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One Variable Equations in Free Groups
via Context Free Languages

Robert H. Gilman and Alexei G. Myasnikov

Abstract. We use context free languages to analyze solution sets to one vari-

able equations over free groups.
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1. Introduction

There are several interesting connections between formal languages and com-
binatorial group theory. For example virtually free groups can be characterized
in terms of context free languages [11] as can word hyperbolic groups [4]. In this
note we see how far context free languages can take us in analyzing solutions to
one variable equations over free groups. We do not obtain the exact form of the
solution sets, but we do see that consideration of the context free language of all
words freely equal to the empty word gives some insight into why large powers oc-
cur in these solution sets and suggests an approach which may be fruitful in other
situations.

Let F be a free group and Σ a set of free generators and their inverses. An
equation over F is a cyclicly reduced word

(1) E = u1x
ε1 · · ·udx

εd

in (Σ + x + x−1)∗, the free monoid over Σ∪{x, x−1}, such that ui is freely reduced
in Σ∗, and each εi = ±1. If substituting a freely reduced word v ∈ Σ∗ for x yields
E(v) freely equal to the empty word, λ, then v is a solution for E.
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In 1960 Lyndon proved that one needs only finitely many parametric words to
describe solutions of one-variable equations over F [10]. Further progress in this
direction was made by Appel [1] and Lorents [9], who gave the exact form of the
required parametric words. Namely, it turned out that the solution set of E(x) in
F is contained in a finite union of sets of the type

(2) {pnq | p, q ∈ F, n ∈ Z}.
Their argument was rather technical; they used direct computations in free groups
and the Nielsen cancellation method. Recently, Chiswell and Remeslennikov gave
an alternative proof of this result [3], which is based on ultrapowers and algebraic
geometry over groups. They showed also that the solution set of E(x) is precisely
a finite union of sets of the type 2.

Our result is the following.

Theorem 1. The solutions to equation (1) are a finite union of sets of the
form

{p1p
i
2p

j
3p4p

k
5pl

6p7 | (i, j, k, l) ∈ S}
where the pi’s are words over Σ∗, and S is a semilinear subset of N4.

Here N is the set of nonnegative integers; semilinear sets are defined below.
As we noted above, Theorem 1 does not give the exact form of the solution sets.
The exact form is a consequence of Theorem 1 together with the description of the
parametric solutions in a free group from [6].

2. Results from Language Theory

For introductions to formal language theory the reader is referred to [12]
and [8]. A survey of language theory and its connections to group theory is given
in [5].

Let Σ be a finite alphabet and Σ∗ the free monoid over Σ. A language is a
subset of Σ∗. L∗, L + L′, and LL′ denote respectively the submonoid generated by
a language L, the union of languages L and L′ and the product of L and L′. For
languages with just one element we may write w instead of {w}.

We will make use of some results on context–free languages [2, 8]. Assume
that Σ has formal inverses, and write ∼ for free equality.

L1 = {w | w ∈ Σ∗, w ∼ λ, w 6= λ}
is a context–free language and is generated by the context–free grammar with one
nonterminal S and productions

S → SS S → aSa−1 S → aa−1 for all a ∈ Σ.

In other words w ∈ L1 if and only if there is a sequence

S = α0, α1, . . . , αm = w

of elements from the free monoid (Σ + S)∗ such that for i > 1, αi is obtained by
replacing an occurrence of S in αi−1 with the right–hand side of one of the rules
above. Such sequences are called derivations. Notice that every occurrence of S
in a derivation of w is the beginning of a subderivation which derives a subword
w′ ∼ λ of w.

A language is bounded if it is a subset of w∗
1 · · ·w∗

n for some wi ∈ Σ∗. Lemma 2
shows that bounded context–free languages are related to semi–linear subsets of
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Nn, the set of n–tuples of non–negative integers. A semi–linear set is a finite union
of linear sets, and a linear set is one of the form ~m+M for ~m ∈ Nn and M a finitely
generated submonoid of Nn. Semi–linear sets are closed under intersection, monoid
homomorphism from Nn to Nm, and Cartesian product [7, Section 6]. The last
part means that if T ⊂ Nn and T ′ ⊂ Nm are semi–linear, so is T × T ′ ⊂ Nn+m.

