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Regular Free Length Functions
on Lyndon’s Free Z[t]-group F Z[t]

Alexei G. Myasnikov, Vladimir N. Remeslennikov, and Denis E. Serbin

Abstract. Let F = F (X) be a free group with basis X and Z[t] be the ring
of integer polynomials in t. In this paper we represent elements of Lyndon’s
free Z[t]-group FZ[t] by infinite words defined as functions w : [1, fw] → X±1

over closed intervals [1, fw] = {a ∈ Z[t] | 1 6 a 6 fw} in the additive group of
Z[t], viewed as an ordered abelian group. This naturally provides a regular free

Lyndon length function L : w → fw on FZ[t] with values in Z[t]. It follows that
every finitely generated fully residually free group has a free length function
with values in a free abelian group Zn of finite rank with the lexicographic
order. This technique allows one to solve various algorithmic problems for
FZ[t] using the standard Nielsen cancellation argument for the length function
L : FZ[t] → Z[t].
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1. Introduction

Let F = F (X) be a free non-abelian group with basis X and Z[t] be the ring
of integer polynomials in the variable t. In [27] Lyndon defined and studied a free
Z[t]-group FZ[t] which admits exponents in the ring Z[t]. The impetus for his study
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was to describe solutions sets of equations over F by elements from FZ[t], viewed
as parametric words with parameters in Z[t]. Lyndon proved that one needs only
finitely many parametric words to describe solutions of one-variable equations over
F [29]. Further progress in this direction was made by Appel [1] and Lorents [26],
who gave the exact form of the required parametric words, see also [11] for an
alternative proof. It was shown later [2, 42] that solution sets of equations of more
than one variable, in general, cannot be described by a finite set of parametric
words.

Recently, a new wave of interest (see, for example, [5, 36, 14, 19, 20, 22]) in
Lyndon’s group FZ[t] arose with respect to its relation to algebraic geometry over
groups and the Tarski problem. In [19, 20] Kharlampovich and Myasnikov proved
that the coordinate groups of irreducible algebraic sets over F are precisely the
finitely generated subgroups of FZ[t]. It follows, for example, that the solution set
of an irreducible system of equations over F is equal to the Zariski closure of some
set of solutions given by a finite set of parametric words over F .

Another recent development related to FZ[t] concerns fully residually free groups.
It was shown in [4] that finitely generated fully residually free groups are precisely
the coordinate groups of irreducible algebraic sets over F , so (by the result above)
these groups are embeddable into FZ[t]. On the other hand, in the original pa-
per [27] Lyndon proved that FZ[t] (hence, every subgroup of it) is fully residually
free. This gives another characterization of finitely generated fully residually free
groups which allows one to study them by means of combinatorial group theory:
HNN-extensions and free products with amalgamation, Bass-Serre theory, JSJ-
decompositions.

In this paper we represent elements of the group FZ[t] by infinite words in the
alphabet X±1. These words are functions of the type

w : [1, fw] → X±1,

where fw ∈ Z[t] and [1, fw] = {g ∈ Z[t] | 1 6 g 6 fw} is a closed interval in Z[t] with
respect to the standard lexicographical order 6. The function L : w → fw gives
rise to a regular free Lyndon length function on FZ[t] with values in the additive
group of Z[t], viewed as an abelian ordered group. This implies that every finitely
generated fully residually free group has a free length function with values in a free
abelian group Zn of finite rank with the lexicographic order.

Once the presentation of elements of FZ[t] by infinite words is established, a
host of problems about FZ[t] can be solved precisely in the same way as in the
standard free group F . To demonstrate this technique we show that the conjugacy
and the power problems are decidable in FZ[t] in the same fashion as in F . Notice
that decidability of the conjugacy problem has been proven before by Liutikova in
[25], and also by Ribes and Zalesski in [43] using completely different methods.

Another interesting application of these results stems from the regularity of
the length function L (this means that if c(u, v) is the length of the common initial
segment of elements u and v then there exists an element c of length c(u, v) such
that u = cu1, v = cv1 for some u1, v1 with c(u1, v1) = 0). The regularity condition is
crucial for Nielsen’s cancellation method, which is the base for Makanin’s technique
for solving equations over F [32]. It turns out, that if G is a coordinate group of
an irreducible algebraic set over F with a computable regular free Lyndon length
function G → Zn then a Makanin’s type argument can be used for solving equations
over G (see [17, 22]). This plays an important role in proving the decidability of
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the elementary theories of free groups. Since the coordinate group G is a subgroup
of FZ[t] the restriction LG of L onto G is a length function on G satisfying all the
required conditions, except, maybe, the regularity axiom. Using the machinery of
infinite words we were able to show that LG is regular for a wide class of subgroups
of FZ[t].

Observe, that one can derive from the description of FZ[t] as the union of
extensions of centralizers [36] and the results of Bass on non-archimedean actions
[3] that FZ[t] acts freely on a Λ-tree, where Λ is a free abelian group of countable
rank with the lexicographic order. This implies, that FZ[t], indeed, has a free
Lyndon length function with values in Z[t], but the method does not provide any
information whether this length is regular, or computable.

Our method for constructing free length functions on groups is quite general
and can be applied to a wide class of groups. It is based on infinite A-words in an
alphabet X±, where A is an arbitrary discretely ordered abelian group. An A-word
is a function w : [1A, αw] −→ X±, where 1A is the minimal positive element of
A and [1A, αw] is a closed segment in A. One can consider a set R(A,X) of all
reduced A-words w (w(a + 1A) 6= w(a)−1 for a ∈ [1A, αw]) which comes equipped
with the natural partial multiplication and length function w −→ αw. For a given
group G every embedding of G into R(A,X) provides a “nice” length function
on G inherited from R(A,X). It turned out (quite unexpectedly) that Stalling’s
pregroups supply the most adequate technique to study R(A,X).

In [37] and [38] we have constructed a similar length function on FZ[t] using
quite different methods (more direct and computationally heavy). We would like
also to mention preprint [7] which contains some preliminary results concerning
length functions on extensions of centralizers of free groups.

2. Preliminaries

2.1. Lyndon’s Z[t]-free group FZ[t]. Let A be an associative unitary ring.
Recall [36, 6] that a group G is termed an A-group if it comes equipped with a
function (exponentiation) G×A → G:

(g, α) → gα

satisfying the following conditions for arbitrary g, h ∈ G and α, β ∈ A:
(E1) g1 = g, gα+β = gαgβ , gαβ = (gα)β ;
(E2) g−1hαg = (g−1hg)α;
(E3) if g and h commute, then (gh)α = gαhα.

The axioms (E1) and (E2) were introduced originally by Lyndon in [27], the
axiom (E3) was added later in [35]. A homomorphism φ : G → H between two
A-groups is termed an A-homomorphism if φ(gα) = φ(g)α for every g ∈ G and
α ∈ A. It is not hard to prove (see, [35] or [36]) that for every group G there exists
an A-group H (which is unique up to an A-isomorphism) and a homomorphism
µ : G −→ H such that for every A-group K and every A-homomorphism θ : G −→
K, there exists a unique A-homomorphism φ : H −→ K such that φµ = θ. We
denote H by GA and call it the A-completion of G. In particular, there exists a
Z[t]-completion FZ[t] of a free group F . It was introduced by Lyndon in [27] who
used different methods, and is now called Lyndon’s free Z[t]-group.

In [36] an effective construction of FZ[t] was given in terms of extensions of
centralizers. For a group G let S = {Ci | i ∈ I} be a set of representatives
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of conjugacy classes of proper cyclic centralizers in G, i.e., every proper cyclic
centralizer in G is conjugate to one from S, and no two centralizers from S are
conjugate. Then the HNN-extension

H = 〈 G, si,j (i ∈ I, j ∈ N) | [si,j , ui] = [si,j , si,k] = 1 (ui ∈ Ci, i ∈ I, j, k ∈ N) 〉,
where N stands for the set of positive natural numbers, is termed an extension of
cyclic centralizers in G. Now the group FZ[t] is isomorphic to the direct limit of
the following infinite chain of groups:

(1) F = G0 < G1 < · · · < Gn < · · · < · · · ,

where Gi+1 is obtained from Gi by extension of all cyclic centralizers in Gi. We
use this description of Lyndon’s free Z[t]-group below to embed FZ[t] into the set
of infinite words CDR(Z[t], X).

2.2. Stallings’ pregroups and their universal groups. In papers [45, 46]
Stallings introduced a notion of a pregroup P and its universal group U(P ). A
pregroup P provides a very economic way to describe some normal forms of elements
of U(P ).

A pregroup P is a set P , with a distinguished element ε, equipped with a
partial multiplication, that is a function D → P , (x, y) → xy, where D ⊂ P × P ,
and an inversion, that is a function P → P , x → x−1, satisfying the following
axioms (below xy is defined if (x, y) ∈ D):

(P1) for all u ∈ P uε and εu are defined and uε = εu = u;
(P2) for all u ∈ P, u−1u and uu−1 are defined and u−1u = uu−1 = ε;
(P3) for all u, v ∈ P , if uv is defined, then so is v−1u−1, and (uv)−1 = v−1u−1;
(P4) for all u, v, w ∈ P, if uv and vw are defined, then (uv)w is defined if and

only if u(vw) is defined, in which case

(uv)w = u(vw);

(P5) for all u, v, w, z ∈ P if uv, vw, and wz are all defined then either uvw or
vwz is defined.

It was noticed (see [16]) that (P3) follows from (P1), (P2), and (P4), hence, can
be omitted.

To describe the universal group U(P ) recall that a mapping φ : P → Q of
pregroups is a morphism if for any x, y ∈ P whenever xy is defined in P , φ(x)φ(y)
is defined in Q and equal to φ(xy).

Now the group U(P ) can be characterized by the following universal property:
there is a morphism of pregroups λ : P → U(P ), such that, for any morphism φ :
P → G of P into a group G, there is a unique group homomorphism ψ : U(P ) → G
for which ψλ = φ. This shows that U(P ) is a group with a generating set P and a
set of relations xy = z, where x, y ∈ P , xy is defined in P , and equal to z.

There exists an explicit construction of U(P ) due to Stallings [46]. Namely,
a finite sequence (u1, . . . , un) of elements from P is called a reduced P -sequence if
for any 1 6 i 6 n − 1 the product uiui+1 is not defined in P . The group U(P )
can be described as the set of equivalence classes on the set of all reduced P -
sequences modulo equivalence relation ∼, where (u1, . . . , un) ∼ (v1, . . . , vm) if and
only if m = n and there exist elements a1, . . . , an−1 ∈ P such that vi = a−1

i−1uiai for
1 6 i 6 n (here a0 = an = 1). The multiplication on U(P ) is given by concatenation
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of representatives and reduction of the resulting sequence. P embeds into U(P ) via
the canonical map u → (u).

We use pregroups as a convenient language to describe various presentations of
groups by infinite words.

In Section 3.2 we prove that the set R(A,X) with the partial multiplication
∗ and the inversion −1 satisfies the axioms (P1) - (P4). In general, R(A,X) does
not satisfy (P5), but some subsets of it, which play an important part in our
constructions, do.

2.3. Ordered abelian groups. In this section some well-known results on
ordered abelian groups are collected. For proofs and details we refer to the books
[15] and [24].

Definition 2.1. A set A equipped with addition + and a partial order 6 is
called a partially ordered abelian group if:

(1) 〈A, +〉 is an abelian group;
(2) 〈A, 6〉 is a partially ordered set;
(3) for all a, b, c ∈ A, a 6 b implies a + c 6 b + c.

If the partial ordering is a linear (total) ordering then A is called an ordered
abelian group

If A is an ordered abelian group then the set of all non-negative elements

A+ = {a ∈ A | a > 0}
forms a semigroup, such that A+ ∩−A+ = 0 and A+ ∪−A+ = A. Conversely, if P
is a subsemigroup of A such that P ∪ −P = A and P ∩ −P = 0 then the relation

a > b ⇔ a− b ∈ P

turns A into an ordered abelian group. We call P the positive cone of the ordered
abelian group A.

For an element a ∈ A define a function sgn : A → {−1, 0, 1} as follows:

sgn(a) =





1 if a > 0,
0 if a = 0,
−1 if a < 0.

An abelian group A is called orderable if there exists a linear order 6 on A,
satisfying the condition (3) above. In general, the ordering on A is not unique.

Observe, that every ordered abelian group is torsion-free, since if 0 < a ∈ A then
0 < na for any positive integer n. It is easy to see that the reverse is also true, that
is, a torsion-free abelian group is orderable. Indeed, by the compactness theorem for
first-order logic, a group is orderable if and only if every finitely generated subgroup
of it is orderable. Hence, it suffices to show that finite direct sums of copies of the
infinite cyclic group Z are orderable. This is easy, one of the possible orderings is
the lexicographical order described below.

Let A and B be ordered abelian groups. Then the direct sum A⊕B is orderable
with respect to the right lexicographic order, defined as follows:

(a1, b1) < (a2, b2) ⇔ b1 < b2 or b1 = b2 and a1 < a2.

Similarly, one can define the right lexicographic order on finite direct sums of
ordered abelian groups or even on infinite direct sums if the set of indices is linearly
ordered. Indeed, let I be a linearly ordered set of indices and Ai, i ∈ I, be a set
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of ordered abelian groups. Then the right lexicographic order on the direct sum
AI =

⊕
i∈I Ai is defined by the following condition: an element a = (ai)i∈I ∈ AI

is positive if and only if its greatest non-zero component is positive. It follows that
the right lexicographic order on AI extends the order on each group Ai, viewed as
a subgroup under the canonical embedding.

For example, let 〈Z[t],+〉 be the additive group of the polynomial ring Z[t]
(below we use the notation Z[t] both for the ring of polynomials and its additive
group). Recall, that as a group Z[t] is an infinite direct sum

Z[t] =
∞⊕

n=0

〈tn〉

of copies of Z. Hence, Z[t] has the right lexicographic order induced by this direct
decomposition. From now on we fix this right lexicographic order on Z[t]. The
ordered abelian group Z[t] plays a key part in this paper.

Observe, that the construction above allows one to introduce a right lexico-
graphic order on any torsion-free abelian group A. Indeed, there exists an embed-
ding (by no means unique) of A into a divisible abelian group AQ = A⊗ZQ, where
Q is the additive group of rational numbers. Clearly, AQ is a direct sum of copies
of Q, AQ =

⊕
i∈I Q. Since the set of indices I can be linearly ordered (assuming

the axiom of choice) the group AQ is orderable, as well as its subgroup A. The
induced order on A is also called lexicographic.

If A is already ordered then the right lexicographic order on AQ, in general,
does not extend the order on A. Now we introduce an order on AQ that extends
the existing order on A. Notice, that elements in AQ can be described as fractions
a
m , where a ∈ A and m ∈ Z, m > 0. Then the relation

a

k
6 b

m
⇔ ma 6 kb

gives rise to an order on AQ which extends the order on A under the embedding
a → a

1 . We will refer to this order as a fraction order. Observe that Z[t]Q is the
additive group of the polynomial ring Q[t] with the right lexicographic order.

For elements a, b of an ordered group A the closed segment [a, b] is defined by

[a, b] = {c ∈ A | a 6 c 6 b}.
A subset C ⊂ A is called convex, if for every a, b ∈ C the set C contains [a, b].

