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Abstract

We prove that every linear discriminating (square-like) group is abelian
and every finitely generated solvable discriminating group is free abelian.
These results follow from manipulations with c-dimensions of groups. Here
c-dimension of a group G is the length of a longest strictly decreasing chain
of centralizers in G.

1 Introduction

A group G discriminates a group H if for any finite set of nontrivial elements
hi,...,hi € H there exists a homomorphism ¢ : H — G such that h? # 1 for
i=1,...,k.

This notion of discrimination plays a role in several areas of group theory;
for example, in the theory of varieties of groups [12], in algorithmic group theory
[8], algebraic geometry over groups [2], and in universal algebra [9], [5].

Following [3] we say that a group G is discriminating if G discriminates
G X G. A group G is called square-like if G is universally equivalent to G x G
[5]. Every discriminating group is square-like, but there are square-like non-
discriminating groups. We refer to [3], [4], and [5] for a more detailed discussion
of discriminating and square-like groups. One of the aims of the current research
on discriminating groups is to develop methods which for a given group G could
produce a simple universal axiom (or a "nice” set of such axioms) which dis-
tinguishes the quasi-variety quar(G) generated by G from the universal closure
ucl(G) of G (the minimal universal class containing G).

A partial description of discriminating abelian groups was given in [3]. In
[4] investigation of solvable discriminating groups was started.

In Section 3 we prove the following results which answer completely to the
Questions 2D and 3D from [4]:

every linear discriminating (square-like) group is abelian;

every finitely generated solvable discriminating group is free abelian.
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To prove this we use a notion called the c-dimension of a group. Namely,
a group G has finite c-dimension if there exists a positive integer n such that
every strictly descending chain of centralizers in G has length at most n. It is
not hard to see that finite c-dimension can be described by universal axioms
and it prevents a non-abelian group from being discriminating (or square-like).

In Section 2 we give various examples of groups of finite c-dimension and
prove some elementary properties of such groups. It follows immediately from
definition that abelian groups, stable groups (from model theory), commutative-
transitive groups (in which commutation is an equivalence relation on the set of
non-trivial elements), torsion-free hyperbolic groups - all have finite c-dimension.
It is easy to see that linear groups with coefficients in a field (or in a finite
direct product of fields) have finite c-dimension, in particular, finitely gener-
ated nilpotent groups [6], polycyclic groups [1], finitely generated metabelian
groups [11, 13, 14], have finite c-dimension. It turns out that finitely generated
abelian-by-nilpotent groups also have finite c-dimension [7]. Moreover, the class
of groups of finite c-dimension is closed under taking subgroups, finite direct
products, and universal equivalence. Recall that two groups are called univer-
sally equivalent if they satisfy the same universal sentences of the first-order
group theory language.

All known examples of finitely generated discriminating groups are rather
special. It is unknown what types of finitely generated non-abelian discriminat-
ing groups can satisfy a non-trivial identity.

2 Groups of finite c-dimension

Definition 1 For a group G we define a cardinal dim.(G) as the length of a
longest strictly descending chain of centralizers in G. The cardinal dim.(Q) is
called c-dimension (or centralizer-dimension) of G. A group G is said to be of
finite c-dimension if dim.(G) is finite.

Recall that a group is called commutative-transitive if commutation is an
equivalence relation on the set of all non-trivial elements from G. Since in
commutative-transitive groups proper centralizers are maximal abelian sub-
groups these groups have finite c-dimension. In particular, torsion-free hyper-
bolic groups have finite c-dimension.

Stable groups (from model theory) provide another type of examples of
groups with finite c-dimension (see, for example, [10]). The following result
is known ([10]), but we give a proof for completeness.

Proposition 2.1 General linear groups GL(m,K) over a field K have finite
c-dimenston.

Proof. Let A; € GL(m,K),i € I, be a finite set of matrices. Then the system
T = 1 of matrix equations [X, A;] = 1 (i € I), where X is an indeterminate
matrix, is equivalent to a system S = 0 of linear equations over K with m?
variables (the entries of X). The system Sy = 0 has at most m? independent



equations, hence the system 7" = 1 is equivalent to its own subsystem of at most
m? equations. This implies that the length of any strictly descending chain of
centralizers in GL(m, K) is at most m? + 1, so dim.(GL(m, K)) < m? + 1.

Lemma 2.2 Let G and H be groups. Then the following holds:
1) If H < G then dim.(H) < dim.(G);
2) If dim.(G) < oo and dim.(H) < oo then

dim (G x H) = dim.(G) + dim.(H) — 1.

