be (A1, u) and suppose
a1 ∈ A1.

Let B′ be the A-graph obtained from B by replacing the label of f with (a1a, e, b).
In this case we will say that B′ is obtained from B by a folding move of type A2.

Definition 4.9 (Simple adjustment A2). Let B be an A-graph. Suppose f is an
edge of B and that a′ ∈ Bo(f).

Let B′ be the A-graph obtained from B by replacing fo with a′fo.
In this case we will say that B′ is obtained from B by a folding move of type A2.

Definition 4.10 (Simple conjugation A3). Let B be an A-graph. Let u0 ∈ V be a
vertex of type v0 ∈ V A with the vertex group A1 ≤ Av. Suppose x ∈ Av.

Let B′ be obtained from B as follows. The underlying graphs of B and B′ are
the same: B = B′. For u0 ∈ V B replace the vertex group Bu0 = A1 by B′

u0
=

x−1A1x ≤ Av. For each non-loop edge f ∈ EB with o(f) = u0 replace the label
(a, e, b) of f with (x−1a, e, b). For each loop-edge f ∈ EB with o(f) = t(f) = u0

replace the label (a, e, b) of f by (x−1a, e, bx). The remaining vertex groups and
edge labels of B remain unchanged. We will say that the resulting A-graph is
obtained from B by a folding move of type A3 corresponding to the element x ∈ Av.

Definition 4.11 (Simple conjugation A3). Let B be an A-graph. Let u0 ∈ V B be
a vertex of B and x ∈ A[uo]

Let B′ be obtained from B as follows:
(1) replace the group Bu0 by x−1Bu0x.
(2) For each non-loop edge f ∈ EB with o(f) = u0 replace fo with x−1fo.
(3) For each loop-edge f ∈ EB with o(f) = t(f) = u0 replace fo with x−1fo

and ft with ftx.
We will say that the resulting A-graph is obtained from B by a folding move of type
A3 corresponding to the element x ∈ Av.

4.2. Main folding moves.

Definition 4.12 (Simple fold F1). Let B be an A-graph. Suppose f1 and f2 are
two distinct non-loop edges of B with labels (a1, e, b1) and (a2, e, b2) accordingly
and such that o(f1) = o(f2), t(f1) 6= t(f2). Let (A′, u) be the label of o(f1). Let
(B′, v) be the label of t(f1) and let (B′′, v) be the label of t(f2).


