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1 Introduction

In the first part of this paper for an arbitrary group G we introduce an as-
sociative ring with identity Γ(G), called the centroid of the group G. This
notion is a natural generalization of the ring of endomorphisms to the case of
a non–commutative group G, and what is more important, it is an analog of
the notion of a centroid from ring theory. Then we describe centroids of various
groups, in particular, centroids of free groups, torsion-free hyperbolic groups,
free nilpotent groups, and groups of unitriangular matrices UTn(R) over an
arbitrary associative ring R of characteristic zero. Finally, with the description
of centroids of free nilpotent groups in hand, we solve affirmatively the rigidity
problem for free nilpotent groups posed by F.Grunewald and D.Segal in 1984
[10].

The most natural way to look at the centroid comes from the theory of
exponential groups [1, 11, 15, 19, 20], i.e., groups admitting exponents in a
ring. We prove that Γ(G) is the maximal ring of scalars for the group G: that
means that for any g ∈ G, γ ∈ Γ(G) the exponent gγ ∈ G is well defined, this
action of Γ(G) on G is faithful and satisfies some specific axioms (including
Lyndon’s axioms), and, moreover, Γ(G) is the maximal ring with respect to
these properties. This resembles the definition of the centroid Γ(K) of a ring
K as the largest ring of scalars of the ring K.

Constructively, the ring Γ(G) is defined as a subring of the near-ring P (G)
of all mappings of the group G. Investigation of the near-ring P (G) began
with the works of N. Fitting [2] and H.Neumann [22, 23]. H. Neumann used
the near–ring P (G) and its subrings in her investigations of varieties of groups.
Later, A. Fröhlich [4, 5, 6, 7] applied near-rings of endomorphisms and their
links with groups to his study of non–abelian homological algebra.

The results mentioned above gave rise to numerous attempts to construct
something similar to “the ring of endomorphisms” for an arbitrary group. It
is a well-known fact that over an abelian group G the set of all endomor-
phisms End(G) forms a ring with respect to the operations of addition + and
multiplication · :

gφ+ψ = gφgψ, gφ·ψ = (gφ)ψ, (1)

where g ∈ G, φ, ψ ∈ End(G). For a non-abelian group G the set End(G)
is not a ring, because the sum of two endomorphisms of G is not necessarily
an endomorphism of G. Therefore, it is natural to consider more general
morphisms over G. It turns out that the set P (G) of arbitrary mappings
from G into G forms a near-ring with respect to the operations (1). The
subnear-ring E(G) of P (G) generated by the set End(G) may seem to be a
good analog of the ring of endomorphisms of a nonabelian group G (in the
abelian case E(G) = End(G)), except that, in general, it is not a ring. Many
authors [12, 25, 24, 18] considered subnear-rings of E(G) generated by different
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subsets (most often subsemigroups) of End(G). We define Γ(G) as the ring
which consists of all quasi-endomorphisms of G (i.e. such mappings φ that
(xy)φ = xφyφ for commuting x, y ∈ G) that centralize all inner automorphisms
of G (very similar to the centroid in ring theory).

In the sections that follow we give a detailed description of centroids of arbi-
trary CSA-groups, including free groups and torsion-free hyperbolic groups. A
similar technique allows us to characterize centroids of free products of groups.
Surprisingly enough , the centroid Γ(F ) of a free non–abelian group F is quite
big: Γ(F ) is an unrestricted direct product of countably many copies of Z.

In Section 5 we describe centroids of finitely generated free nilpotent groups
and groups of unitriangular matrices UTn(Z). In fact, we prove the following
result: let N be a non-abelian free nilpotent group of finite rank, R an arbitrary
binomial domain, and NR the free nilpotent R-group introduced by P.Hall [11],
then the centroid Γ(NR) is isomorphic to R⊕ I, where I is a nilpotent ideal of
Γ(G). The same also is true for the unitriangular matrix group UTn(R) over
an arbitrary associative ring R of characteristic 0. We then apply these results
to solve the above-mentioned rigidity problem of free nilpotent groups. Recall
that a torsion-free nilpotent group G is rigid if for any binomial domains R and
S the Hall R-completion GR of G is isomorphic to the Hall S-completion GS

if and only if the rings R and S are isomorphic. We prove that a non-abelian
free nilpotent group of finite rank is rigid, which answers the F.Grunewald
and D.Segal question from [10]. Notice that the same argument shows that
the group UTn(Z) is rigid (which was already proved by different methods in
[10]). Rigidity results form an essential part of the F.Grunewald and D.Segal
project aimed to describe torsion-free nilpotent groups up to isomorphism. It
seems that centroids give an appropriate tool to deal with rigidity of nilpotent
groups. Notice, that in an attempt to carry out this program one may consider
centroids relative to the category of nilpotent groups (see [21] for details).

