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Abstract

We prove that every linear discriminating (square-like) group is abelian
and every finitely generated solvable discriminating group is free abelian.
These results follow from manipulations with c-dimensions of groups. Here
c-dimension of a group G is the length of a longest strictly decreasing chain
of centralizers in G.

1 Introduction

A group G discriminates a group H if for any finite set of nontrivial elements
h1, . . . , hk ∈ H there exists a homomorphism φ : H → G such that hφ

i 6= 1 for
i = 1, . . . , k.

This notion of discrimination plays a role in several areas of group theory;
for example, in the theory of varieties of groups [12], in algorithmic group theory
[8], algebraic geometry over groups [2], and in universal algebra [9], [5].

Following [3] we say that a group G is discriminating if G discriminates
G ×G. A group G is called square-like if G is universally equivalent to G ×G
[5]. Every discriminating group is square-like, but there are square-like non-
discriminating groups. We refer to [3], [4], and [5] for a more detailed discussion
of discriminating and square-like groups. One of the aims of the current research
on discriminating groups is to develop methods which for a given group G could
produce a simple universal axiom (or a ”nice” set of such axioms) which dis-
tinguishes the quasi-variety qvar(G) generated by G from the universal closure
ucl(G) of G (the minimal universal class containing G).

A partial description of discriminating abelian groups was given in [3]. In
[4] investigation of solvable discriminating groups was started.

In Section 3 we prove the following results which answer completely to the
Questions 2D and 3D from [4]:

every linear discriminating (square-like) group is abelian;

every finitely generated solvable discriminating group is free abelian.
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To prove this we use a notion called the c-dimension of a group. Namely,
a group G has finite c-dimension if there exists a positive integer n such that
every strictly descending chain of centralizers in G has length at most n. It is
not hard to see that finite c-dimension can be described by universal axioms
and it prevents a non-abelian group from being discriminating (or square-like).

In Section 2 we give various examples of groups of finite c-dimension and
prove some elementary properties of such groups. It follows immediately from
definition that abelian groups, stable groups (from model theory), commutative-
transitive groups (in which commutation is an equivalence relation on the set of
non-trivial elements), torsion-free hyperbolic groups - all have finite c-dimension.
It is easy to see that linear groups with coefficients in a field (or in a finite
direct product of fields) have finite c-dimension, in particular, finitely gener-
ated nilpotent groups [6], polycyclic groups [1], finitely generated metabelian
groups [11, 13, 14], have finite c-dimension. It turns out that finitely generated
abelian-by-nilpotent groups also have finite c-dimension [7]. Moreover, the class
of groups of finite c-dimension is closed under taking subgroups, finite direct
products, and universal equivalence. Recall that two groups are called univer-
sally equivalent if they satisfy the same universal sentences of the first-order
group theory language.

All known examples of finitely generated discriminating groups are rather
special. It is unknown what types of finitely generated non-abelian discriminat-
ing groups can satisfy a non-trivial identity.

2 Groups of finite c-dimension

Definition 1 For a group G we define a cardinal dimc(G) as the length of a
longest strictly descending chain of centralizers in G. The cardinal dimc(G) is
called c-dimension (or centralizer-dimension) of G. A group G is said to be of
finite c-dimension if dimc(G) is finite.

Recall that a group is called commutative-transitive if commutation is an
equivalence relation on the set of all non-trivial elements from G. Since in
commutative-transitive groups proper centralizers are maximal abelian sub-
groups these groups have finite c-dimension. In particular, torsion-free hyper-
bolic groups have finite c-dimension.

Stable groups (from model theory) provide another type of examples of
groups with finite c-dimension (see, for example, [10]). The following result
is known ([10]), but we give a proof for completeness.

Proposition 2.1 General linear groups GL(m, K) over a field K have finite
c-dimension.

Proof. Let Ai ∈ GL(m,K), i ∈ I, be a finite set of matrices. Then the system
T = 1 of matrix equations [X,Ai] = 1 (i ∈ I), where X is an indeterminate
matrix, is equivalent to a system ST = 0 of linear equations over K with m2

variables (the entries of X). The system ST = 0 has at most m2 independent
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equations, hence the system T = 1 is equivalent to its own subsystem of at most
m2 equations. This implies that the length of any strictly descending chain of
centralizers in GL(m, K) is at most m2 + 1, so dimc(GL(m, K)) ≤ m2 + 1.

Lemma 2.2 Let G and H be groups. Then the following holds:

1) If H ≤ G then dimc(H) ≤ dimc(G);

2) If dimc(G) < ∞ and dimc(H) < ∞ then

dimc(G×H) = dimc(G) + dimc(H)− 1.