Proof. To show 1) it suffices to notice that if
Cp(A1) > Cu(Az) > ... > Ch(4,) ...
is a strictly descending chain of centralizers in H then
Cg(A41) > Cq(A2) > ... > Ca(As) ...

is also a strictly descending chain of centralizers in G.
2) Let
Cg(Al) > Cg(AQ) >0 > Cg(Ad),

Cy(B1) > Cy(Bg) > ...>Cy(Be)
be strictly descending chains of centralizers in G and H, correspondingly. Then

C(A1 XB1) >C(A2 XB1) > ... >O(Ad><Bl) >

C(Ad X Bg) > C(Ad X Bg) >0 > C(Ad X BC)

is a strictly descending chain of centralizers in G x H, which has length d+c—1.
Hence
dim.(G x H) > dim.(G) + dim.(H) — 1.

We prove the converse by induction on dim.(G) + dim.(H). If dim.(G) =
dimc(H) = 1 then G and H are abelian. Hence G x H is abelian and

dim.(G x H) =1 =dim.(G) + dim.(H) — 1.

Now, let
CGxH(Zl) > CG><H(Z2) >0 > CGxH(Zk)

be a strictly descending chain of length k of centralizers in G x H. Then
Caxu(Z2) = Cq(B) x Cu(D)
for suitable subsets B C G, D C H. Strict inequality

Caxu(Z1) > Caxu(Zs)



implies

G > Cq(B), H>Cy(D)

where at least one of these inclusions is proper. By induction
dim(Coxu(Z2)) = dim.(Cq(B)xCg (D)) = dim.(Cg(B))+dim.(Cy(D))—1

< dim.(G) + dim.(H) — 2.
Clearly,
k< dim.(Coxu(Z2)) +1 < dim.(G) + dim.(H) — 1,
as required. This proves the result.

Combining Proposition 2.1 and Lemma 2.2 we get the following result.

Corollary 2.3 Let G be a linear group, or a subgroup of a stable group, or a
finite direct product of such groups. Then G has a finite c-dimension.

The next result is a generalization of Proposition 2.1.

Proposition 2.4 Let R= K; X ... x K, be a finite direct product of fields K;.
Then the general linear group GL(m, R) has finite c-dimension.

Proof. For every i = 1,...,n denote by m; the canonical projection 7; : R — K.
Then the homomorphism 7; gives rise to a homomorphism

¢; : GL(m, R) — GL(m, K3).

Clearly, for each non-trivial element g € GL(m, R) there exists an index ¢ such
that ¢;(g) # 1. Therefore, the direct product of homomorphisms ¢ = ¢1 X ... X
¢n gives an embedding

¢:GL(m,R) — GL(m,Ky) x ... x GL(m, K,).

Hence GL(m, R) has finite c-dimension as a subgroup of a finite direct product
of groups of finite c-dimensions (Proposition 2.4, 2.1, Lemma 2.2). This proves
the proposition.

V. Remeslennikov proved in [11] that a finitely generated metabelian group
(under some restrictions) is embeddable into GL(n, K) for a suitable n and a
suitable field K. In [13], see also [14], B. Wehrfritz showed that any finitely
generated metabelian group is embeddable into GL(n, R) for a suitable n and
a suitable ring R = K7 X ... X K, which is a finite direct product of fields K.
This, together with Proposition 2.4 implies the following

Corollary 2.5 Fwvery finitely generated metabelian group has finite c-dimension.

The following result provides another method to construct groups of finite
c-dimension.



Proposition 2.6 Let G be a group with dim.(G) < oco. Then the following
holds:

1) If a group H discriminates G then dim.(H) > dim.(G);
2) If a group H is universally equivalent to G then dim.(H) = dim.(G);

Proof. Let
C(Al) > C(Ag) >0 > C(Ad)

be a strictly descending finite chain of centralizers in G. There are elements
gi € C(A;) and a;41 € A;11 such that [gj,a;41] # 1 for i = 1,...,d — 1.
Since H discriminates G there exists a homomorphism ¢ : G — H such that
[gi, aix1]® # 1. This shows that the chain of centralizers

C(AD) > C(A9) > ... > C(AY)

is strictly descending in H. This proves 1).
To prove 2) one needs only to verify that the argument in 1) can be described
by an existential formula, which is easy.