In particular, a subgroup B of A is convex if [0, b] ⊂ B for every positive b ∈ B. In
this event, the quotient A/B is an ordered abelian group with respect to the order
induced from A.

A group A is called archimedean if it has no non-trivial proper convex sub-
groups. It is known that A is archimedean if and only if A can be embedded into
the ordered abelian group of real numbers R+, or equivalently, for any 0 < a ∈ A
and any b ∈ A there exists an integer n such that na > b.

Obviously, if the set of indices I has at least two elements then the direct sum
AI with the right lexicographic order is non-archimedean. On the other hand, if A is
an archimedean ordered abelian group then the fraction order on its Q-completion
AQ is also archimedean.

It is not hard to see that the set of convex subgroups of an ordered abelian
group A is linearly ordered by inclusion (see, for example, [15]), it is called the
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complete chain of convex subgroups in A. Notice that

En = {f(t) ∈ Z[t] | deg(f(t)) 6 n}
is a convex subgroup of Z[t] (here deg(f(t)) is the degree of f(t)) and

0 < E0 < E1 < · · · < En < · · ·
is the complete chain of convex subgroups of Z[t].

If A is finitely generated then the complete chain of convex subgroups of A:

0 = A0 < A1 < . . . < An = A

is finite. The following result (see, for example, [10]) shows that this chain com-
pletely determines the order on A, as well as the structure of A. Namely, the groups
Ai/Ai−1 are archimedean (with respect to the induced order) and A is isomorphic
(as an ordered group) to the direct sum

(2) A1 ⊕A2/A1 ⊕ · · · ⊕An/An−1

with the right lexicographic order.
An ordered abelian group A is called discretely ordered if A+ has a minimal

non-trivial element (we denote it by 1A). In this event, for any a ∈ A the following
hold:

1) a + 1A = min{b | b > a},
2) a− 1A = max{b | b < a}.
For example, A = Zn with the right lexicographic order is descretely ordered

with 1Zn = (1, 0, . . . , 0). The additive group of integer polynomials Z[t] is descretely
ordered with 1Z[t] = 1.

Lemma 2.2. A finitely generated discretely ordered archimedean abelian group
is infinite cyclic.

Proof. Let H = 〈a1, . . . , an〉 be a finitely generated archimedean discretely
ordered abelian group and b = 1H . We can assume that H < R+. Then ai =
mib + ri, where mi ∈ Z, 0 6 ri < b, hence, ri = 0 and b generates H. ¤

It follows from Lemma 2.2 that a discrete abelian ordered group A has a mini-
mal nontrivial convex subgroup, namely, the infinite cyclic subgroup 〈1A〉 generated
by 1A. We denote this subgroup by Z and refer to its elements as finite elements
of A, and to elements from A− Z as to infinite or non-standard elements. In par-
ticular, if A = Z[t] then the constant polynomials are the only finite elements of
A.

Every convex subgroup of a discretely ordered abelian group A is also discretely
ordered (with respect to the induced order), but ordered images of A may not
be discrete. For example, if α ∈ R is irrational then the ordered subgroup H =
〈α, 1R〉 6 R (with the induced order) is finitely generated archimedean non-discrete,
hence, the group A = Z ⊕ H with the right lexicographic order is discrete, and
H ' A/Z is not.

We call an ordered abelian group A hereditary discrete if for any convex sub-
group E 6 A the quotient A/E is discrete with respect to the induced order. The
equality (2) and Lemma 2.2 imply

Corollary 2.3. Let A be a finitely generated hereditary discrete ordered abelian
group. Then A is isomorphic to the direct product of finitely many copies of Z with
the lexicographic order.
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2.4. Lyndon length functions. Let G be a group and A be an ordered
abelian group. Then a function l : G → A is called a (Lyndon) length function on
G if the following conditions hold:

(L1) ∀ x ∈ G : l(x) > 0 and l(1) = 0;
(L2) ∀ x ∈ G : l(x) = l(x−1);
(L3) ∀ x, y, z ∈ G : c(x, y) > c(x, z) → c(x, z) = c(y, z),

where c(x, y) = 1
2 (l(x) + l(y)− l(x−1y)).

In general c(x, y) /∈ A, but c(x, y) ∈ AQ, so, in the axiom (L3) we view A as a
subgroup of AQ.

It is not difficult to derive the following two properties of Lyndon length func-
tions from the axioms (L1)-(L3):

• ∀ x, y ∈ G : l(xy) 6 l(x) + l(y);
• ∀ x, y ∈ G : 0 6 c(x, y) 6 min{l(x), l(y)}.

Below we list several extra axioms which describe some special classes of Lyndon
length functions.

(L4) ∀ x ∈ G : c(x, y) ∈ A.

A length function l : G → A is called free, if it satisfies
(L5) ∀ x ∈ G : x 6= 1 → l(x2) > l(x).

A group G has a Lyndon length function l : G → A, which satisfies axioms (L4)-
(L5) if and only if G acts freely on some A-tree. This is a remarkable result due
to Chiswell (see [9]). Lyndon himself proved that groups with free length functions
with values in Z are just subgroups of free groups with the induced length functions
[28]. A joint effort of several researchers culminated in a description of finitely
generated groups with real-valued free length function [34, 40, 8, 13] which is now
known as Rips’ theorem: a finitely generated group acts freely on an R-tree if and
only if it is a free product of free abelian groups and surface groups (with exception
of non-orientable groups of genus 1, 2, and 3). The case of non-archimedean free
length functions is wide open. In [3] Bass studied finitely generated groups acting
freely on a (Λ⊕ Z)-tree with lexicographic order on Λ⊕ Z.

In Section 4 we define a subset CDR(A,X) ⊂ R(A, X) of all reduced infi-
nite words which admit cyclic decomposition and prove the following result: for a
discretely ordered abelian group A the function l : CDR(A,X) → A, defined as
l(w) = |w|, satisfies all the axioms (L1)–(L5), whenever corresponding products of
elements in these axioms are defined. This implies that every group embeddable
into CDR(A, X) has a free length function with values in A. Moreover, in the
special case when A = Z[t], some subgroups of CDR(A,X), in particular, the free
Z[t]-group FZ[t], have free length functions which are easily computable and sat-
isfy the following extra axiom (L6). Below for elements x1, . . . , xn ∈ G we write
x = x1 ◦ · · · ◦ xn if x = x1 · · ·xn and l(x) = l(x1) + · · ·+ l(xn). Also, for α ∈ A we
write x = x1 ◦α x2 if x = x1x2 and c(x−1

1 , x2) < α.
The length function l : G → A is called regular if it satisfies the following

regularity axiom:
(L6) ∀x, y ∈ G,∃u, x1, y1 ∈ G :

x = u ◦ x1 & y = u ◦ y1 & l(u) = c(x, y).

The regularity condition is crucial for Nielsen’s cancellation method, which is the
base for Makanin’s technique for solving equations over F [32].
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3. A-words

3.1. Definitions. Let A be a discretely ordered abelian group. Recall that 1A

is the minimal positive element of A and if a, b ∈ A then [a, b] = {x ∈ A | a 6 x 6 b}.
For a function f : B → C by dom(f) we denote the domain B of f .

Let X = {xi | i ∈ I} be a set. Put X−1 = {x−1
i | i ∈ I} and X± = X ∪X−1.

As usual we define an involution −1 on X± by (x)−1 = x−1 and (x−1)−1 = x.

Definition 3.1. An A-word is a function of the type

w : [1A, α] → X±,

where α ∈ A,α > 0. The element α is called the length |w| of w.

By W (A,X) we denote the set of all A-words. Observe, that |w| = 0 if and
only if the domain of w is empty ([1A, 0] = ∅), i.e. the function w is empty. We
denote this function by ε. Also, we say that an element w ∈ W (A, X) has a finite
length if |w| ∈ Z.

Concatenation uv of two words u, v ∈ W (A, X) is an A-word of length |u|+ |v|
and such that:

(uv)(a) =
{

u(a) if 1A 6 a 6 |u|
v(a− |u|) if |u| < a 6 |u|+ |v|

In particular, εu = uε = u for any u ∈ W (A,X). For any A-word w we define an
inverse w−1 as an A-word of the length |w| and such that

w−1(β) = w(|w|+ 1A − β)−1 (β ∈ [1A, |w|]).
An A-word w is reduced if w(β + 1A) 6= w(β)−1 for each 1A 6 β < |w|. We

denote by R(A,X) the set of all reduced A-words. Clearly, ε ∈ R(A,X).
Of course, concatenation uv of two reduced words u, v may not be reduced.

We write u ◦ v instead of uv in the case when uv is reduced, i.e. u(|u|) 6= v(1A)−1.
We will show below that this notation agrees with the one given in Section 2.4 via
length functions. Obviously, ◦ satisfies the following cancellation conditions:

x ◦ y = x ◦ z =⇒ y = z, y ◦ x = z ◦ x =⇒ y = z.

If w = w1 ◦ u ◦ w2 then u is called a subword of w.

3.2. Multiplication. In this subsection we introduce a (partial) multiplica-
tion on R(A,X) and show that it satisfies the axioms (P1)–(P4) of pregroups.

For u ∈ W (A,X) and β ∈ dom(u) by uβ = u |β we denote the restriction of u
on [1A, β]. If u is reduced and β ∈ dom(u) then

u = uβ ◦ ũβ ,

for some uniquely defined ũβ .
An element com(u, v) ∈ R(A,X) is called the (longest) common initial segment

of A-words u and v if

u = com(u, v) ◦ ũ, v = com(u, v) ◦ ṽ

for some (uniquely defined) A-words ũ, ṽ such that ũ(1A) 6= ṽ(1A). Notice that,
there are words u, v ∈ R(A,X) for which com(u, v) does not exist. In fact, com(u, v)



10 A. G. MYASNIKOV, V. N. REMESLENNIKOV, AND D. E. SERBIN

exists if and only if the following element from A is defined:

δ(u, v) =





0 if u(1A) 6= v(1A)
sup{β | uβ = vβ} if it exists
undefined otherwise

In this case
com(u, v) = u |δ(u,v)= v |δ(u,v) .

Clearly, if the length of u is finite then δ(u, v) and δ(v, u) are defined for every
v ∈ R(A,X).

Definition 3.2. Let u, v ∈ R(A,X). If com(u−1, v) is defined then

u−1 = com(u−1, v) ◦ ũ, v = com(u−1, v) ◦ ṽ,

for some uniquely defined ũ and ṽ. In this event put

u ∗ v = ũ−1 ◦ ṽ.

The product ∗ is a partial binary operation on R(A,X).

Example 3.3. Let A = Z2 with the right lexicographic order (in this case
1A = (1, 0)). Put

w(β) =
{

x if β = (s, 0) and s > 1
x−1 if β = (s, 1) and s 6 0

Then
w : [1A, (0, 1)] → X±

is a reduced A-word. Clearly, w−1 = w so w ∗ w = ε. In particular, R(A,X) has
2-torsion with respect to ∗.

If u, v ∈ R(Z[t], X) and u ∗ v is defined, then we write sometimes u ◦α v instead
of u ∗ v provided |com(u−1, v)| < α.

The main result of this section is the following theorem.

Theorem 3.4. Let A be a discretely ordered abelian group and X be a set. Then
the set of reduced A-words R(A,X) with the partial binary operation ∗ satisfies the
axioms (P1)–(P4) of a pregroup.

Proof. The axioms (P1), (P2), and (P3) follow immediately from definitions.
Let u, v, w be reduced A-words such that the products u ∗ v, v ∗ w are defined.

Suppose that one of the products (u ∗ v) ∗ w, u ∗ (v ∗ w), say (u ∗ v) ∗ w, is defined
(the other case is similar). We need to show that the product u ∗ (v ∗ w) is also
defined and the equality

(3) (u ∗ v) ∗ w = u ∗ (v ∗ w).

holds.
Since v ∗ w is defined we have

(4) v = v1 ◦ c, w = c−1 ◦ w1, v ∗ w = v1 ∗ w1 = v1 ◦ w2

for some (perhaps, trivial) v1, w1, c ∈ R(A,X), where c = com(v−1, w).
Consider several cases.
C1). u ∗ v = u ◦ v.
a) Let v1 6= ε. In this case

(u ∗ v) ∗ w = (u ◦ v1 ◦ c) ∗ (c−1 ◦ w1) = u ◦ v1 ◦ w1.
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On the other hand,

u ∗ (v ∗ w) = u ∗ (
(v1 ◦ c) ∗ (c−1 ◦ w2)

)
= u ∗ (v1 ◦ w1) = u ◦ v1 ◦ w1,

so it is defined and (3) holds.
b) Let v1 = ε. Then w = v−1 ◦ w1 and in this case

(u ∗ v) ∗ w = (u ◦ v) ∗ (v−1 ◦ w1) = u ∗ w1,

which is defined. On the other hand,

u ∗ (v ∗ w) = u ∗ (v ∗ (v−1 ◦ w1)) = u ∗ w1,

which is also defined and equal to (u ∗ v) ∗ w.
C2) u = v−1.
In this case

(u ∗ v) ∗ w = (v−1 ∗ v) ∗ w = w.

On the other hand, in notations from (4), we have

u ∗ (v ∗ w) = v−1 ∗ (v ∗ w) = (c−1 ◦ v−1
1 ) ∗ (

(v1 ◦ c) ∗ (c−1 ◦ w1)
)

=

= (c−1 ◦ v−1
1 ) ∗ (v1 ◦ w1) = c−1 ◦ w1 = w,

hence, it is defined and (3) holds.
Now we are ready to prove the general case.
C3) Let u = u1 ◦ u−1

2 and v = u2 ◦ v2 for some (perhaps trivial) elements
u1, u2, v2 ∈ R(A, X). Then u ∗ v = u1 ◦ v2 and the triple u1, v2, w satisfies all
conditions of C1) (observe, that v2 ∗ w is defined since v ∗ w is defined). Hence,

(u ∗ v) ∗ w = (u1 ∗ v2) ∗ w
C1= u1 ∗ (v2 ∗ w).

Finally,

u ∗ (v ∗ w) = (u1 ◦ u−1
2 ) ∗ ((u2 ◦ v2) ∗ w) C1= (u1 ◦ u−1

2 ) ∗ (u2 ∗ (v2 ∗ w)) C1=

u1 ∗
(
u−1

2 ∗ (u2 ∗ (v2 ∗ w))
) C2= u1 ∗ (v2 ∗ w) = (u ∗ v) ∗ w,

as desired. ¤

A subset G 6 R(A,X) is called a subgroup of R(A,X) if G is a group with
respect to ∗. We say that a subset Y ⊂ R(A,X) generates a subgroup 〈Y 〉 in
R(A,X) if the product y1 ∗ . . . ∗ yn is defined for any finite sequence of elements
y1, . . . , yn ∈ Y ±1.

Example 3.5. Let A be a direct sum of copies of Z with the right lexicographic
order. Then the set of all elements of finite length in R(A,X) forms a subgroup
which is isomorphic to a free group with basis X.

3.3. Standard Exponentiation, roots, and conjugation. In this section
we study properties of the “standard exponentiation” (by integers) in R(A, X),
roots of elements, and conjugation.