Proof. To show 1) it suffices to notice that if

CH(A1) > CH(A2) > . . . > CH(Aα) . . .

is a strictly descending chain of centralizers in H then

CG(A1) > CG(A2) > . . . > CG(Aα) . . .

is also a strictly descending chain of centralizers in G.
2) Let

CG(A1) > CG(A2) > . . . > CG(Ad),

CH(B1) > CH(B2) > . . . > CH(Bc)

be strictly descending chains of centralizers in G and H, correspondingly. Then

C(A1 ×B1) > C(A2 ×B1) > . . . > C(Ad ×B1) >

C(Ad ×B2) > C(Ad ×B3) > . . . > C(Ad ×Bc)

is a strictly descending chain of centralizers in G×H, which has length d+c−1.
Hence

dimc(G×H) ≥ dimc(G) + dimc(H)− 1.

We prove the converse by induction on dimc(G) + dimc(H). If dimc(G) =
dimc(H) = 1 then G and H are abelian. Hence G×H is abelian and

dimc(G×H) = 1 = dimc(G) + dimc(H)− 1.

Now, let
CG×H(Z1) > CG×H(Z2) > . . . > CG×H(Zk)

be a strictly descending chain of length k of centralizers in G×H. Then

CG×H(Z2) = CG(B)× CH(D)

for suitable subsets B ⊂ G,D ⊂ H. Strict inequality

CG×H(Z1) > CG×H(Z2)
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implies
G ≥ CG(B), H ≥ CH(D)

where at least one of these inclusions is proper. By induction

dimc(CG×H(Z2)) = dimc(CG(B)×CH(D)) = dimc(CG(B))+dimc(CH(D))−1

≤ dimc(G) + dimc(H)− 2.

Clearly,
k ≤ dimc(CG×H(Z2)) + 1 ≤ dimc(G) + dimc(H)− 1,

as required. This proves the result.

Combining Proposition 2.1 and Lemma 2.2 we get the following result.

Corollary 2.3 Let G be a linear group, or a subgroup of a stable group, or a
finite direct product of such groups. Then G has a finite c-dimension.

The next result is a generalization of Proposition 2.1.

Proposition 2.4 Let R = K1× . . .×Kn be a finite direct product of fields Ki.
Then the general linear group GL(m,R) has finite c-dimension.

Proof. For every i = 1, . . . , n denote by πi the canonical projection πi : R → Ki.
Then the homomorphism πi gives rise to a homomorphism

φi : GL(m,R) → GL(m,Ki).

Clearly, for each non-trivial element g ∈ GL(m,R) there exists an index i such
that φi(g) 6= 1. Therefore, the direct product of homomorphisms φ = φ1× . . .×
φn gives an embedding

φ : GL(m,R) → GL(m,K1)× . . .×GL(m,Kn).

Hence GL(m,R) has finite c-dimension as a subgroup of a finite direct product
of groups of finite c-dimensions (Proposition 2.4, 2.1, Lemma 2.2). This proves
the proposition.

V. Remeslennikov proved in [11] that a finitely generated metabelian group
(under some restrictions) is embeddable into GL(n,K) for a suitable n and a
suitable field K. In [13], see also [14], B. Wehrfritz showed that any finitely
generated metabelian group is embeddable into GL(n,R) for a suitable n and
a suitable ring R = K1 × . . .×Kn which is a finite direct product of fields Ki.
This, together with Proposition 2.4 implies the following

Corollary 2.5 Every finitely generated metabelian group has finite c-dimension.

The following result provides another method to construct groups of finite
c-dimension.
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Proposition 2.6 Let G be a group with dimc(G) < ∞. Then the following
holds:

1) If a group H discriminates G then dimc(H) ≥ dimc(G);

2) If a group H is universally equivalent to G then dimc(H) = dimc(G);

Proof. Let
C(A1) > C(A2) > . . . > C(Ad)

be a strictly descending finite chain of centralizers in G. There are elements
gi ∈ C(Ai) and ai+1 ∈ Ai+1 such that [gi, ai+1] 6= 1 for i = 1, . . . , d − 1.
Since H discriminates G there exists a homomorphism φ : G → H such that
[gi, ai+1]φ 6= 1. This shows that the chain of centralizers

C(Aφ
1 ) > C(Aφ

2 ) > . . . > C(Aφ
d)

is strictly descending in H. This proves 1).
To prove 2) one needs only to verify that the argument in 1) can be described

by an existential formula, which is easy.

3 Main results

Theorem 3.1 Let G be a group of finite c-dimension. If G is discriminating
or square-like, then G is abelian.