Lemma 2. If L ⊂ Σ∗ is context–free and {ui, vi | 1 6 i 6 n} ⊂ Σ∗, then

J = {(j1, . . . , jn) | u1v
j1
1 · · ·unvjn

n ∈ L}

is semi–linear.

Proof. L′ = L ∩ u∗1v
∗
1 · · ·u∗nv∗n is the intersection of a context–free language

with a regular one and so is context–free. Define

I = {(i1, j1, . . . , in, jn) | ui1
1 vj1

1 · · ·uin
n vjn

n ∈ L′′}.

It suffices to show that I is semi–linear as J can be recovered from I by operations
which preserve semi–linearity.

Let
∆ = {bi, ci | 1 6 i 6 n}

be a new alphabet. By [7, Lemma 2.6]

L′′ = { bi1
1 ci1

1 · · · bin
n cjn

n | (i1, j1, . . . , in, jn) ∈ I }

is context–free, and Parikh’s Theorem [2, Section 2.4] applied to L′′ says that I is
semi–linear. �

3. Proof of Theorem 1

Fix a free group F , a set of Σ of free generators and their inverses, and an
equation E over F .

Proposition 3. Suppose d > 3. For each solution v of E there is a cyclic
subword

z = vεi−1uiv
εiui+1v

εi+1

of E(v) such that vεi lies in a subword of z freely equal to λ. Cyclic means that
indices are read modulo d. We say that i is an index associated with the solution v.

Proof. Fix a derivation S
∗→ E(v). Choose an S which derives a subword z1 of

E(v) containing some vεi but such that no other S occurring in that subderivation
derives such a subword. By considering the first step in the subderivation we see
that z1 = z2z3, az2a

−1, or aa−1 where z2 and z3 are subwords which do not contain
a complete occurrence of any vε. In all cases we may extend z1 to the right and
left as necessary to obtain z. �

Lemma 4. Suppose d > 3, and let

C = max{|uk| | 1 6 k 6 d}.

If i is an index associated with the solution v and if the exponents εi−1, εi, εi+1

alternate in sign, then v lies in a language p1p
∗
2p

∗
3p4 for words pj ∈ Σ∗ of length at

most C.
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Proof. By inverting x and cyclicly permuting E as necessary we reduce to the
case z = v−1u1vu2v

−1. Proposition 3 implies that v = v1v2 with v1 extending to
a suffix of v−1u1v1 freely equal to λ and v2 extending to a prefix of v2u2v

−1 freely
equal to λ. It suffices to show that under these conditions v1 ∈ p1p

∗
2 and v2 ∈ p∗3p4.

The former result follows from the latter by taking inverses.
Suppose then that v2 extends to a prefix of v2u2v

−1 freely equal to λ. If the
prefix ends in u2, we are done. Assume that this is not the case, and let u2 = rsr−1

with s cyclicly reduced. Note s 6= λ because E is cyclicly reduced. We have
v2u2v

−1 = v2(rsr−1)(v−1
2 v−1

1 ) where we are using parentheses to indicate freely
reduced subwords. From our assumption and the fact that cancellation can occur
only on either side of rsr−1 we see that v2 = v3r

−1 and v2u2v
−1 = v3s(v−1

3 v−1
1 ).

Since s is cyclicly reduced, further cancellation can occur only on one side or the
other of s if v3 6= λ. It follows that s = s1s2 with v3 = s−1

1 s−k or s2s
k, k ≥ 0.

Consequently
v2 = s−1

1 s−kr−1 = (s2s1)−k(rs1)−1

or
v2 = s2s

kr−1 = (s2s1)ks2r
−1

as desired. �

Lemma 5. If d 6 2, then all freely reduced solutions v of E are contained in
a finite union sets of the form p1p

∗
2p3 with |pj | 6 C. In general all freely reduced

solutions are contained a finite union of sets p1p
∗
2p

∗
3p4p

∗
5p

∗
6p7 with |pj | 6 9dC.

Proof. The first assertion can be verified directly, so assume d > 3. By
Proposition 3 and Lemma 4 we may restrict our attention to solutions v with an
associated index i for which the exponents εi−1, εi, εi+1 do not alternate. By
inverting x and inverting and cyclicly permuting E reduce to z = vεu1vu2v. As
before v = v1v2 with v1 extending to a suffix of vεu1v1 freely equal to λ and v2

extending to a prefix of v2u2v freely equal to λ.
Suppose either |v2| > |v|/2 or ε = 1 and |v1| > |v|/2. We will show that

|v| 6 2C or v is a solution to an equation to which Lemma 4 applies. We treat the
case |v2| > |v|/2; the argument is similar in the other case.