Observe, that there are elements w ∈ R(A,X) for which even the square w ∗w
is not defined. We have to exclude such elements from our considerations related
to exponentiation. Put

EnR(A, X) = {w ∈ R(A,X) | wk is defined for every k 6 n}
E∞R(A, X) =

⋂
n

EnR(A,X).
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Then the set E∞R(A,X) is closed under the “standard” exponentiation by ele-
ments of Z. Notice, that E∞R(A,X) is precisely the set of elements from R(A,X)
for which the notion of order is defined. The following definitions provide some
tools to classify orders of elements from E∞R(A,X). An element v ∈ R(A,X) is
termed cyclically reduced if v(1A)−1 6= v(|v|). We say that an element v ∈ R(A,X)
admits a cyclic decomposition if v = c−1 ◦ u ◦ c, where c, u ∈ R(A,X) and u is
cyclically reduced. Observe that a cyclic decomposition is unique (whenever it ex-
ists). Denote by CR(A, X) the set of all cyclically reduced words in R(A,X) and
by CDR(A,X) the set of all words from R(A,X) which admit a cyclic decompo-
sition. Obviously, CDR(A,X) ⊂ E∞R(A,X). Not all elements in E∞R(A,X)
admit cyclic decomposition, for instance, the element w of order 2 from Example
3.3 in Section 3.2 does not. We will show below that such elements are the only
elements in E∞R(A,X) which do not admit cyclic decomposition. Put

T2R(A, X) = {w ∈ R(A,X) | w ∗ w = ε}.
Clearly, T2R(A,X) ⊂ E∞R(A,X).

Lemma 3.6. Let A be a discretely ordered abelian group and X be a set. Then:
1) E2R(A, X) = CDR(A, X) ∪ T2R(A, X);
2) E∞R(A, X) = E2R(A,X);
3) every element from CDR(A,X) has infinite order.

Proof. Let v ∈ E2R(A, X), v 6= ε. Then v = v1 ◦ c = c−1 ◦ v2 for some
v1, v2, c ∈ R(A,X) such that v1 ∗ v2 = v1 ◦ v2.

If |v2| > |c| then v2 = v3 ◦ c, so v = c−1 ◦ v3 ◦ c and v3 ∗ v3 = v3 ◦ v3. In this
case v3 is cyclically reduced and v ∈ CDR(A,X).

If |v2| < |c| then c = c1 ◦ v2, therefore

v = v1 ◦ c1 ◦ v2 = v−1
2 ◦ c−1

1 ◦ v2

which implies c1 = c−1
1 and hence, v ∗ v = ε, i.e., v ∈ T2R(A,X). Now 1) follows.

To see 2) observe that E∞R(A, X) ⊂ E2R(A,X) and, as we have mentioned
above, CDR(A,X) ∪ T2R(A,X) ⊂ E∞R(A,X). Now 2) follows from 1).

If v = c−1◦u◦c and ε 6= u ∈ CR(A,X), then vk = c−1◦uk◦c and |uk| = k|u| > 0.
It follows that |vk| > |uk| > 0, hence, vk 6= ε. This proves 3), and the lemma. ¤

Since the set T2R(A,X) is not very interesting from the exponentiation view-
point, in what follows we bound our considerations to the set CDR(A,X).

Let v ∈ CDR(A, X) we say that u ∈ CDR(A,X) is a k-root of v if v = uk.

Lemma 3.7. Let A be a discretely ordered abelian group, X be a set and let
v ∈ CDR(A,X). Then

1) If for a given k, v has a k-root, then this k-root is unique.
2) If A = Z[t] then there are only finitely many numbers k ∈ N such that v

has a k-root.

Proof. Let v ∈ CDR(A,X) and v = c−1 ◦w◦c be its cyclic decomposition. It
is easy to see that if v has a k-root u then u = c−1 ◦u1 ◦c, where u1 is a k-root of w.
The converse is also true, that is there exists a k-root of w which after conjugation
by c becomes a k-root for v. Thus, without loss of generality we can assume v to
be cyclically reduced.
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1) Let k ∈ N be fixed. Since any root u of v is an element of CDR(A, X),
which is the restriction of v on the segment [1A, |v|/k], we have uniqueness of roots
automatically.

2) A necessary condition for the existence of a k-root for v is the divisibility of
|v| by k in Z[t].

Recall, that as a group Z[t] is the infinite direct sum

Z[t] =
∞⊕

i=0

〈ti〉

of copies of Z. Hence, there exists n ∈ N such that |v| belongs to the subgroup
En =

⊕n
i=0〈ti〉 > Z.

Observe that En is a direct summand of the additive group of Z[t], hence, En

contains all roots of v. Since En is finitely generated, v has only finitely many roots
in En, and the result follows. ¤

Let u, v ∈ CDR(A,X) we say that u is a conjugate of v if there exists c ∈
R(A,X) such that the products c−1 ∗ v, v ∗ c, and (c−1 ∗ v) ∗ c are defined and
u = c−1 ∗ v ∗ c. We say that u is a cyclic permutation of v if v = v1 ◦ v2 and
u = v2 ◦ v1 for some elements v1, v2 ∈ R(A,X) (observe that there can be infinitely
many different cyclic permutations of a given v).

Lemma 3.8. Let A be a discretely ordered abelian group and X be a set. Then
the following hold:

1) if u ∈ CDR(A,X), c ∈ R(A,X) and v = c−1 ∗ u ∗ c is defined then
v ∈ CDR(A,X);

2) if u, v ∈ R(A,X) are conjugate and cyclically reduced then |u| = |v|.
Moreover, if g−1 ∗ u ∗ g = v for some g such that |g| 6 |u| then u is a
cyclic permutation of v.

Proof. 1) Let v = c−1 ◦ u ◦ c ∈ CDR(A,X) and d ∈ R(A,X). We assume
that d−1 ∗ v and v ∗ d are both defined. Then c ∗ d and so d−1 ∗ c−1 are also defined
and

d−1 ∗ (c−1 ◦ u ◦ c) ∗ d = (c ∗ d)−1 ∗ u ∗ (c ∗ d).

In other words we can assume from the beginning that v is cyclically reduced. So,
assume c = ε and v = u. Since v is cyclically reduced then either d−1 ∗ v = d−1 ◦ v
or v ∗ d = v ◦ d. Assume the latter.

a) v does not cancel completely in d−1 ∗ (v ◦ d). Then v = v1 ◦ v2, d = v1 ◦ d1

and d−1 ∗ (v ◦ d) = d−1
1 ◦ v2 ◦ v1 ◦ d1, where v2 ◦ v1 is cyclically reduced as a cyclic

permutation of v.
b) v cancels completely in d−1 ∗ (v ◦ d). Then d and v ◦ d have common initial

segment w so that d = w ◦ d2, v ◦ d = w ◦ d1 and w = v ◦ d3 6= ε. Thus we have
d = d3 ◦ d1, d = v ◦ d3 ◦ d2. It follows that |d1| > |d2| and moreover d2 is a terminal
segment of d1. Hence, d1 = d4 ◦ d2 and we have

d−1 ∗ (v ◦ d) = d−1
2 ◦ d1 = d−1

2 ◦ d4 ◦ d2.

Since d4 is cyclically reduced we obtained a cyclic decomposition of d−1 ∗ (v ◦ d).
So, in both cases we showed that d−1 ∗ (v ◦ d) ∈ CDR(A,X).
2) Suppose g−1 ∗ u ∗ g = v for some g. Then either g−1 ∗ u = g−1 ◦ u or

u ∗ g = u ◦ g because u is cyclically reduced. Assume the latter. Moreover, g−1
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cancels completely in g−1 ∗ (u ◦ g) because v is cyclically reduced, so we have
|v| = |g−1 ∗ (u ◦ g)| = |u|+ |g| − |g−1| = |u|.

If |g| 6 |u| then u = g ◦u1, but v = u1 ◦g, so u is a cyclic permutation of v. ¤

4. A free Lyndon length function on CDR(A,X)

The main result of this section is the following theorem.

Theorem 4.1. Let A be a discretely ordered abelian group and X be a set.
Then the function L : CDR(A,X) → A defined as L(w) = |w| satisfies all the
axioms (L1)–(L5) of a Lyndon length function whenever the corresponding products
of elements in these axioms are defined.

Proof. Axioms (L1) and (L2) follow immediately from the definition of the
length |w| of an element from CDR(A,X). To prove (L3) recall the definition of
the function δ(u, v) from Subsection 3.2

δ(u, v) =





0 if u(1A) 6= v(1A)
max{β | uβ = vβ} if such β exists
undefined otherwise

By definition δ(u, v) measures the length of the longest common initial segment of
u and v. It was shown that the product u−1 ∗ v is defined if and only if δ(u, v) is
defined, in which case

δ(u, v) =
1
2
(|u|+ |v| − |u−1 ∗ v|) = c(u, v).

Now the axiom (L3) easily holds whenever the products u−1 ∗ v, u−1 ∗ w, v−1 ∗ w
are defined. Moreover, (L4) holds as well, since δ(u, v) ∈ A, whenever defined.

The axiom (L5) follows from the existence of the cyclic decomposition. This
proves the theorem. ¤

Corollary 4.2. Let A be a discretely ordered abelian group and X be a set.
Then any subgroup G of CDR(A,X) has a free Lyndon length function with values
in A – the restriction L|G on G of the standard length function L on CDR(A,X).

5. Lyndon’s Exponentiation

In this section we describe a Z[t]-exponentiation on the set CDR(Z[t], X). This
gives a very natural and concrete realization of Lyndon’s axiomatic approach to
exponentiation by polynomials with integer coefficients. Recall that we view Z[t] as
a discrete abelian group with respect to the lexicographic order described in Section
2.3. Observe that in this case 1Z[t] = 1.

Our strategy here is to define first exponentiation on CR(Z[t], X) and then to
extend it to CDR(Z[t], X) via conjugation.

5.1. Exponentiation on CR(Z[t], X). Recall that as a group Z[t] is a count-
able direct sum

Z[t] =
∞⊕

i=0

〈ti〉

of copies of the infinite cyclic group Z with the right lexicographic order. Recall
that

En = {f(t) ∈ Z[t] | deg(f(t)) 6 n},
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where n > 0, form the complete chain of convex subgroups of Z[t]. It is easy to see
that R(Z[t], X) is the union of the following chain

R(E0, X) ⊂ R(E1, X) ⊂ · · · ⊂ R(En, X) ⊂ · · · .

For an element w ∈ R(En, X) the length |w| is a polynomial g(t) ∈ Z[t]:

|w| = g(t) = a0 + a1t + · · ·+ antn,

where an > 0. In this event we say that w has height n and write h(w) = n. Clearly,

h(w) = n ⇔ |w| ∈ En − En−1 ⇔ w ∈ R(En, X)−R(En−1, X).

Now we define exponents vf(t) for a given element v ∈ CR(Z[t], X) and a polynomial
f(t) ∈ Z[t] according to the following cases.

1) Let v ∈ CR(Z[t], X) not be a proper power and

|v| = g(t) = a0 + · · ·+ antn, an > 0.

We define vt as an element of CR(Z[t], X) of length |vt| = g(t)t, so, vt is
a function with the domain [1, g(t)t] and

g(t)t = a0t + a1t
2 + · · ·+ an−1t

n + antn+1, an > 0.

a) If an = 1 then set

vt(β) =
{

v(α), if β = mg(t) + α, m ∈ N, m > 0, 1 6 α 6 g(t);
v(α), if β = g(t)t−mg(t) + α, m ∈ N,m > 0, 1 6 α 6 g(t).

We claim that this formula defines vt(β) for any β ∈ [1, g(t)t]. Indeed,
observe that the formula above defines vt(β) for any β which belongs either
to some initial subsegment of [1, g(t)t] of the form [1,mg(t)] where m > 0
or to some terminal subsegment of [1, g(t)t] of the form [g(t)t−mg(t), g(t)t]
where m > 0.

Now, any β ∈ [1, g(t)t] is a polynomial β = r(t) = r1(t) + bpt
p ∈ Z[t],

where bp > 0, deg(r1) < p, and either p < n + 1 or p = n + 1, bp = 1,
r1(t) < 0. In the former case there exists m > 0 such that mg(t) > r(t),
so that [1, β] is an initial subsegment of [1,mg(t)] and β ∈ [1,mg(t)].
In the latter case there exists m > 0 such that g(t)t − mg(t) < r(t),
so that [β, g(t)t] is a terminal subsegment of [g(t)t − mg(t), g(t)t] and
β ∈ [g(t)t−mg(t), g(t)t].

b) If an > 1 then we present [1, g(t)t] as the union of disjoint closed
segments

(
an−2⋃

k=0

[ktn+1 + 1, (k + 1)tn+1]

) ⋃
[(an − 1)tn+1 + 1, g(t)t]

and define vt on these segments as follows.
For any k ∈ [0, an − 2] and β ∈ [ktn+1 + 1, (k + 1)tn+1] we set

vt(β) =
{

v(α), if β = ktn+1 + mg(t) + α,m > 0, 1 6 α 6 g(t);
v(α), if β = (k + 1)tn+1 −mg(t) + α,m > 0, 1 6 α 6 g(t).

and for β ∈ [(an − 1)tn+1 + 1, g(t)t] we set
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vt(β) =
{

v(α), if β = (an − 1)tn+1 + mg(t) + α, m > 0, 1 6 α 6 g(t);
v(α), if β = g(t)t−mg(t) + α, m > 0, 1 6 α 6 g(t).

For any k ∈ [0, an − 2], the first formula above defines vt(β) for any
β which belongs to some initial subsegment of [ktn+1 + 1, (k + 1)tn+1] of
the form
[ktn+1, ktn+1 +mg(t)] where m > 0 or to some terminal subsegment of
[ktn+1 + 1, (k + 1)tn+1] of the form [(k + 1)tn+1 − mg(t), (k + 1)tn+1]
where m > 0. The second formula given above defines vt(β) for any
β which belongs to any initial subsegment of [(an − 1)tn+1, g(t)t] of the
form [(an− 1)tn+1, (an− 1)tn+1 + mg(t)] where m > 0 or to any terminal
subsegment of [(an− 1)tn+1, g(t)t] of the form [g(t)t−mg(t), g(t)t] where
m > 0.

In the same way as in a) one can show that these formulas define
vt(β) for any β ∈ [1, g(t)t].

2) If v ∈ CR(Z[t], X) is such that v = uk for some u ∈ CR(Z[t], X) then we
set vt = (ut)k.

Thus we have defined an exponent vt for a given v ∈ CR(Z[t], X).
Notice that it follows from the construction that |vt| = g(t)t = |v|t and vt

starts with v and ends with v. In particular, vt ∈ CR(Z[t], X). It follows
that vt ∗ v = vt ◦ v = v ◦ vt = v ∗ vt, hence, [vt, v] = ε.

3) Now for v ∈ CR(Z[t], X) we define exponents vtk

by induction. Since
vt ∈ CR(Z[t], X) one can repeat the construction from 1) and define

vtk+1
= (vtk

)t.

4) Now we define vf(t), where f(t) ∈ Z[t], by linearity, that is, if f(t) =
m0 + m1t + . . . + mktk then

vf(t) = vm0 ∗ (vt)m1 ∗ · · · ∗ (vtk

)mk .

Observe that the product above is defined because vtm+1 is cyclically
reduced, and starts and ends with vtm.

The following result is a direct consequence of the construction.