2 Definition of the centroid

To the end of the section, let us fix an arbitrary group G.

Definition 2.1 A set P with two binary operations + (addition) and · (mul-
tiplication) is called a near-ring if P is a group (not necessarily commutative)
with respect to the operation +, and multiplication is associative and satisfies
the left distributivity relation:

a · (b + c) = a · b + a · c, a, b, c ∈ P.

The following is the principal example of a near-ring. Let P (G) be the set
of arbitrary mappings of G into G. The set P (G) with the operations + and
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· defined by

gφ+ψ = gφgψ, gφ·ψ = (gφ)ψ, for g ∈ G, φ, ψ ∈ P (G).

is the near-ring of mappings of the group G.
Note that the mapping 0 : G −→ 1G is a “zero” of the near-ring P (G),

the mapping 1P : g −→ g is a “unit” of P (G), and the mapping −φ is defined
according to the rule g−φ = (gφ)−1.

Definition 2.2 A mapping φ ∈ P (G) is called normal if

(h−1gh)φ = h−1gφh

for all g, h ∈ G. By N(G) we denote the set of all normal mappings of G.

Clearly, N(G) is a centralizer in P (G) of the set Inn(G) of all inner au-
tomorphisms of G. In general, if M and X are subsets of P (G), then the
set

CM(X) = {φ ∈ M | φ · f = f · φ ∀f ∈ X}
is termed the centralizer of X in M .

Let us denote by End(G) the monoid of all endomorphisms of G with
respect to composition. Later on, subnear-rings will appear as the centralizers
of different subsemigroups of End(G).

Lemma 2.1 Let S ≤ End(G) be an arbitrary semigroup of endomorphisms
of G. Then the centralizer CP (G)(S) of S in P (G) is a subnear-ring in P (G).
In particular, N(G) is a near-ring.

Proof. Let f ∈ S, φ, ψ ∈ CP (G)(S), g ∈ G, then

(gf )φ·ψ = (gφ·ψ)f , (gf )φ+ψ = (gf )φ(gf )ψ = (gφ)f (gψ)f = (gφ+ψ)f .

2

Lemma 2.2 1) Let φ, ψ ∈ N(G), x, y ∈ G. Then [x, y] = 1 implies [xφ, yψ] =
1;

2) For any set X ⊆ G the centralizer CG(X) ⊆ G is N(G)–invariant. (

Proof. 1) We have:

yxφ = yxφy−1y = (yxy−1)φy = xφy.

Hence
xφyψ = xφyψx−φxφ = (xφyx−φ)ψxφ = yψxφ.

This proves 1).
2) follows from 1). 2
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Corollary 2.1 In the near-ring N(G) the operation of addition + is commu-
tative.

Proof. For g ∈ G, φ, ψ ∈ N(G) we have:

gφ+ψ = gφgψ = gφgψg−φgφ = (gφgg−φ)ψgφ = gψgφ = gψ+φ,

hence φ + ψ = ψ + φ. 2

Near-rings with commutative addition are called abelian.
The following example shows that one can represent any abelian near-ring

with identity as a subring of N(G) for a properly chosen abelian group G.

Example 2.1 Let R be an abelian near-ring with identity and G = R+ its
additive group. Then R acts on G by right multiplications: g → ga, a ∈
R, g ∈ G. This operation gives a monomorphism R −→ P (G). Due to the fact
that the group G is abelian, any mapping of G is normal, i.e., P (G) = N(G).

Corollary 2.2 There exists an abelian group G for which N(G) is not a ring.