If v2 cancels completely in u2, then we are done. Otherwise there is a prefix v3

of v with v2u2v3 ∼ λ. Hence u2 = rs with v2 = v4r
−1, v3 = s−1v5, and v4v5 ∼ λ.

We have v = s−1v−1
4 . . . = . . . v4r

−1. The subwords v−1
4 and v4 must be disjoint in

v because if they overlapped, it would be in a word equal to its own inverse. If v4

is a subword of s, then |v2| 6 |u2|, and again we are done. Thus we may assume
v = s−1v−1

4 tv4r
−1 for some t 6= λ. The condition t 6= λ follows from the fact that v

is freely reduced. As |v4r
−1| = |v2| > |v|/2, it follows that |s−1v4| > |v|/2−C and

|t| 6 C.
Observe that v4 is a solution to the equation obtained by choosing a new letter

y, substituting α = s−1y−1tyr−1 for x in E and reducing the result. To describe
the reduction of E(α) write t = t1t2t

−1
1 with t2 freely reduced. For any u ∈ Σ∗

free reduction of α±1uα±1 leaves the subwords t±1
2 untouched except when u = λ

and the exponents of the two α’s differ. But this case cannot occur because E has
no subwords xx−1 or x−1x. Thus each t±1

2 survives free reduction of E(α). The
same argument together with the fact that E is cyclicly reduced shows that each
t±1
2 survives cyclic reduction of E(α).
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By the preceding argument the cyclic reduction, E′, of E(α) has length at least
d. Since E(α) reduces to λ when v4 is substituted for y, y or y−1 must occur in E′.
In fact there must be an even number of occurrences of yε, and they must alternate
in sign. With one more conjugation if necessary so that E′ begins with y±1, E′

becomes an equation in y with solution v4.
There are at most 4dC letters in E(α) besides the y’s. Consequently the length

of the coefficients in E′ is bounded above by 4dC. Either Lemma 4 or the statement
about solutions for d 6 2 implies that v4 ∈ q1q

∗
2q∗3q4 with |qj | 6 4dC. Hence

v = s−1v−1
4 tv4r

−1 is contained in a set of the required form.
It remains to consider the case z = v−1u1vu2v and |v2| < |v|/2. The argument

used in the proof of Lemma 4 yields v1 = p1p
k
2 . Hence v2 extends to a prefix

of v2u2p1p
k
2v2 freely equal to λ. As |v2| < |v|/2, we see that v2 extends to a

prefix of v2u2p1p
k
2 freely equal to λ. The desired result follows by a straightforward

argument. �

The following lemma is the last step in the proof of Theorem 1.

Lemma 6. The solutions to E are a finite union of sets of the form

{p1p
i
2p

j
3p4p

k
5pl

6p7 | (i, j, k, l) ∈ S}
where S is a semilinear subset of N4.

Proof. By the preceding results it suffices to show that for any choice of {pi}
the set {(i, j, k, l) | E(p1p

i
2p

j
3p4p

k
5pl

6p7) ∼ λ} is semilinear. First consider substitu-
tions in which the exponents i, j, k, l are allowed to vary for different occurrences
of xε in E. There will be 4d exponents i1, j1, k1, l1, . . . , id, jd, kd, ld. Let T be the
set of 4d–tuples for which

u1(p1p
i1
2 pj1

3 p4p
k1
5 pl1

6 p7)ε1 · · ·ud(p1p
in
2 pjn

3 p4p
kn
5 pln

6 p7)εd ∼ λ.

The set of all words of this type is

L1 ∩ w1(p1p
∗
2p

∗
3p4p

∗
5p

∗
6p7)ε1 · · ·wn(p1p

∗
2p

∗
3p4p

∗
5p

∗
6p7)εn

and so T is semi–linear by Lemma 2. Imposing the condition that appropriate
indices agree is equivalent to intersecting T with linear subsets of N4d, and S is the
projection of that intersection to a subset of coordinates. �
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