Lemma 5.1. Let v ∈ CR(Z[t], X), f(t) ∈ Z[t]. Then vf(t) ∈ CR(Z[t], X) and
|vf(t)| = g(t)|f(t)| = |v||f(t)|, [vf(t), v] = ε.

The following result shows that Z[t]-exponentiation on CR(Z[t], X) satisfies the
axiom E2).

Lemma 5.2. Let u, v ∈ CR(Z[t], X) and u = c−1 ∗v∗c for some c ∈ R(Z[t], X).
Then for every f(t) ∈ Z[t]

uf(t) = c−1 ∗ vf(t) ∗ c.

Proof. Since u and v are cyclically reduced and u = c−1 ∗ v ∗ c then v =
v1 ◦ v2, u = v2 ◦ v1, c = v1.

In view of 4) it suffices to show prove the lemma for f(t) = tn. Let f(t) = t.
We want to show that.

(v2 ◦ v1)t = v−1
1 ∗ (v1 ◦ v2)t ∗ v1.
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We have |v2◦v1| = |v1◦v2| and (v2◦v1)t(β) = (v1◦v2)t(β+|v1|) for β ∈ [1, |v|t−|v1|].
When we conjugate (v1 ◦ v2)t by v1 we cancel the initial segment of (v1 ◦ v2)t of
length |v1| and add a terminal segment of length |v1|, so we have (v2 ◦ v1)t(β) =
(v−1 ∗ (v1 ◦ v2)t ∗ v1)(β), β ∈ [1, |v|t], and (v2 ◦ v1)t = v−1

1 ∗ (v1 ◦ v2)t ∗ v1.
Since vt and ut are cyclic permutations of each other and both belong to

CR(Z[t], X) one can apply the induction on deg f(t) and the lemma follows. ¤

Lemma 5.3. Let u, v ∈ CR(Z[t], X) and f(t), g(t) ∈ Z[t] be such that uf(t) =
vg(t). Then [u, v] is defined and is equal to ε.

Proof. Since [u, uf(t)] = ε and [v, vg(t)] = ε then [u, vg(t)] = ε and [v, uf(t)] =
ε. From the latter equalities we will derive the required statement.

Observe that if |u| = |v| then it follows automatically that u = v±1. Indeed,
by the definition of exponents uf(t) and vg(t) have correspondingly u±1 and v±1

as initial segments. Since uf(t) = vg(t) then initial segments of length |u| in both
coincide.

We can assume |u| < |v| and consider [u, vg(t)] = ε (if |u| > |v| then we consider
[v, uf(t)] = ε and apply the same arguments). Also, g(t) > 1, otherwise we have
nothing to prove.

Thus we have u ∗ vg(t) = vg(t) ∗ u. Since u and v are cyclically reduced and
equal Z[t]-words have equal initial and terminal segments of the same length then
[u, v] is defined and we have two cases.

a) u ∗ v = u ◦ v.
Thus, automatically we have v ∗ u = v ◦ u
u ◦ vg(t) and vg(t) ◦ u have the same initial segment of length 2|v|. So v =

u◦v1 = v1 ◦v2 and |u| = |v2|. Comparing terminal segments of u◦vg(t) and vg(t) ◦u
of length |u| we have u = v2 and from u ◦ v1 = v1 ◦ u it follows that [u, v] = ε.

b) There is a cancellation in u ∗ v.
Then, from uf(t) = vg(t) it follows that v−1 = v−1

1 ◦ u and so v = u−1 ◦ v1.
Using the same arguments as in a) we obtain v = u−1 ◦ v1 = v1 ◦ v2, |u| = |v2| and
u−1 = v2. It follows immediately that [u, v] = ε. ¤

5.2. Exponentiation on CDR(Z[t], X). Let v ∈ CDR(Z[t], X) have a cyclic
decomposition v = c−1 ◦ u ◦ c and f(t) ∈ Z[t]. We define vf(t) as follows

(5) vf(t) = c−1 ◦ uf(t) ◦ c.

Observe that the product above is well defined since uf(t) starts and ends on u if
f(t) > 0, and starts and ends on u−1 if f(t) < 0.

Thus we have defined Z[t]-exponentiation function

exp : CDR(Z[t], X)× Z[t] → CDR(Z[t], X)

on the whole set CDR(Z[t], X).
There are other ways of defining Z[t]-exponentiation on CDR(Z[t], X) but from

now on we fix the exponentiation described above.

Lemma 5.4. Let u, v ∈ CDR(Z[t], X) be such that h(u) = h(v) and [u, v] = ε.
Then [uf(t), v] = ε for any f(t) ∈ Z[t] provided [uf(t), v] is defined.

Proof. We can assume that either u or v is cyclically reduced. This is always
possible because both elements belong to CDR(Z[t], X). Suppose we have v−1 ∗
u ∗ v = u, where u is cyclically reduced.
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a) |u| < |v|
Since u is cyclically reduced either v−1 ∗ u = v−1 ◦ u or u ∗ v = u ◦ v. Assume

the former. Then v has to cancel completely in v−1 ∗ u ∗ v because this product is
equal to u which is cyclically reduced. So v has the form v = uk ◦ w, where k < 0
is the smallest possible and w does not have u as an initial segment. We have then

v−1 ∗ u ∗ v = w−1 ∗ u ∗ w = w−1 ∗ (u ◦ w) = u.

and w−1 cancels completely. In this case the only possibility is that |w| < |u|
(otherwise we have a contradiction with the choice of k) and [u,w] = ε. So now we
reduced everything to the case b) because clearly [uf(t), uk] = ε for any f(t) ∈ Z[t].

b) |u| > |v|
We have v−1 ∗ u ∗ v = u. u is cyclically reduced, moreover, u is a cyclic

permutation of itself that is v−1 ∗ u ∗ v = u. Finally, since [uf(t), v] is defined then

v−1 ∗ uf(t) ∗ v = uf(t)

follows from Lemma 5.2. ¤

We summarize the properties of the exponentiation exp in the following theo-
rem.

Theorem 5.5. The Z[t]-exponentiation function

exp : (u, f(t)) 7→ uf(t)

defined in (5) satisfies the following axioms (here u, v ∈ CDR(Z[t], X) and f, g ∈
Z[t]):

E1) u1 = u, ufg = (uf )g, uf+g = uf ∗ ug,
E2) (v−1∗u∗v)f = v−1∗uf ∗v provided [u, v] = ε and h(u) = h(v), or u = v◦w,

or u = wα, v = wβ for some w ∈ CDR(Z[t], X) and α, β ∈ Z[t];
E3) if [u, v] = ε and u = wα, v = wβ for some w ∈ CDR(Z[t], X) and

α, β ∈ Z[t] then
(u ∗ v)f = uf ∗ vf

Proof. Let u ∈ CDR(Z[t], X) and α, β ∈ Z[t].
E1) The equalities u1 = u and (uf )g = ufg follow directly from the definition

of exponentiation. We need to prove only that uf+g = uf ∗ ug. Let

u = c−1 ◦ uk
1 ◦ c

be a cyclic decomposition of u. Then

uf = c−1 ◦ (uf
1 )k ◦ c, ug = c−1 ◦ (ug

1)
k ◦ c.

Now
uf+g = c−1 ◦ (uf+g

1 )k ◦ c = (c−1 ◦ (uf
1 )k ◦ c) ∗ (c−1 ◦ (ug

1)
k ◦ c),

as required.
E2) If u = wα, v = wβ for some w ∈ CDR(Z[t], X) and α, β ∈ Z[t], then the

result follows from the definition of exponentiation. If [u, v] = ε and h(u) = h(v)
then result follows from Lemma 5.4. If u = v ◦ w then result follows from Lemma
5.2.

E3) We have (u ∗ v)f = (wα+β)f = w(α+β)f = wαf ∗ wβf = (wα)f ∗ (wβ)f =
uf ∗ vf . ¤
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6. Extensions of centralizers

In this section we prove that for certain subgroups G 6 CDR(Z[t], X) the
extension H of all cyclic centralizers of G by Z[t] has a natural embedding into
CDR(Z[t], X). This is the main technical result of the paper, it provides the
induction argument for our proof that FZ[t] embeds into CDR(Z[t], X).

In Subsection 6.1 we introduce and study some conditions on subgroups G 6
CDR(Z[t], X), which allow one to carry out the induction step. In Subsection 6.2
we construct the embedding of H into CDR(Z[t], X). In Subsection 6.3 we prove
that H also satisfies all the induction hypothesis, this finishes the induction step.

6.1. Separation, Lyndon’s sets, and normal forms.

Definition 6.1. Let G 6 CDR(Z[t], X). We say that G is subwords-closed if
G contains all sybwords of its elements.

Recall that the set H0 of all words in CDR(Z[t], X) of finite length is a sub-
group which is canonically isomorphic to the free group F = F (X). Moreover, the
length function on F induced from CDR(Z[t], X) is equal to the standard length
function on F . Throughout this section we identify F with H0 via the canonical
isomorphism. Clearly, F is subwords-closed.

Definition 6.2. Let u, v ∈ CDR(Z[t], X) and u = c−1 ◦u1 ◦c, v = d−1 ◦v1 ◦d
be their cyclic decompositions. Put δ = δ(u, v) = max{|c|, |d|}. We say that u and
v are separated if um∗vn is defined for any n,m ∈ N and there exists r = r(u, v) ∈ N
such that for all m,n > r

um ∗ vn = um−r ◦δ (ur ∗ vr) ◦δ vn−r.

Definition 6.3. A subset M ⊆ CDR(Z[t], X) is called an S-set if any two
non-commuting elements of M with cyclic centralizers are separated. In the case
when M is a group we call M an S-subgroup.

To show that some elements of CDR(Z[t], X) are separated we need the fol-
lowing lemma, which is well-known in the case of finite words.

Lemma 6.4. Let G be a subgroup of CDR(Z[t], X) and f, h ∈ G be cyclically
reduced. If c(fm, hn) > |f |+ |h| for some m, n > 0 then [f, h] = ε.

Proof. Suppose |h| > |f | and c(fm, hn) > |f |+ |h| for some m,n > 0.
We have h = fk◦h1, |f | > |h1|, k > 1 and f = h1◦f1. Since c(fm, hn) > |f |+|h|

one has (fk◦h1)◦f = fk+1◦h1. So, h1◦h1◦f1 = h1◦f1◦h1 and f = h1◦f1 = f1◦h1.
It follows that [f1, h1] = ε, hence, [h1, f ] = ε and [f, h] = ε. ¤

The following result is well-known in folklore. Since we could not find a proper
reference we provide a complete proof of it.

Lemma 6.5. The free group F is an S-subgroup of CDR(Z[t], X).

Proof. Let u, v ∈ F and [u, v] 6= ε. We have to show that u and v are
separated. Without loss of generality we may assume that u and v are not proper
powers.

Assume that u and v are not separated. Hence, for any M > 0 and any r ∈ N
there exist m = m(M, r) > r and n = n(M, r) > r such that c(u−m, vn) > M .

Let u = a−1 ◦ ū◦a, v = b−1 ◦ v̄ ◦ b be cyclic decompositions of u and v. Without
loss of generality we may assume |a| > |b|, so a = a1 ◦ b. We may assume also that



20 A. G. MYASNIKOV, V. N. REMESLENNIKOV, AND D. E. SERBIN

|a1| 6 |v̄| (otherwise a1 = v̄k ◦ a2, |a2| 6 |v̄| and we can replace a1 by a2). Consider
the following cases.

a) |a1|+|ū| > |v̄|. If |a1|+|ū| = |v̄| then v̄ = a−1
1 ◦ū−1 and c(ū−m, v̄n) > |ū|+|v̄|

(if M is sufficiently big). Hence, (see, for example, Lemma 6.4) v̄ = ū−1, so, a1 = ε.
It follows that a = b and [u, v] = ε - contradiction.

Suppose |a1|+ |ū| > |v̄|. Then ū−1 = u1◦u2, a
−1
1 ◦u1 = v̄l, l > 1, v̄ = u2◦v1 and

c(ū−m, (v1 ◦u2)n) > |ū|+ |v̄|. So, by Lemma 6.4 we have ū−1 = v1 ◦u2 and u1 = v1.
Thus, a−1

1 ◦ v1 = v̄l, l > 1 and since |a1| 6 |v̄|, we have l = 1, a−1
1 ◦ v1 = v̄ = u2 ◦ v1

and hence, a−1
1 = u2. But, in this case we have a cancellation between a−1 and ū -

a contradiction with the fact that a−1 ◦ ū−1 ◦ a is the cyclic decomposition of u−1.
b) |a1|+|ū| < |v̄|. In this case we have v̄ = a−1

1 ◦ū−k◦u1, k > 0 and ū−1 = u1◦u2.
Hence, c((u2 ◦ u1)m, v̄n) > |ū| + |v̄| and by Lemma 6.4 we have v = u2 ◦ u1. So,
ū = v̄ and a1 = u1 = ε, k = 1. It follows that a = b, v̄ = ū−1 and [u, v] = ε - a
contradiction.

Thus, our initial assumption is false, so u and v are separated. ¤
Definition 6.6. Let M ⊆ CDR(Z[t], X). A subset RM ⊆ CR(Z[t], X) is

called a set of representatives of M if RM satisfies the following conditions:
1) RM does not contain proper powers;
2) for any u, v ∈ RM , u 6= v−1;
3) for each u ∈ M there exist v ∈ RM , k ∈ Z, c ∈ R(Z[t], X), and a cyclic

permutation π(v) of v such that

u = c−1 ◦ π(v)k ◦ c,

moreover, such v, c, k, π(v) are unique.

Observe that we do not require RM ⊂ M .
It is easy to see that a set of representatives RM exists for any M ⊆ CDR(Z[t], X).

We show how one can obtain RM from M in three steps.
Step 1. Let w ∈ M and w = c−1 ◦ w ◦ c be its cyclic decomposition. Put

R1 = {w | w ∈ M}.
Step 2. For w ∈ R1 denote by Mw the subset of R1 consisting of all cyclic

permutations of w and w−1. Choose a single element w′ in each set Mw and put
R2 = {w′ | w ∈ R1}.

Step 3. For w ∈ R2 denote by w∗ the unique (by Lemma 3.7) maximal root of
w. Put RM = {w∗ | w ∈ R2}. Clearly, RM satisfies the conditions 1)–3).

Observe that a set of representatives RM may not be unique for a given M ,
but all such sets have the same cardinality and can be obtained one from another
by taking inverses and cyclic permutations of elements.

For a group G put

K(G) = {v ∈ G | CG(v) = 〈v〉}.
Definition 6.7. Let G be a subgroup of CDR(Z[t], X). Then a Lyndon’s set

of G is a set R = RK(G) of representatives of K(G) which satisfies the following
conditions:

1) R ⊂ G;
2) for any g ∈ G, u ∈ R, and α ∈ Z[t] the inner product c(uα, g) exists and

c(uα, g) < k|u| for some k ∈ N;
3) no word from G contains a subword uα, where u ∈ R and α ∈ Z[t] with

deg(α) > 0.
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Remark 6.8. Let G and R be as above. Then:
a) if G is subwords-closed then 2) implies 3);
b) for any g ∈ G, u ∈ R, and α ∈ Z[t], the products g ∗ uα and uα ∗ g are

defined.