3 Main results

Theorem 3.1 Let G be a group of finite c-dimension. If G is discriminating
or square-like, then G is abelian.

Proof. Let G be a group of finite c-dimension. If G is discriminating then G
discriminates G x GG. Hence by Proposition 2.6 and Lemma 2.2

dim.(G) > dim.(G x G) = 2dim.(G) — 1.

This implies that dim.(G) = 1, i.e., the group G is abelian.
If G is square-like, then G is universally equivalent to G x G and hence by
Proposition 2.6

dim.(G) = dim.(G x G) = 2dim.(G) — 1.

Again, it follows that dim.(G) = 1, and the group G is abelian. Theorem has
been proven.

Combining Theorem 3.1 and Corollaries 2.3 and 2.5 we obtain the following
theorem.

Theorem 3.2 1) Every linear discriminating (square-like) group is abelian;

2) Every finitely generated metabelian discriminating (square-like) group is
abelian.

The following notion allows one to argue by induction when dealing with
discriminating groups. We fix a group G and a normal subgroup N of G.



Definition 2 We say that G is discriminating modulo N (or N-discriminating)
if for any finite set X of elements from G X G, but not in N x N, there exists
a homomorphism ¢ : G x G — G /N such that z® # 1 for any x € X.

For a subset A C G denote by C(A, N) the centralizer of A modulo N:
Ca(A,N) ={g€G|lg, Al C N},

which is the preimage of the centralizer C/n(A") in G/N under the canonical
epimorphism v : G — G/N. We define a c-dimension dim. n(G) of G as the
length of the longest chain of strictly descending centralizers in G modulo N.
Obviously,

dime n(G) = dim.(G/N). (1)

The same argument as in Proposition 2.6 shows that if G is N-discriminating
then
dimc7N><N(G X G) < dzmc(G/N) (2)

Now if N is a normal subgroup of G and K is a normal subgroup of a group H
then

dime nx k(G x H) = dim.(G x H/IN x K) = dim.(G/N x H/K).
By Lemma 2.2
dim.(G/N x H/K) = dim.(G/N) + dim.(H/K) — 1,

hence
dimchxK(G X H) = dz‘mc’N(G) + dimgK(H) —1. (3)

The following is a slight generalization of Theorem 3.1.

Lemma 3.3 Let G be N-discriminating. If G/N has finite c-dimension then
G/N is abelian.

Proof. Tt readily follows from (2) and (3) that if G is N-discriminating then
dime nxN(G X G) = dime n(G) + dime g (H) — 1 < dim.(G/N),
hence dim.(G/N) =1 and G/N is abelian, as required.

Lemma 3.4 Let G be an N-discriminating group, v(G) be a verbal subgroup of
G, and C = Cg(v(G),N). Then G is C-discriminating.

Proof. Observe that
Cc(v(G),N)" = Cg/n(v(G)") = Cg/n(v(G/N)).

Now if
(gl’hl)a"'v(gk7hk)GGXG\CXC



then there exist elements
(al, bl), R (ak; bk) € U(G) X U(G)

such that [(g;, hi), (a;,b;)] € N for i = 1,...,k. Since G is N-discriminating
there exists a homomorphism ¢ : G x G — G/N such that

Notice that (a;,b;)® € v(G/N). It follows that

(91,71), ..., (gr, hi)? & Cqyn(v(G/N))
and their canonical images are non-trivial in G/C, as desired.

Lemma 3.5 Let G be a finitely generated N-discriminating group. If G/N is
solvable then it is abelian.

Proof. Let G = G and G =[G~ GU=D] be the i-term of the derived
series of G. Denote by k the derived length of G/N. We assume that k£ > 2 and
proceed by induction on k. Set C' = Cq(G*~Y N). Then G*~1) < C and the
derived length of G/C' is at most k — 1. By Lemma 3.4 G is C-discriminating.
By induction G/C is abelian so G < C and [G*~D GM] < N. Now put
D = Cg(GM N). Then G*~1 < D and so G/D has derived length less than
k. By Lemma 3.4 G is D-discriminating and by induction G/D is abelian.
Therefore G() < D. This implies that G < N and the group G/N is finitely
generated and metabelian. By Corollary 2.5 G/N has finite c-dimension. Now
in view of Lemma 3.3 we conclude that G/N is abelian.

Now from Lemma 3.5 (for N = 1) and the description of finitely generated
discriminating abelian groups from [3], we deduce

Theorem 3.6 FEvery finitely generated discriminating solvable group is free
abelian.
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