Proof. Indeed, according to the previous example, it is sufficient to take an
abelian near-ring with 1 which is not a ring. As an example of such near-
ring, we can choose the set of all integer polynomials Z[x] with the standard
addition and composition as multiplication. 2

Definition 2.3 A mapping φ ∈ P (G) is called a quasi-endomorphism of the
group G if for any x, y ∈ G we have:

[x, y] = 1 implies (xy)φ = xφyφ.

The set of all quasi-endomorphisms of G is denoted by Q(G).

Lemma 2.3 Q(G) is a semigroup with respect to composition of maps.

Proof. Indeed, for x, y ∈ G, φ, ψ ∈ Q(G) we have

[x, y] = 1 implies xφyφ = (xy)φ = (yx)φ = yφxφ.

Hence
[x, y] = 1 implies (xy)φ·ψ = (xφyφ)ψ = xφψyφψ,

i.e., Q(G) is closed under composition. 2

Theorem 2.1 The set Γ(G) of all normal quasi-endomorphisms of G is an
associative ring with 1. It is called the centroid of the group G.
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Proof. According to the definition, Γ(G) = N(G)∩Q(G) is the intersection of
two semigroups, so Γ(G) is closed under multiplication. Let us verify that it is
closed under addition. Let φ, ψ ∈ Γ(G). We have already proved that N(G) is
a near-ring, hence φ + ψ ∈ N(G). Now it suffices to show that φ + ψ ∈ Q(G);
i.e., φ + ψ is a quasi-endomorphism of G. Let x, y ∈ G, and [x, y] = 1. Then

(xy)φ+ψ = (xy)φ(xy)ψ = xφyφxψyψ.

But φ and ψ are normal, so by Lemma 2.2 the elements yφ and xψ commute.
Therefore,

xφyφxψyψ = xφxψyφyψ = xφ+ψyφ+ψ

which, combined with the equality above, proves that φ + ψ ∈ Q(G). Con-
sequently, Γ(G) is a near-ring; moreover, by Corollary 2.1 addition in Γ(G)
is commutative. It remains to check that right-hand distributivity holds in
Γ(G):

x(φ+ψ)θ = (xφxψ)θ = xφθxψθ = xφθ+ψθ

(again, here we used the fact that by Lemma 2.2 xφ and xψ commute). Since
this is true for an arbitrary x ∈ G, we have (φ + ψ)θ = φθ + ψθ, and Γ(G) is
a subring of P (G). Obviously, 1 ∈ Γ(G). 2

There is an analogy between the construction of the centroid Γ(K) of a
ring K and the centroid Γ(G) of a group G. Namely, Γ(K) is the centralizer of
the set of all right-hand and left-hand multiplications of K in the semigroup
of all endomorphisms End(K+) of the additive group K+ of the ring K. Tak-
ing instead of the abelian group K+ a non-abelian group G, instead of the
semigroup End(G) its generalization Q(G), we obtain Γ(G) as the centralizer
of the set of all inner automorphisms of G in the semigroup Q(G). So far this
analogy is purely formal. But in the next section we will show that Γ(G) is the
maximal ring of scalars for G, i.e., Γ(G) satisfies the same universal property
as the centroid of a ring K.

Observe that if the group G is abelian, then Γ(G) = End(G), i.e., Γ(G) is
indeed a generalization of the ring of endomorphisms to the non–commutative
case.

3 Centroid as the maximal ring of scalars

Up to the end of this section, let us fix an arbitrary associative ring with
identity A, as well as a group G.

Given an action of A on G, i. e. a mapping G×A → G, we will write the
result of the action of α ∈ A on g ∈ G as gα. Consider the following axioms:

1. g1 = g, g0 = 1, 1α = 1;
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2. gα+β = gαgβ, gαβ = (gα)β;

3. (h−1gh)α = h−1gαh;

4. [g, h] = 1 =⇒ (gh)α = gαhα.

Definition 3.1 [19, 20] The group G is called an A–exponential group (or an
A–group) if an action of the ring A on G satisfying axioms 1)-4) is defined.

Notice that an arbitrary group is a Z–group; a group of period m is a Z/mZ–
group; a module over a ring A is an abelian A–group and vice versa; D-groups
studied by G.Baumslag [1] are Q-groups; exponential nilpotent A–groups over
a binomial ring A, introduced by P. Hall [11], are A–groups; an arbitrary
pro-p-group is a Zp–group over the ring of p–adic integers Zp.