Lemma 6.9. Let G be an S-subgroup of CDR(Z[t], X) and let R be a Lyndon’s
set of G. If u, v ∈ R±1 and g ∈ G are such that either [u, v] 6= ε or [u, g] 6= ε then
there exists r ∈ N such that for all m, n > r the following holds:

um ∗ g ∗ vn = um−r ◦ (ur ∗ g ∗ vr) ◦ vn−r.

Proof. Suppose that the statement of the lemma does not hold for a triple
(u, g, v). Then the lemma fails for any triple (u, g ∗ vk, v) where k ∈ Z. Since v ∈ R
there exists k ∈ Z such that (g ∗ vk) ∗ v = (g ∗ vk) ◦ v. Hence, replacing g by g ∗ vk,
we may assume from the beginning that g ∗ v = g ◦ v.

Similarly, there exists k ∈ N such that u ∗ (uk ∗ g) = u ◦ (uk ∗ g). If g does not
cancel completely in uk ∗ g then

um ∗ g ∗ vn = um−k ◦ (uk ∗ g) ◦ vn

for any m > k - contradiction. Hence, g cancels completely and g = up ◦ g1, |g1| 6
|u|. So, we can assume g = g1 and |g| 6 |u|.

Consider two cases:
a) Let [u, v] 6= ε. If |g| = |u| then for sufficiently big numbers m,n we have

c(u−m, vn) > |u|+ |v|. Hence, by Lemma 6.4, [u−1, v] = ε - contradiction with our
assumption.

If |g| < |u| then u = u1 ◦ g−1. If for sufficiently big numbers m,n cancellation
between (u ∗ g)m and vn is long enough then c((u−1

1 ◦ g)n, vm) > |u| + |v| =
|u−1

1 ◦g|+ |v|. Hence, by Lemma 6.4, [u−1
1 ◦g, v] = ε and a conjugate of u commutes

with v - contradiction with the properties of R.
b) Let [u, v] = 1, [g, u] 6= ε. Then u = v±1 and |g| < |u|. Thus u = u1 ◦ g−1. It

follows that c((u−1
1 ◦ g)n, um) > 2|u| = |u−1

1 ◦ g|+ |u| for big enough m,n > 0. By
Lemma 6.4 [u−1

1 ◦ g, v] = ε. Hence, u−1
1 ◦ g = v. If v = u then u−1

1 ◦ g = u1 ◦ g−1

and it follows that u−1
1 = u1 and g = g−1, so u = ε – contradiction. If v = u−1

then u−1
1 ◦ g = g ◦ u−1

1 , so [u1, g] = [u, g] = ε – contradiction.
This shows that our assumption that the triple (u, g, v) does not satisfy the

statement of the lemma is false. ¤

Lemma 6.10. Let G be an S-subgroup of CDR(Z[t], X) and R a Lyndon’s set
of G. If u1, . . . , un ∈ R±1 and g1, . . . , gn+1 ∈ G are such that for any i = 2, . . . , n
either [ui−1, ui] 6= ε or [ui, gi] 6= ε then there exists r ∈ N such that

g1 ∗ um1
1 ∗ g2 ∗ · · · ∗ umn

n ∗ gn+1

= (g1 ∗ ur
1) ◦ um1−2r

1 ◦ (ur
1 ∗ g2 ∗ ur

2) ◦ um2−2r
2 ◦ · · · ◦ umn−2r

n ◦ (ur
n ∗ gn+1)

for all mi ∈ N, mi > 2r, i ∈ [1, n].

Proof. We prove the lemma by induction on n. If n = 1 then the required
result follows from the properties of the Lyndon’s set R.

Suppose the statement holds for n = k and set n = k + 1. By the induction
hypothesis there exists r1 ∈ N such that

g1 ∗ um1
1 ∗ g2 ∗ · · · ∗ umk

k ∗ gk+1 =
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= (g1 ∗ ur1
1 ) ◦ um1−2r1

1 ◦ (ur1
1 ∗ g2 ∗ ur1

2 ) ◦ . . . ◦ umk−2r1
k ◦ (ur1

k ∗ gk+1)
for all mi > 2r1, i ∈ [1, k]. Put

w = (g1 ∗ ur1
1 ) ◦ um1−2r1

1 ◦ (ur1
1 ∗ g2 ∗ ur1

2 ) ◦ um2−2r1
2 ◦ . . . ◦ (ur1

k−1 ∗ gk ∗ ur1
k )

then we have

g1 ∗ um1
1 ∗ g2 ∗ · · · ∗ umk

k ∗ gk+1 = w ◦ umk−2r1
k ◦ (ur1

k ∗ gk+1)

and

g1∗um1
1 ∗g2∗· · ·∗umk

k ∗gk+1∗umk+1
k+1 ∗gk+2 = (w◦umk−2r1

k ◦(ur1
k ∗gk+1))∗umk+1

k+1 ∗gk+2.

Observe that by the properties of R there exists r2 ∈ N such that

u
mk+1
k+1 ∗ gk+2 = u

mk+1−r2
k+1 ◦ (ur2

k+1 ∗ gk+2)

for all mk+1 > r2. Finally, by Lemma 6.9, there exists r > max{r1, r2} such that

(umk−2r1
k ◦ (ur1

k ∗ gk+1)) ∗ u
mk+1−r2
k+1 = umk−2r

k ◦ (ur
k ∗ gk+1 ∗ ur

k+1) ◦ u
mk+1−r2−r
k+1

for all mk > 2r, mk+1 > r2 + r. Hence,

(w ◦ umk−2r1
k ◦ (ur1

k ∗ gk+1)) ∗ u
mk+1
k+1 ∗ gk+2

= w ◦ umk−2r
k ◦ (ur

k ∗ gk+1 ∗ ur
k+1) ◦ u

mk+1−2r
k+1 ◦ (ur

k+1 ∗ gk+2)

for all mi > 2r, i ∈ [1, k + 1] which proves the lemma. ¤

Definition 6.11. Let G be a subgroup of CDR(Z[t], X) with a Lyndon’s set
R. A sequence

(6) p = (g1, u
α1
1 , g2, . . . , gn, uαn

n , gn+1),

where gi ∈ G, ui ∈ R, αi ∈ Z[t], n > 1, is called an R-form over G.
An R-form (6) is reduced if deg(αi) > 0, i ∈ [1, n], and if ui = ui−1 then

[ui, gi] 6= ε.

Denote by P(G,R) the set of all R-forms over G. We define a partial function
w : P(G,R) → R(Z[t], X) as follows. If

p = (g1, u
α1
1 , g2, . . . , gn, uαn

n , gn+1)

then
w(p) = (· · · (g1 ∗ uα1

1 ) ∗ g2) ∗ · · · ∗ gn) ∗ uαn
n ) ∗ gn+1

if it is defined.

Definition 6.12. An R-form p = (g1, u
α1
1 , g2, . . . , gn, uαn

n , gn+1) over G is
called normal if it is reduced and the following conditions hold:

1) w(p) = g1 ◦ uα1
1 ◦ g2 ◦ · · · ◦ gn ◦ uαn

n ◦ gn+1,
2) gi does not have u±1

i as a terminal segment for any i ∈ [1, n] and gi ◦ uαi
i

does not have u±1
i−1 as an initial segment for any i ∈ [2, n].

Lemma 6.13. Let G be an S-subgroup of CDR(Z[t], X) with a Lyndon’s set R.
Then for every R-form p over G the following holds:

1) the product w(p) is defined and it does not depend on the placement of
parentheses;

2) there exists a reduced R-form q over G such that w(q) = w(p);
3) there exists a unique normal R-form q over G such that w(p) = w(q);
4) w(p) ∈ CDR(Z[t], X).
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Proof. Let
p = (g1, u

α1
1 , g2, . . . , gn, uαn

n , gn+1)

be an R-form over G.
We show first that 1) implies 2). Suppose that w(p) is defined for every place-

ment of parentheses and all such products are equal. Denote by i1 < i2 < · · · < ik
the only indices above with deg(αij

) > 0. Set

h1 = g1 ∗ · · · ∗ u
αi1−1

i1−1 ∗ gi1

hk+1 = gik+1 ∗ u
αik+1

ik+1 ∗ · · · ∗ gn+1

hj+1 = gij+1 ∗ u
αij+1

ij+1 ∗ · · · gij+1

where j ∈ [2, k− 1]. Notice that hj ∈ G for all j ∈ [1, k +1]. It follows from 1) that

w(p) = g1 ∗ uα1
1 ∗ g2 ∗ · · · ∗ gn ∗ uαn

n ∗ gn+1 = h1 ∗ vβ1
1 ∗ h2 ∗ · · · ∗ vβk

k ∗ hk+1,

where βj = αij
, vj = uij

for all j ∈ [1, k]. Hence, if we put

p1 = (h1, v
β1
1 , h2, . . . , v

βk

k , hk+1)

then p1 ∈ P(G, R) and w(p) = w(p1). Now if p1 is not reduced then there exists
j ∈ [1, k] such that [hj , vj ] = ε and vj−1 = vj . Since the centralizer of vj in G is
cyclic and generated by vj then hj = vm

j for some m ∈ Z. Therefore

v
βj−1
j−1 ∗ hj ∗ v

βj

j = v
βj−1+m+βj

j .

Thus, we obtain a new R-form

p2 = (h1, v
β1
1 , . . . , hj−1, v

βj−1+m+βj

j , hj+1, . . . , v
βk

k , hk+1),

which is shorter then p1 and w(p) = w(p1) = w(p2). Proceeding this way (or by
induction) in a finite number of steps we obtain a reduced R-form

q = (f1, v
γ1
1 , f2, . . . , v

γl

l , fl+1),

such that w(q) = w(p), as required.
Now we show that 1) implies 3). As we have seen above there exists a reduced

R-form
q1 = (h1, v

β1
1 , h2, . . . , v

βk

k , hk+1)

such that 1) holds for q1 and w(p) = w(q1). By Lemma 6.10 there exists r ∈ N
such that

w(q1) = h1 ∗ vβ1
1 ∗ · · · ∗ vβk

k ∗ hk+1

= (h1 ∗ vr1
1 ) ◦ vβ1−2r1

1 ◦ (vr1
1 ∗ h2 ∗ vr2

2 ) ◦ · · · ◦ vβk−2rk

k ◦ (vrk

k ∗ hk+1),

where rj = sgn(βj) · r, j ∈ [1, k]. Put

f1 = h1 ∗ vr1
1 , fk+1 = vrk

k ∗ hk+1, fj = v
rj−1
j−1 ∗ hj ∗ v

rj

j (j ∈ [2, k]),

where γj = βj − 2rj . Then if we denote

q2 = (f1, v
γ1
1 , f2, . . . , v

γk

k , fk+1),

then q2 ∈ P(G,R), q2 satisfies 1), and w(q1) = w(q2).
By the properties of R, there exists M1 ∈ Z such that f1 = z1 ◦ vM1

1 and z1

does not have v±1
1 as a terminal segment. Also, by Lemma 6.9, there exists N1 ∈ N
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such that f2 ◦ vγ2
2 = vN1

1 ◦ z′2 ◦ v
γ′2
2 and z′2 ◦ v

γ′2
2 does not have v±1

1 as an initial
segment. It follows that

w(q2) = z1 ◦ vγ1+M1+N1
1 ◦ z′2 ◦ v

γ′2
2 ◦ · · · ◦ vγk

k ◦ fk+1.

Hence, for a reduced R-form

q3 = (z1, v
γ1+M1+N1
1 , z′2, v

γ′2
2 , . . . , vγk

k , fk+1)

one has w(q2) = w(q3).
Now we can proceed with q3 in the same way using properties of R and Lemma

6.9. In a finite number of steps we obtain a normal R-form

q = (z1, v
δ1
1 , z2, v

δ2
2 , . . . , vδk

k , zk+1)

such that w(p) = w(q). Uniqueness of q follows from the process above.
Now we prove 1) by induction on n. If n = 1 then by the condition 2) in the

definition of R-sets

g1 ∗ uα1
1 = (g1 ∗ uk1

1 ) ◦ uα1−k1
1 , uα1−k1

1 ∗ g2 = uα1−k1−k2
1 ◦ (uk2

1 ∗ g2)

for some k1, k2 ∈ N. Hence,

(g1 ∗ uα1
1 ) ∗ g2 = ((g1 ∗ uk1

1 ) ◦ uα1−k1
1 ) ∗ g2 = ((g1 ∗ uk1

1 ) ◦ uα1−k1−k2
1 ) ◦ (uk2

1 ∗ g2).

By the axiom (P4) of pregroups the product (g1 ∗ uα1
1 ) ∗ g2 does not depend on the

placement of parentheses. So 1) holds for n = 1.
To show that 1) holds for an arbitrary p above put

p1 = (g1, u
α1
1 , g2, . . . , u

αn−1
n−1 , gn).

By induction w(p1) is defined and it does not depend on the placement of paren-
theses. By the argument above there exists a normal R-form

q1 = (h1, v
β1
1 , h2, . . . , v

βk−1
k−1 , hk)

such that w(q) = w(q1). Since q1 is a normal R-form one has

w(q1) = h1 ◦ vβ1
1 ◦ h2 ◦ · · · ◦ v

βk−1
k−1 ◦ hk.

To prove that p satisfies 1) it suffices to show that

w(q1) ∗ (uαn
n ∗ gn+1)

is defined and does not depend on the placement of parentheses. To show this we
consider several cases.

If deg(αn) = 0 then hk ∗ (uαn
n ∗ gn+1) ∈ G and by the condition 2) of Lyndon’s

sets
v

βk−1
k−1 ∗ (hk ∗ uαn

n ∗ gn+1) = v
βk−1−r
k−1 ◦ (vr

k−1 ∗ hk ∗ uαn
n ∗ gn+1)

for some r ∈ N. It follows that w(p) = w(q1) ∗ (uαn
n ∗ gn+1) is defined and does not

depend on the placement of parentheses.
Suppose deg(αn) > 0. If either [vk−1, un] 6= ε or [vk−1, hk] 6= ε then by Lemma

6.9 and the condition 2) in the definition of Lyndon’s sets

(vβk−1
k−1 ◦ hk) ∗ (uαn

n ∗ gn+1) = v
βk−1−r
k−1 ◦ (vr

k−1 ∗ hk ∗ us1
n ) ◦ uαn−s1−s2

n ◦ (us2
n ∗ gn+1)

for some r, s1, s2 ∈ N. In this case w(q1) ∗ (uαn
n ∗ gn+1) is defined and does not

depend on the placement of parentheses.
If [vk−1, un] = ε and [vk−1, hk] = ε then vk−1 = un and hk = 1. Hence,
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(vβk−1
k−1 ◦ hk) ∗ (uαn

n ∗ gn+1) = v
βk−1+αn

k−1 ∗ gn+1 = v
βk−1+αn−s2
k−1 ◦ (vs2

k−1 ∗ gn+1)

and the statement follows. This proves 1). Hence, 2) and 3) hold.
Now we prove 4). By 3) there exists a normal R-form

q = (h1, v
β1
1 , h2, . . . , hk, vβk

k , hk+1)

such that w(p) = w(q). It follows that

w(q) = h1 ◦ vβ1
1 ◦ h2 ◦ · · · ◦ vβk

k ◦ hk+1.