Proof. Let G be a group of finite c-dimension. If G is discriminating then G
discriminates G×G. Hence by Proposition 2.6 and Lemma 2.2

dimc(G) ≥ dimc(G×G) = 2dimc(G)− 1.

This implies that dimc(G) = 1, i.e., the group G is abelian.
If G is square-like, then G is universally equivalent to G × G and hence by

Proposition 2.6

dimc(G) = dimc(G×G) = 2dimc(G)− 1.

Again, it follows that dimc(G) = 1, and the group G is abelian. Theorem has
been proven.

Combining Theorem 3.1 and Corollaries 2.3 and 2.5 we obtain the following
theorem.

Theorem 3.2 1) Every linear discriminating (square-like) group is abelian;

2) Every finitely generated metabelian discriminating (square-like) group is
abelian.

The following notion allows one to argue by induction when dealing with
discriminating groups. We fix a group G and a normal subgroup N of G.
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Definition 2 We say that G is discriminating modulo N (or N -discriminating)
if for any finite set X of elements from G×G, but not in N ×N , there exists
a homomorphism φ : G×G → G/N such that xφ 6= 1 for any x ∈ X.

For a subset A ⊂ G denote by CG(A, N) the centralizer of A modulo N :

CG(A, N) = {g ∈ G | [g, A] ⊆ N},

which is the preimage of the centralizer CG/N (Aν) in G/N under the canonical
epimorphism ν : G → G/N . We define a c-dimension dimc,N (G) of G as the
length of the longest chain of strictly descending centralizers in G modulo N .
Obviously,

dimc,N (G) = dimc(G/N). (1)

The same argument as in Proposition 2.6 shows that if G is N -discriminating
then

dimc,N×N (G×G) ≤ dimc(G/N). (2)

Now if N is a normal subgroup of G and K is a normal subgroup of a group H
then

dimc,N×K(G×H) = dimc(G×H/N ×K) = dimc(G/N ×H/K).

By Lemma 2.2

dimc(G/N ×H/K) = dimc(G/N) + dimc(H/K)− 1,

hence
dimc,N×K(G×H) = dimc,N (G) + dimc,K(H)− 1. (3)

The following is a slight generalization of Theorem 3.1.

Lemma 3.3 Let G be N -discriminating. If G/N has finite c-dimension then
G/N is abelian.

Proof. It readily follows from (2) and (3) that if G is N -discriminating then

dimc,N×N (G×G) = dimc,N (G) + dimc,K(H)− 1 ≤ dimc(G/N),

hence dimc(G/N) = 1 and G/N is abelian, as required.

Lemma 3.4 Let G be an N -discriminating group, v(G) be a verbal subgroup of
G, and C = CG(v(G), N). Then G is C-discriminating.

Proof. Observe that

CG(v(G), N)ν = CG/N (v(G)ν) = CG/N (v(G/N)).

Now if
(g1, h1), . . . , (gk, hk) ∈ G×Gr C × C
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then there exist elements

(a1, b1), . . . , (ak, bk) ∈ v(G)× v(G)

such that [(gi, hi), (ai, bi)] 6∈ N for i = 1, . . . , k. Since G is N -discriminating
there exists a homomorphism φ : G×G → G/N such that

[(gi, hi), (ai, bi)]φ 6= 1 (i = 1, . . . , k).

Notice that (ai, bi)φ ∈ v(G/N). It follows that

(g1, h1)φ, . . . , (gk, hk)φ 6∈ CG/N (v(G/N))

and their canonical images are non-trivial in G/C, as desired.

Lemma 3.5 Let G be a finitely generated N -discriminating group. If G/N is
solvable then it is abelian.

Proof. Let G(0) = G and G(i) = [G(i−1), G(i−1)] be the i-term of the derived
series of G. Denote by k the derived length of G/N . We assume that k ≥ 2 and
proceed by induction on k. Set C = CG(G(k−1), N). Then G(k−1) ≤ C and the
derived length of G/C is at most k − 1. By Lemma 3.4 G is C-discriminating.
By induction G/C is abelian so G(1) ≤ C and [G(k−1), G(1)] ≤ N . Now put
D = CG(G(1), N). Then G(k−1) ≤ D and so G/D has derived length less than
k. By Lemma 3.4 G is D-discriminating and by induction G/D is abelian.
Therefore G(1) ≤ D. This implies that G(2) ≤ N and the group G/N is finitely
generated and metabelian. By Corollary 2.5 G/N has finite c-dimension. Now
in view of Lemma 3.3 we conclude that G/N is abelian.

Now from Lemma 3.5 (for N = 1) and the description of finitely generated
discriminating abelian groups from [3], we deduce

Theorem 3.6 Every finitely generated discriminating solvable group is free
abelian.
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