By Lemma 3.8, to prove that w(q) ∈ CDR(Z[t], X) it suffices to show that

g−1 ∗ w(q) ∗ g ∈ CDR(Z[t], X)

for some g ∈ R(Z[t], X). We consider two cases.
a) If v1 6= vk or v1 = vk but [hk+1 ∗h1, v1] 6= ε then by Lemma 6.9, there exists

m ∈ Z,mβ1 > 0 such that

(v−n
1 ◦h−1

1 )∗w(q)∗(h1 ◦vn
1 ) = (vβ1−n

1 ◦h2 ◦· · ·◦vβk−m
k )◦(vm

k ∗hk+1 ∗h1 ∗vm
1 )◦vn−m

1

for any n ∈ Z, |n| > |m|. Thus,

(v−n
1 ◦ h−1

1 ) ∗ w(q) ∗ (h1 ◦ vn
1 ) ∈ CR(Z[t], X) ⊂ CDR(Z[t], X).

b) If v1 = vk, [hk+1 ∗ h1, v1] = ε then hk+1 ∗ h1 = vm
1 and

h−1
1 ∗ w(q) ∗ h1 = vβ1

1 ◦ h2 ◦ · · · ◦ vβk+m
k .

If sgn(β1) = sgn(βk) then

h−1
1 ∗ w(q) ∗ h1 ∈ CR(Z[t], X) ⊂ CDR(Z[t], X).

If sgn(β1) 6= sgn(βk) then without loss of generality we can assume |β1| > |βk| and
we have

(vβk+m
1 ∗ h−1

1 ) ∗ w(q) ∗ (h1 ∗ v−βk−m
1 ) = vβ1+βk+m

1 ◦ h2 ◦ · · · ◦ hk,

so the number of infinite exponents of elements from R is reduced by one and we
can use induction on k. This proves 4). ¤

Let G and R be as above. By Lemma 6.13 for every g, h ∈ G, u ∈ R, α ∈ Z[t]
the product g ∗ uα ∗ h is defined and belongs to CDR(Z[t], X). Put

P = P (G,R) = {g ∗ uα ∗ h | g, h ∈ G, u ∈ R, α ∈ Z[t]}.
Multiplication ∗ induces a partial multiplication (which we again denote by ∗) on
P so that for p, q ∈ P the product p ∗ q is defined in P if and only if p ∗ q is defined
in R(Z[t], X) and p ∗ q ∈ P . Now we are ready to prove the main technical result
of this subsection.

Proposition 6.14. Let G be an S-subgroup of CDR(Z[t], X) and let R be a
Lyndon’s set for G. Then the set P forms a pregroup with respect to the multipli-
cation ∗.

Proof. Since multiplication ∗ in P is induced from R(Z[t], X) it follows from
Theorem 3.4 that axioms (P1)–(P4) hold in P . To complete the proof it suffices to
check that the following axiom

(P5) for every u, v, w, z,∈ P if u ∗ v, v ∗ w, and w ∗ z are defined then either
u ∗ v ∗ w or v ∗ w ∗ z is defined in P
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holds in P . To show this we need two claims.

Claim 1. Let gi ∗ cαi
i ∗ hi ∈ P and deg(αi) > 0, i = 1, 2. If

g1 ∗ cα1
1 ∗ h1 = g2 ∗ cα2

2 ∗ h2

then c1 = c±1
2 and [h1 ∗ h−1

2 , c1] = [g1 ∗ g−1
2 , c1] = ε.

Indeed, clearly a = (g1, c
α1
1 , h1 ∗ h−1

2 , c−α2
2 , g−1

2 ) is an R-form, so, by Lemma
6.13, w(a) is defined and

g1 ∗ cα1
1 ∗ h1 ∗ h−1

2 ∗ c−α2
2 ∗ g−1

2 = ε.

Hence, a is not reduced and the claim follows.
For every p ∈ P we fix now a representation p = gp ∗ c

αp
p ∗ hp, where gp, hp ∈

G, cp ∈ R, αp ∈ Z[t].

Claim 2. Let p = gp∗cαp
p ∗hp, q = gq∗cαq

q ∗hq be in P . If deg(αp), deg(αq) > 0
and p ∗ q ∈ P then cp = cq and hp ∗ gq ∈ 〈cp〉.

Put x = p ∗ q. Then x ∈ P and x = gx ∗ cαx
x ∗ hx. Observe that

a = (gp, c
αp
p , hp ∗ gq, c

αq
q , hq ∗ h−1

x , c−αx
x , g−1

x )

is an R-form, so w(a) is defined and

gp ∗ cαp
p ∗ hp ∗ gq ∗ cαq

q ∗ hq ∗ h−1
x ∗ c−αx

x ∗ g−1
x = ε.

Hence, a is not reduced.
Suppose, first, that deg(αx) > 0. In this case either cp = cq, [hp ∗ gq, cp] = ε or

cq = cx, [hq ∗ h−1
x , cq] = ε. In the former case the proof of the claim is complete.

In the latter one hq ∗ h−1
x = ck

q , for some k ∈ Z, so

gp ∗ cαp
p ∗ hp = (gx ∗ cαx

x ∗ hx) ∗ (h−1
q ∗ c−αq

q ∗ g−1
q )

= gx ∗ cαx
q ∗ c−k

q ∗ c−αq
q ∗ g−1

q = gx ∗ cαx−αq−k
q ∗ g−1

q ,

where deg(αx−αq−k) > 0 (otherwise c
αp
p ∈ G). Now the result follows form Claim

1.
If deg(αx) = 0 then cp = cq, [hp ∗ gq, cp] = ε and the claim follows.

Now we are in the position to verify that the axiom (P5) holds in P . Put
E = {αu, αv, αw, αz} and consider the following cases:

a) deg(e) > 0 for all e ∈ E.
Then by Claim 2, cu = cv = cw = cz and hu ∗ gv, hv ∗ gw, hw ∗ hz belong to the

cyclic subgroup generated by cu. In this case u ∗ v ∗ w ∈ P .
b) There is precisely one element e ∈ E such that deg(e) = 0.
Then in the sequence u, v, w, z we have a subsequence a, b, c in which either a, b

or b, c satisfies a). In this case obviously a ∗ b ∗ c ∈ P .
c) There are precisely two elements e1, e2 ∈ E such that deg(e1) = deg(e2) = 0.
Then in the sequence u, v, w, z we have either a subsequence a, b, c in which

either a, b or b, c satisfies a), or a subsequence a, b, c in which only b satisfies a). In
both cases a ∗ b ∗ c ∈ P .

d) deg(e) = 0 for all e ∈ E. Hence, u, v, w, z ∈ G and the axiom (P5) obviously
holds.

This completes the proof of the proposition. ¤
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6.2. Pregroups and non-standard extension of centralizers. Let G be
a fixed S-subgroup of CDR(Z[t], X) with a Lyndon’s set R. Below we continue to
use notations from the previous section.

By Proposition 6.14

P = {g ∗ uα ∗ h | g, h ∈ G, u ∈ R, α ∈ Z[t]}
forms a pregroup in CDR(Z[t], X) with respect to the partial multiplication ∗. The
next two results reveal the structure of the universal group U(P ) of P .

Theorem 6.15. P generates a subgroup 〈P 〉 in CDR(Z[t], X), which is iso-
morphic to U(P ).

Proof. The proof of the theorem is divided into several claims. Below we
refer to any tuple y = (y1, . . . , yn) ∈ Pn as a P -sequence and we call it reduced
if yi ∗ yi+1 /∈ P for i ∈ [1, n − 1]. Observe, that if y = (y1, . . . , yn) is a reduced
P -sequence and yi = gi ∗ cαi

i ∗ hi then y has the following properties:
1) deg(αi) > 0 for all i ∈ [1, n],
2) either ci 6= ci+1 or ci = ci+1, [hi ∗ gi+1, ci] 6= ε, i ∈ [1, n− 1].
In particular, the following R-form over G

py = (g1, cα1
1 , h1 ∗ g2, cα2

2 , . . . , hn−1 ∗ gn, cαn
n , hn),

is reduced as an R-form.
Recall, that the group U(P ) consists of equivalence classes of reduced P -

sequences modulo the equivalence relation ∼ such that (y1, . . . , yn) ∼ (z1, . . . , zm) if
and only if m = n and there exist elements a1, . . . , an−1 ∈ P such that zi = a−1

i−1yiai

for 1 6 i 6 n (here a0 = an = 1).

Claim 1. P generates a subgroup H = 〈P 〉 in CDR(Z[t], X).

Observe, first, that P−1 = P . Now if y1, . . . , yn ∈ P then y1 ∗ · · · ∗ yn =
w(py) where y = (y1, . . . , yn). Hence, by Lemma 6.13 y1 ∗ y2 ∗ · · · ∗ yn is defined
and it belongs to CDR(Z[t], X). It follows that P generates a subgroup H of
CDR(Z[t], X). It is not hard to see that H consists of all words w(p), where p
ranges through all possible R-forms over G. This proves the claim.

Now we have to prove that H ' U(P ). By the categorical properties of the
universal group U(P ) of the pregroup P the canonical inclusion ψ : P → H (which is
obviously a morphism of pregroups) extends to a unique homomorphism of groups
φ : U(P ) → H defined as follows. If y ∈ U(P ) is viewed as a P -sequence y =
(y1, . . . , yn) ∈ Pn, then

yφ = yψ
1 ∗ · · · ∗ yψ

n ∈ H.

Claim 2. φ is onto.

The claim is obvious since P ⊆ U(P ) and P generates H.

Claim 3. φ is one-to-one.

Let y = (y1, . . . , yn) and z = (z1, . . . , zm) be reduced P -sequences such that
yφ = zφ. We need to show that in this case y and z define the same element in
U(P ), i.e., y ∼ z.

If yi = gyi ∗ cαi
yi
∗ hyi , i ∈ [1, n], and zj = gzj ∗ c

βj
zj ∗ hzj , j ∈ [1,m], then

py = (gy1 , cα1
y1

, hy1 ∗ gy2 , cα2
y2

, . . . , hyn−1 ∗ gyn , cαn
yn

, hyn),

pz = (gz1 , cβ1
z1

, hz1 ∗ gz2 , cβ2
z2

, . . . , hzm−1 ∗ gzm , cβm
zm

, hzm)
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are reduced R-forms such that yφ = w(py) and zφ = w(pz).
Following the process described in Lemma 6.13, we find the corresponding

normal R-forms

qy = (a0, cγ1
y1

, a1, cγ2
y2

, . . . , an−1, cγn
yn

, an),

qz = (b0, cδ1
z1

, b1, cδ2
z2

, . . . , bm−1, cδm
zm

, bm),
such that w(py) = w(qy) and w(pz) = w(qz). Observe that according to the process
we have

a0 = gy1 ∗ ck1
y1

, an−1 = csn
yn
∗ hyn

, ai = csi
yi
∗ (hyi ∗ gyi+1) ∗ cki+1

yi+1
, i ∈ [1, n− 1],

b0 = gz1 ∗ cK1
z1

, bm−1 = cSm
zm

∗ hzm
, bj = cSj

zj
∗ (hzj

∗ gzj+1) ∗ cKj+1
zj+1

, j ∈ [1,m− 1],
where ki, si,Kj , Sj ∈ Z, i ∈ [1, n], j ∈ [1,m], and

αi = γi + ki + si, βj = δj + Kj + Sj , i ∈ [1, n], j ∈ [1, m].

Since w(qy) = w(qz), from the uniqueness of normal R-forms it follows that m =
n, ai = bi, i ∈ [0, n] and cyi

= czi
, γi = δi, i ∈ [1, n]. Now, if we take P -sequences

y′ = (gy1 ∗ cα1
y1
∗ hy1 ∗ gy2 ∗ ck2

y2
, cα2−k2

y2
∗ hy2 ∗ gy3 ∗ ck3

y3
, . . . , cαn

yn−kn
∗ hyn),

z′ = (gz1 ∗ cβ1
z1
∗ hz1 ∗ gz2 ∗ cK2

z2
, cβ2−K2

z2
∗ hz2 ∗ gz3 ∗ cK3

z3
, . . . , cβm

zm−Km
∗ hzm)

then y ∼ y′, z ∼ z′. Using the equalities above it is easy to see that y′ can be
obtained from z′ by interleaving, that is, y′ ∼ z′ which implies y ∼ z.

¤
Remark 6.16. As we have seen in the proof above every element h ∈ H can be

presented by a reduced R-form ph. By Lemma 6.13, h has a unique normal R-form
qh such that w(qh) = h. We will refer to this qh as to the normal form of h in H.

To describe the algebraic structure of the group H we need the following nota-
tion.

Let R = {ci | i ∈ I}. Put S = {si,j | i ∈ I, j ∈ N}. Then the group

G(R,S) = 〈G,S | [ci, si,j ] = [si,j , sk,j ] = 1, i ∈ I, j, k ∈ N〉
is an extension of all cyclic centralizers of G by a direct sum of countably many
copies of an infinite cyclic group. Sometimes, we will refer to G(R,S) as an exten-
sion of all cyclic centralizers of G by Z[t].

Theorem 6.17. H ' G(R, S).

Proof. We start by defining a map φ : P → G(R, S) as follows. Let gi∗cα
i ∗hi ∈

P and α = antn + an−1t
n−1 + · · ·+ a1t + a0. Put

gi ∗ cα
i ∗ hi

φ→ gi san
i,n s

an−1
i,n−1 · · · sa1

i,1 ca0
i hi.

It follows from Claim 2 in Proposition 6.14 that φ is a morphism of pregroups. Since
H ' U(P ), the morphism φ extends to a unique homomorphism ψ : H → G(R,S).
We claim that ψ is bijective. Indeed, observe first that G(R, S) is generated by
G ∪ S. Now, since ψ(ctj

i ) = si,j and ψ is identical on G, it follows that ψ is onto.
To see that ψ is one-to-one it suffices to notice that if

y = (g1 ∗ cα1
1 ∗ h1, g2 ∗ cα2

2 ∗ h2, . . . , gm ∗ cαm
m ∗ hm).

is a reduced R-form then yψ 6= 1 by Britton’s Lemma (see, for example, [31]). This
proves that ψ is an isomorphism, as required. ¤
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Now we prove two results about H.

Lemma 6.18. If G is subwords-closed then so is H.

Proof. Suppose G is subwords-closed. Let h be an arbitrary element from H.
Then h can be written in the normal form

h = h1 ◦ uα1
1 ◦ h2 ◦ uα2

2 ◦ · · · ◦ uαm
m ◦ hm+1,

where hi ∈ G, i ∈ [1,m + 1], ui ∈ R, αi ∈ Z[t], i ∈ [1,m]. Now, a subword h′ of h
has the following form

h′ = h′k ◦ uγk

k ◦ hk+1 ◦ u
αk+1
k+1 ◦ · · · ◦ hl ◦ uγl

l ◦ h′l+1,

where h′k ◦uγk

k is a terminal segment of hk ◦uαk

k and uγl

l ◦h′l+1 is an initial segment
of uαl

l ◦ hl+1. Since G is subwords-closed, it follows that h′k, h′l+1 ∈ G. Hence,
h′ ∈ H, as required. ¤

Lemma 6.19. If G is subwords-closed then H is an S-subgroup.

Proof. Suppose f, g ∈ H, [f, g] 6= ε, and the centralizers CH(f) and CH(g)
are cyclic. Since the centralizers in H of elements from G are isomorphic to Z[t],
it follows that g and h are not conjugates of elements from G. In particular, if
f = a−1 ◦ f̄ ◦ a and g = b−1 ◦ ḡ ◦ b are cyclic decompositions of f and g then f̄
and ḡ are not in G. Notice that by Lemma 6.18 H is subwords-closed, therefore
none of the elements in H contains an infinite power of f̄ or infinite power of ḡ as
a subword.

We have to show that g and h are separated. Suppose to the contrary that
they are not separated. Without loss of generality we can assume that f and g are
not proper powers. Since f and g are not separated for every M ∈ N there are
m,n ∈ N such that c(f−m, gn) > M . In particular, c(f−m, gn) > max{|a|, |b|} for
sufficiently big m, n (i.e., both a and b−1 cancel in fm ∗ gn). We may assume that
|a| > |b|, so a = a1 ◦ b. Also we may assume that |a1| 6 |ḡ| (otherwise a1 = ḡk ◦ a2,
where |a2| 6 |ḡ| and k ∈ N, so we can replace a1 by a2).

Consider the following cases.
a) Let |a1| + |f̄ | > |ḡ|. If |a1| + |f̄ | = |ḡ| then ḡ = a−1

1 ◦ f̄−1. Therefore
fm ∗ gn = a−1 ◦ f̄m ∗ ḡn ◦ b, so c(f̄−m, ḡn) > |f̄ |+ |ḡ|. By Lemma 6.4 ḡ = f̄−1, so
a1 = ε. It follows that a = b and [f, g] = ε – contradiction.

Suppose |a1| + |f̄ | > |ḡ|. Then f̄−1 = f1 ◦ f2, a
−1
1 ◦ f1 = ḡp, p > 1, and

ḡ = f2 ◦ g1. It follows then that c(f̄−m, (g1 ◦ f2)n) > |f̄ | + |ḡ|, so by Lemma 6.4
f̄−1 = g1 ◦ f2 and f1 = g1. Thus, a−1

1 ◦ g1 = ḡp, p > 1, and since |a1| 6 |ḡ|, one has
p = 1, a−1

1 ◦g1 = ḡ = f2 ◦g1, hence, a−1
1 = f2. This shows that there is cancellation

between a−1 and f̄ – contradiction.
b) Let |a1|+ |f̄ | < |ḡ|.
In this case ḡ = a−1

1 ◦ f̄−k ◦ f1, k > 0 and f̄−1 = f1 ◦ f2. It follows then that
c((f2 ◦ f1)m, ḡn) > |f̄ | + |ḡ|, so by Lemma 6.4 g = f2 ◦ f1. Hence, |f̄ | = |ḡ| and
a1 = f1 = ε, k = 1. This implies a = b, ḡ = f̄−1, and [f, g] = ε – contradiction.

Thus, our assumption was false and f, g are separated, as required. ¤

6.3. Regular free length functions on extensions of centralizers. Let
G be a fixed S-subgroup of CDR(Z[t], X) with a Lyndon’s set R. In the previous
subsection we showed that the set

P = {g ∗ uα ∗ h | g, h ∈ G, u ∈ R, α ∈ Z[t]}
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generates a subgroup H = 〈P 〉 of CDR(Z[t], X), which is isomorphic to the exten-
sion of all cyclic centralizers of G by Z[t]. It follows that H has a length function
induced from CDR(Z[t], X). In this section we show that this length function is
regular, provided the length function on G is regular. Notice that if G is subwords-
closed, then by Lemma 6.18 H is subwords-closed too, so the length function on H
is obviously regular. In what follows we do not assume that G is subwords-closed.

We begin with a description of the induced length function on H. Let y ∈ H
and

y = g0 ◦ cα1
1 ◦ g1 ◦ cα2

2 ◦ g2 ◦ · · · ◦ cαm
m ◦ gm

be the unique normal form for y in H. Then

(7) |y| =
m∑

i=0

|gi|+
m∑

i=1

|cαi
i | =

m∑

i=0

|gi|+
m∑

i=1

|ci||αi|.

Lemma 6.20. If the length function on G induced from CDR(Z[t], X) is regular
then so is the length function induced from CDR(Z[t], X) on H.

Proof. Suppose that the length function induced from CDR(Z[t], X) on G is
regular. Let h, g ∈ H. One can write them in the normal forms

h = h1 ◦ uα1
1 ◦ h2 ◦ uα2

2 ◦ · · · ◦ uαm
m ◦ hm+1,

g = g1 ◦ vβ1
1 ◦ g2 ◦ vβ2

2 ◦ · · · ◦ vβn
n ◦ gn+1,

where hi, gj ∈ G, i ∈ [1,m + 1], j ∈ [1, n + 1], ui, vj ∈ R, αi, βj ∈ Z[t], i ∈ [1,m],
j ∈ [1, n].

If c(h, g) = 0 then there is nothing to prove. Suppose c(h, g) > 0. Now,
comparing representations of com(h, g) as all possible subwords of g and h, consider
two cases.

Case 1). Suppose

com(h, g) = g1 ◦ vβ1
1 ◦ · · · ◦ v

βk−1
k−1 ◦ g′k,

where gk = g′k ◦ g′′k.
a) Assume that

com(h, g) = h1 ◦ uα1
1 ◦ · · · ◦ u

αl−1
l−1 ◦ h′l,

where hl = h′l ◦ h′′l. From the properties of normal forms it follows that k = l,
gi = hi, ui = vi, αi = βi for i ∈ [1, k − 1] and h′k = g′k = com(hk, gk). Thus,
g′k ∈ G since the length function on G is regular and it follows that com(h, g) ∈ H.

b) Assume now that com(h, g) ends in h inside of uαl

l for some l ∈ [1,m], that
is,

com(h, g) = h1 ◦ uα1
1 ◦ · · · ◦ hl ◦ uγ

l ◦ u′,

where ul = u′ ◦ u′′, γ < αl.
If deg(γ) > 0 then k = l + 1, gi = hi, ui = vi, i ∈ [1, k − 1], αi = βi, i ∈

[1, k − 2], βk−1 = γ and g′k = u′ = com(ul, gk) ∈ G, thus, com(h, g) ∈ H.
If deg(γ) = 0 then k = l, gi = hi, ui = vi, αi = βi, i ∈ [1, k − 1] and

g′k = hk ◦ uγ
k ◦ u′. Thus, g′k = com(hk ◦ uγ+1

k , gk) ∈ G and com(h, g) ∈ H.
Case 2). Suppose com(h, g) ends in g inside of vβk

k for some k ∈ [1, n], that is,

com(h, g) = g1 ◦ vβ1
1 ◦ · · · ◦ gk ◦ vδ

k ◦ v′,

where vk = v′ ◦ v′′, δ < βk.
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a) If
com(h, g) = h1 ◦ uα1

1 ◦ · · · ◦ u
αl−1
l−1 ◦ h′l,

where hl = h′l ◦ h′′l, then this case is symmetric to Case 1b).
b) Suppose com(h, g) ends in h inside of uαl

l for some l ∈ [1,m], that is,

com(h, g) = h1 ◦ uα1
1 ◦ · · · ◦ hl ◦ uγ

l ◦ u′,

where ul = u′ ◦ u′′, γ < αl.
If deg(γ), deg(δ) > 0 then k = l, gi = hi, ui = vi, i ∈ [1, k], αi = βi, i ∈

[1, k−1], γ = δ, u′ = v′ and we have a contradiction with the definition of com(h, g).
If deg(γ) > 0,deg(δ) = 0 then k = l + 1, gi = hi, ui = vi, i ∈ [1, k − 1], αi =

βi, i ∈ [1, k− 2], βk−1 = γ and u′ = gk ◦ vδ
k ◦ v′. Thus, u′ = com(uk, gk ◦ vδ+1

k ) and
com(h, g) ∈ H. If deg(γ) = 0, deg(δ) > 0 then we apply the same argument.

If deg(γ) = deg(δ) = 0 then k = l, gi = hi, ui = vi, αi = βi, i ∈ [1, k− 1] and
gk ◦ vδ

k ◦ v′ = hk ◦ uγ
k ◦ u′ = com(hk ◦ uγ+1

k , gk ◦ vδ+1
k ) ∈ G. Thus, com(h, g) ∈ H.

Since in all possible cases com(h, g) ∈ H, this shows that the length function
on H is regular. ¤

7. Embedding of FZ[t] into CDR(Z[t], X)

Let F be a free non-abelian group. Recall that one can view the group FZ[t] as
a union of the following infinite chain of groups:

(8) F = G0 < G1 < G2 < · · · < Gn < · · · ,

where Gn is obtained from Gn−1 by extension of all cyclic centralizers of Gn−1 (see
Subsection 2.1).

For each n ∈ N we construct by induction an embedding

ψn : Gn → CDR(Z[t], X)

such that ψn−1 is the restriction of ψn to Gn−1. To this end, let H0 be the set
of all words of finite length in CDR(Z[t], X). Clearly, F = H0. We denote by
ψ0 : F → H0 the identity isomorphism. It is obvious that H0 is subwords-closed
and it is not hard to see that H0 has a Lyndon’s set. By Lemma 6.5, H0 is an
S-subgroup of CDR(Z[t], X).

Suppose by induction that there exists an embedding

ψn−1 : Gn−1 → CDR(Z[t], X)

such that the image Hn−1 = ψn−1(Gn−1) is an S-subgroup, it is subwords-closed,
and there exists a Lyndon’s set, say Rn−1, in Hn−1. Then by Proposition 6.14 and
Theorem 6.15 from Section 6, there exists an embedding ψn : Gn → CDR(Z[t], X).
Moreover, in this case, the image Hn = ψn(Gn) is the subgroup of CDR(Z[t], X)
generated by the pregroup

P (Hn−1, Rn−1) = {f ∗ uα ∗ h | f, h ∈ Hn−1, u ∈ Rn−1, α ∈ Z[t]}.
Notice that by Lemma 6.19, the group Hn is an S-subgroup of CDR(Z[t], X), and
by Lemma 6.18, Hn is subwords-closed. So to finish the proof one needs to show
that Hn has a Lyndon’s set.

Lemma 7.1. Let Hn−1 from the series (8) be a subwords-closed S-subgroup of
CDR(Z[t], X) with a Lyndon’s set Rn−1. Then there exists a Lyndon’s set Rn in
Hn.
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Proof. Recall that K = K(Hn) ⊂ Hn is the subset consisting of all elements
v ∈ Hn such that CHn

(v) = 〈v〉. Denote by R a set of representatives for K.
Since Hn is subwords-closed then we may assume that R ⊂ Hn (see the con-

struction of a set of representatives after Definition 6.6 in Section 6.1). The same
argument shows that an element f ∈ Hn does not contain a subword uα, where
u ∈ R and α ∈ Z[t] is infinite. Indeed, in this case it would imply that uα ∈ Hn,
hence, [uα, u] = ε, so the centralizer of u in Hn is not cyclic – contradiction with
u ∈ R. Finally, let u ∈ R, g ∈ Hn. Observe that u /∈ Hn−1, so u has a unique
normal form

u = f1 ◦ uα1
1 ◦ f2 ◦ · · · ◦ uαk

k ◦ fk+1,

where fi ∈ Hn−1, ui ∈ Rn−1, and αi ∈ Z[t] is infinite for any i ∈ [1, k]. If g ∈ Hn−1

then

(9) (g ∗ um) ∗ u = (g ∗ um) ◦ u, u ∗ (um ∗ g) = u ◦ (um ∗ g)

holds for m = 1, since Rn−1 is a Lyndon’s set for Hn−1. If g /∈ Hn−1 then

g = g1 ◦ vβ1
1 ◦ g2 ◦ · · · ◦ vβl

l ◦ gp+1,

where gj ∈ Hn−1, vj ∈ Rn−1 and βj ∈ Z[t] is infinite for any j ∈ [1, p]. In this case
(9) holds for any m > p.

It follows that the set Rn = R is a Lyndon’s set for Hn. ¤

8. Algorithmic problems for FZ[t]

In this section we discuss some algorithmic problems for FZ[t]. The group FZ[t]

is not finitely generated, as an abstract group, but it is finitely generated as Z[t]-
group (a group with operators from Z[t]). Since the ring Z[t] is finitely generated
then every element of FZ[t] can be represented by a word (so-called parametric word)
in a finite alphabet. We refer to [27, 6, 35, 36] for details on exponential groups.
In [27] Lyndon showed that the word problem for FZ[t] is decidable, so this group
is constructible in the sense of [33] or recursive in terms of [41]. This allows one to
represent elements of FZ[t] effectively by normal forms of various types. In Section
8.1 we discuss how one can effectively rewrite one normal form of an element into
another one. Afterward, in Section 8.2, we solve the conjugacy and power problems
in FZ[t].

8.1. Effective representations of elements of Z[t]. As we have seen al-
ready there are several different ways to describe the group FZ[t] and its elements.
Below we discuss in details various representations of elements of FZ[t].

I. Representation by parametric words. This is Lyndon’s original repre-
sentation [27]. We define by induction a set Fk of parametric words of level k as
follows. Put F0 = F = F (X). If Fk−1 is defined then Fk consists of all formal
expressions of the type

wα1
1 wα2

2 · · ·wαm
m ,

where n ∈ N, wi ∈ Fk−1, and αi ∈ Z[t]. One can introduce an equivalence relation
on Fk such that the equivalence classes form a group with respect to concatenation
of parametric words and such that the axioms of exponentiation E1)-E3) (see Sub-
section 2.1) are satisfied. Abusing notation we denote the resulting group again by
Fk. Now the group FZ[t] is defined as a union of the chain of subgroups:

F = F0 < F1 < · · · < Fn < · · · .
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If g ∈ FZ[t] then there exists k ∈ N such that g ∈ Fk, so g can be viewed as a
parametric word of level k

g = wα1
1 wα2

2 · · ·wαm
m .

II. Representation via extensions of centralizers. This representation of
FZ[t] was introduced in [36] by A.Myasnikov and V.Remeslennikov. In this case
FZ[t] is obtained as a union of the chain of extensions of cyclic centralizers (8):

F = G0 < G1 · · · < Gn < · · · ,

where Gn is the Z[t]-extension of all cyclic centralizers in Gn−1. Recall that Gn is
an HNN-extension of the type

Gn = Gn−1(R, S) = 〈Gn−1, S | [ci, si,j ] = 1, [si,j , si,k] = 1, i ∈ I, j, k ∈ N〉,
where R = {ci | i ∈ I} is a Lyndon’s set in Gn−1 and S = {si,j | i ∈ I, j ∈ N}. If
g ∈ FZ[t] then there exists k ∈ N such that g ∈ Gk, so g can be represented as a
word in generators of Gk

g = g1z1g2z2 · · · zmgm+1,

where gi ∈ Gn−1, zi ∈ F (S). Moreover, g can be represented in a reduced form
as an element of an HNN-extension. In this case it does not have subwords of the
type s−1us or sus−1 where s ∈ S and [u, s] = 1. Furthermore, following [36] one
can introduce by induction seminormal forms of elements from Gn.

III. Representation by infinite words. In Section 7 we showed that FZ[t]

can be described as a union of the chain of subgroups of CDR(Z[t], X):

F = H0 < H1 < · · · < Hn < · · · ,

where Hn = 〈P (Hn−1, Rn−1)〉 and P (Hn−1, Rn−1) is the pregroup

P (Hn−1, Rn−1) = {f ∗ uα ∗ h | f, h ∈ Hn−1, u ∈ Rn−1, α ∈ Z[t]},
formed from Hn−1 and a Lyndon’s set Rn−1 of Hn−1.

If g ∈ FZ[t] then there exists n ∈ N such that g ∈ Hn, so g can be represented
by an R-form, moreover, it has a unique normal form:

g = g1 ◦ uβ1
1 ◦ g2 ◦ · · · ◦ uβm

m ◦ gm+1,

where gi ∈ Hn−1, ui ∈ Rn−1, βi ∈ Z[t]. We may assume (by induction) that the
normal forms of elements from Hn−1 are already defined. In this event we suppose
that the elements gi, ui ∈ Hn−1 are given in normal forms.

Below we show that given any of the three forms of an element g ∈ FZ[t]

described above, one can effectively compute the other two. We begin with two
auxiliary algorithmic results.

Lemma 8.1. Let f ∈ Hn be given by an R-form

f = (f1, u
α1
1 , f2, . . . , u

αm
m , fm+1),

where fi ∈ Hn−1, i ∈ [1,m + 1], ui ∈ Rn−1, αi ∈ Z[t], i ∈ [1,m] and [fi, ui−1] 6= ε,
[fi, ui] 6= ε, i ∈ [2,m]. Then one can effectively compute the normal form of f in
Hn.
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Proof. We prove by induction on n. If n = 0 then there is nothing to prove.
Suppose, by induction, that the statement of the lemma holds for Hn−1. Then

one can compute effectively the normal form of any product of the type ur
i−1∗fi∗ur

i ,
where ri ∈ Z. By Lemma 6.9 there exists ri ∈ Z such that

u
αi−1
i−1 ∗ fi ∗ uαi

i = u
αi−1−ri

i−1 ◦ (uri
i−1 ∗ fi ∗ uri

i ) ◦ uαi−ri
i

for any k1, k2 > ri. Notice that such ri can be found effectively by checking for
ri = 1, 2, . . . . It follows that one can find effectively a representation of f of the
type

f = g1 ◦ uγ1
1 ◦ g2 ◦ · · · ◦ uγm

m ∗ gm+1.

This may not be a normal form for f yet. To obtain the normal form for f one has
to check, first, if g1 contains u±1

1 as a terminal segment. Using the normal forms
for g1 and u1, one can check this effectively. If g1 = h1 ◦ uk then

f = h1 ◦ uγ1+k
1 ◦ g2 ◦ · · · ◦ uγm

m ∗ gm+1.

Now one has to check if g2 ◦ uγm
m has u±1

1 as an initial segment, etc. Induction
finishes the proof. ¤

Lemma 8.2. For an element g ∈ Gn−1 and f ∈ Z[t] one can effectively find
the element gf ∈ Gn, i.e., Z[t]-exponentiation in FZ[t] (given in the form II ) is
effective.

Proof. To show this we follow the argument from [36]. By induction we may
assume that Z[t]-exponentiation is defined effectively in Gn−2 (we put G−1 = 1 for
the base of induction). Recall that every element g ∈ Gn−1 rGn−2 is a conjugate
of some element ui ∈ Rn−1. The axiom (E2) of exponentiation makes it sufficient
to define Z[t]-exponentiation on ui and then extend it by conjugation onto g. By
the construction the centralizer CGn(ui) is isomorphic to the infinite direct sum

CGn(ui) '
∞⊕

j=0

〈si,j〉

The map

λi : Z[t] →
∞⊕

j=0

〈si,j〉

defined as

a0 + a1t + · · ·+ aktk 7→ a0si,0 + a1si,1 + · · ·+ aksi,k

is an isomorphism of abelian groups. For f ∈ Z[t] put uf
i = λi(f). It has been shown

in [36] that this defines a Z[t]-exponentiation on Gn−1 (with values in Gn), which
extends (by induction) to a Z[t]-exponentiation on FZ[t]. Since the isomorphism λi

is effective one can effectively find the element uf
i . To finish the proof it suffices to

show now that for a given element g ∈ Gn−1 r Gn−2 one can effectively find the
unique element ui ∈ Rn−1 which is a conjugate of g. Since the conjugacy problem
is decidable in FZ[t] one can effectively check whether g is conjugate to u1, if not –
then to u2, and so on, until the required ui will be found. This process is effective
because the set of representatives Rn−1 is recursive enumerable (since we started
with a recursive representation of FZ[t] of type II). This finishes the lemma. ¤
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Proposition 8.3. If g ∈ FZ[t] is given by one of the representations I, II, III
then one can effectively find the other two representations of g.

Proof. I =⇒ II. Suppose g ∈ FZ[t] is given by a parametric word of level n

g = wα1
1 wα2

2 · · ·wαm
m ,

where wi ∈ Fn−1, αi ∈ Z[t], m ∈ N. By induction on n (the base of induction n = 0
is obvious) we may assume that for every element w ∈ Fn−1, given as a parametric
word of level n − 1, one can effectively compute its representation φn−1(w) of the
type II, as an element of the HNN-extension Gn−1. Thus, φn−1 : Fn−1 → Gn−1 is
an effective isomorphism. Now we define φn : Fn → Gn as follows:

φn(g) = φn−1(w1)α1 . . . φn−1(wm)αm .

By Lemma 8.2, Z[t]-exponentiation in FZ[t] (relative to the representation II) is
effective, which implies effectiveness of φn.

II =⇒ III. Suppose, by induction, we are given an effective isomorphism
ψn−1 : Gn−1 → Hn−1. To construct ψn : Gn → Hn one needs only to define ψn on
elements from S. To this end for si,j ∈ S put

ψn(si,j) = ψn−1(ui)tj

This effectively defines ψn.
III =⇒ I. Suppose by induction we are given an effective isomorphism ψn−1 :

Hn−1 → Fn−1. If g ∈ Hn is given as an R-form:

g = (g1, u
β1
1 , g2, . . . , u

βm
m , gm+1),

where gi ∈ Hn−1, ui ∈ Rn−1, βi ∈ Z[t], then put

ψn(g) = ψn−1(g1)ψn−1(u1)β1ψn−1(g2) . . . ψn−1(um)βmψn−1(gm+1).

Clearly, ψn : Hn → Fn is an effective isomorphism. ¤

In view of Proposition 8.3 one may use any of the representations I, II, III of
elements from FZ[t], in which case there is no need to specify a particular one.

It is easy to see that Lemma 8.1 gives one the opportunity to compute the
length of elements from FZ[t] effectively.

Corollary 8.4. Given f ∈ FZ[t], one can effectively compute the length |f | of
f .

Proof. In view of Proposition 8.3 we may assume that f ∈ Hn and it is given
by an R-form

f = (f1, u
β1
1 , f2, . . . , u

βk

k , fk+1),
where fi ∈ Hn−1, i ∈ [1, k + 1], ui ∈ Rn−1, βi ∈ Z[t], i ∈ [1, k]. By Lemma 8.1 one
can effectively compute the normal form of f :

f = g0 ◦ uα1
1 ◦ g1 ◦ uα2

2 ◦ g2 ◦ · · · ◦ uαm
m ◦ gm.

Now the length of f is given by the formula (7) from Subsection 6.3:

|f | =
m∑

i=0

|gi|+
m∑

i=1

|uαi
i | =

m∑

i=0

|gi|+
m∑

i=1

|ui||αi|.

By induction on n we can compute effectively the length of elements gi ∈ Hn−1,
hence, the length of |f |. ¤
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Lemma 8.5. Given the normal forms of g, h ∈ FZ[t], one can effectively com-
pute the normal form of com(g, h).

Proof. There exists n ∈ N such that g, h ∈ Hn. We prove that the lemma
holds for every Hn by induction on n. Then the required result will follow for FZ[t].

If n = 0, that is, g, h ∈ F then com(g, h) can be computed in the obvious way.
Assume n > 0 and that the statement is proved for Hn−1. We can also assume
without loss of generality that both g and h belong to Hn −Hn−1. Thus

g = g1 ◦ uα1
1 ◦ g2 ◦ · · · ◦ uαm

k ◦ gk+1,

h = h1 ◦ vβ1
1 ◦ h2 ◦ · · · ◦ vβm

m ◦ hm+1,

where gi, hj ∈ Hn−1, i ∈ [1, k + 1], i ∈ [1,m + 1], ui, vj ∈ Rn−1, αi, βj ∈ Z[t],
i ∈ [1, k], j ∈ [1,m].

Suppose |g1| > |h1|. By the induction hypothesis we can compute com(g1, h1)
effectively. If c(g1, h1) < |h| then we are done. Suppose c(g1, h1) = |h|.

a) If |g1| = |h1| then by Lemma 6.4 either c(uα1
1 , vβ1

1 ) < |u1| + |v1| or u1 =
v1, sgn(α1) = sgn(β1). In the former case com(g, h) = com(g1 ◦ u2

1, h1 ◦ v2
1),

which can be computed effectively by the induction hypothesis. In the latter case
com(uα1

1 , vβ1
1 ) = uγ , γ = sgn(α1)min{|α1|, |β1|} and we can proceed by the induc-

tion on k + m.
b) If |g1| > |h1| then g1 = h1 ◦ f . By Lemma 6.9 there exists r ∈ N such that

c(f ◦uα1
1 , vβ1

1 ) 6 r|v1| thus com(g, h) = com(g1 ◦ur′
1 , h1 ◦vr′′

1 ), where r′ = sgn(α1)r,
r′′ = sgn(β1)r and can be computed effectively by the induction hypothesis. ¤

Corollary 8.6. Given an element g ∈ FZ[t] one can effectively compute its
cyclically reduced decomposition c−1 ◦ ḡ ◦ c.

8.2. Conjugacy and power problems for FZ[t]. In this section we apply
the infinite words technique to the conjugacy and power problems for FZ[t].

Recall that the conjugacy problem is decidable in FZ[t] if there exists an algo-
rithm which, given two elements f, g ∈ FZ[t], determines if there exists x ∈ FZ[t]

such that x−1fx = g.

In view of Corollary 8.6 it suffices to solve the conjugacy problem for cyclically
reduced f and g.

Lemma 8.7. Let f, g ∈ FZ[t], f 6= g be cyclically reduced and w ∈ FZ[t] be such
that w−1 ∗f ∗w = g. Then w = w1 ◦h, where [w1, f ] = ε, |h| < |f | and g is a cyclic
permutation of f .

Proof. We can represent w as a product w = w1 ◦h, where w1 belongs to the
centralizer of f and h does not contain any element commuting with f as an initial
segment. Thus we have to show that |h| < |f |, which implies automatically that g
is a cyclic permutation of f .

Assume on the contrary |h| > |f |. Since f is cyclically reduced we have either
h−1 ∗ f = h−1 ◦ f or f ∗ h = f ◦ h. Assume the former. Then we have

w−1 ∗ f ∗ w = (h−1 ◦ f) ∗ h

and h has to cancel completely in (h−1 ◦ f) ∗ h. Thus we have that h has f−1 as
an initial segment – a contradiction, which proves the lemma. ¤
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Thus, by Lemma 3.8, to check if two elements of FZ[t] are conjugate we have to
compare their cyclic permutations. But unlike free groups, there are infinitely many
cyclic permutations of an element in FZ[t]. Thus, we have to reduce the checking
procedure to finitely many cyclic permutations.

Let f, g ∈ FZ[t] be cyclically reduced. There exist n1, n2 ∈ N such that f ∈
Hn1+1 −Hn1 , and g ∈ Hn2+1 −Hn2 . Observe that if n1 < n2 then f can not be a
cyclic permutation of g because f does not contain infinite exponents of elements
from Hn2 . Thus, if f is conjugate to g then n1 = n2.

Lemma 8.8. Let f ∈ Hn+1 −Hn, n ∈ N and let

f = f1 ◦ vα1
1 ◦ f2 ◦ · · · ◦ vαk

k ◦ fk+1

be its unique reduced form. Then there exists a finite set Cf of cyclic permutations
of f such that any f̄ ∈ Cf has an infinite exponent of vi, i ∈ [1, k] as an initial
segment and does not have v±1

i as a terminal segment.

Proof. Consider

f(i) = (f1 ◦ vα1
1 ◦ · · · ◦ fi)−1 ∗ f ∗ (f1 ◦ vα1

1 ◦ · · · ◦ fi).

Then, its unique reduced form is

f(i) = vγi

i ◦ hi+1 ◦ v
γi+1
i ◦ · · · ◦ v

γi−1
i−1 ◦ hi.

Now, if f(i) has vα
i as a terminal segment we can assume this exponent to be

maximal possible and set f(i) = vα
1 ∗ f(i) ∗ v−α

1 . Observe that f(i) satisfies the
required conditions.

Since f contains only finitely many infinite exponents of elements of Hn, the
set {f(i)} is finite. Thus, {f(i)} is also. Finally, it is easy to see that any cyclic
permutation of f which has an infinite exponent of vi, i ∈ [1, k] as an initial segment
and does not have v±1

i as a terminal segment can be obtained in the way we obtained
{f(i)}. So, Cf = {f(i)}. ¤

Observe that Cf can be found effectively for any f ∈ FZ[t].
Now we are ready to present the solution of the conjugacy problem for FZ[t].

Lemma 8.9. Elements f and g of FZ[t] are conjugate in FZ[t] if and only if
Cf ∩ Cg 6= ∅.

Proof. If Cf ∩Cg 6= ∅ then Cf = Cg and obviously f is conjugate to g by the
construction of sets Cf and Cg.

Suppose f is conjugate to g. Observe that if

f = f1 ◦ vα1
1 ◦ f2 ◦ · · · ◦ vαk

k ◦ fk+1,

g = g1 ◦ uβ1
1 ◦ g2 ◦ · · · ◦ uβl

l ◦ gl+1

then by Lemma 3.8 we have {v1, . . . , vk} = {u1, . . . , ul} because f = w−1 ∗ g ∗ w
for some initial segment w of g. But then Cf = Cg. ¤

The power problem is decidable in FZ[t] if there exists an algorithm which, given
g ∈ FZ[t], determines if there exists n ∈ N such that g = fn for some f ∈ FZ[t].

Let g ∈ Hn+1 − Hn. If the power problem is decidable for cyclically reduced
elements then obviously it is decidable for arbitrary ones. Thus, in view of Corollary
8.6 we can assume g to be cyclically reduced.
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Let g have the unique reduced form

g = g1 ◦ uβ1
1 ◦ g2 ◦ · · · ◦ uβl

l ◦ gl+1,

where l > 1, gi, ui ∈ Hn and βi ∈ Z[t] is infinite for any i ∈ [1, l].
a) l = 1
If g1 6= ε then g is not a proper power unless g1 is a power of u1 which is im-

possible. Now let g1 = ε, g = uβ1
1 . In this case everything reduces to computations

in a free abelian group of finite rank, where we can check easily if an element β1 is
a proper power.

b) l > 1
Compose a set D of all divisors of l. Since D is finite we have D = {d1, . . . , dk}.

Consider si = gαj , i ∈ [1, k], where αi = |g|/di, i ∈ [1, k] is such that |g| can be
divided by di coordinatewise. {si} is finite because D is finite.

Finally, we check if g = sdi
i for some si. If it is for some i, then g is a proper

power of an element si ∈ FZ[t], otherwise it is not. This follows from the fact that
we have a regular length function on FZ[t].
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