The axiomatic approach to exponential groups first appeared in a paper of
R. Lyndon [15]. In his terms, A–groups are those that just satisfy axioms 1)–
3). It turns out that this class of groups is too wide to work with; for example,
as we show below, there are abelian A-groups in Lyndon’s sense which are not
A-modules.

Example 3.1 Let θ be a non–identity automorphism of the ring A, and M a
free A–module with base 〈x, y〉. We can define a new action ∗ of the ring A
on M as follows:

z ∗ α =

{
z · θ(α), z ∈ xA ∪ yA,
z · α, z 6∈ xA ∪ yA.

Then the action ∗ of A on M satisfies axioms 1)–3), but if α0 6= θ(α0), then

(x + y) ∗ α0 = (x + y)α0 6= (x + y)θ(α0) = x ∗ α0 + y ∗ α0,

hence axiom 4) doesn’t hold.

In fact, all the groups that Lyndon actually dealt with in his paper [15]
indeed satisfy axiom 4), i.e., they are A–groups.

Definition 3.2 Let G be an A-group such that the action of A on G is faithful,
i.e., for any nonzero a ∈ A there exists g ∈ G such that ga 6= 1. In this case A
is called a ring of scalars of G.

The following proposition shows that G is a Γ(G)-group and Γ(G) is the
maximal ring of scalars of G.

Proposition 3.1 Let G be a group. Then:
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1. the centroid Γ(G) is a ring of scalars for G; in particular, G is a Γ(G)–
group;

2. Γ(G) is the largest ring of scalars of the group G; i.e., if B is a ring of
scalars of G, then there is a canonical embedding B ↪→ Γ(G).

Proof. For any φ ∈ Γ(G) and g ∈ G we define gφ as the image of g under the
map φ. Notice that this action is faithful. Axioms 1) and 2) hold by the very
definition of addition and multiplication in Γ(G). Axiom 3) holds because all
mappings from Γ(G) are normal, and axiom 4) holds since Γ(G) consists of
quasi-endomorphisms of G. It follows that G is a Γ(G)-group and Γ(G) is a
ring of scalars of G.

If B is a ring of scalars of G, then B acts faithfully on G and we can define
a monomorphism of near-rings Φ : B −→ P (G) where Φ(b) : G −→ G is the
mapping Φ(b) : g → gb. By axioms 3) and 4) the mapping Φ(b) is a normal
quasi-endomorphism, hence Φ(B) ⊂ Γ(G). 2

4 Description of centroids of CSA-groups and

free products of groups

In this section we describe the centroid of an arbitrary CSA–group, which
immediately gives us the structure of centroids of free groups, torsion–free hy-
perbolic groups, and groups acting freely on Λ–trees. Surprisingly, the centroid
of a free non–abelian group F is uncountable: Γ(F ) = Πi<ωZ, the unrestricted
direct product of countably many copies of Z. We then describe the structure
of the centroid of a free product of two groups G and H. It turns out that

Γ(G ∗H) ' Γ(G)× Γ(H)× Πi∈IZ ,

where the set of indices I is described in Theorem 4.2 below.

4.1 Preliminary results

In our study of centroids we will frequently use the following important obser-
vation:

Lemma 4.1 Let G be an A–group. Then for any subset X of G the centralizer
CG(X) is an A-subgroup of G, in particular, it is A–invariant, i.e., for any
a ∈ A

CG(X)a ⊂ CG(X).
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Proof.
For any x ∈ X, y ∈ G, a ∈ A we have

[x, ya] = x−1y−axya = (x−1yx)−aya = (y[y, x])−aya.

So, if [x, y] = 1 then [x, ya] = 1. 2

Now, let us establish an embedding of Γ(G) of an arbitrary group G into
a certain Cartesian product.

Proposition 4.1 Let G be an arbitrary group and let Ci (i ∈ I) be fixed
representatives of the conjugacy classes of the centralizers of all non-trivial
elements in G. Then there exists an embedding

λ : Γ(G) −→ Πi∈IΓ(Ci).

Proof. Let Ci (i ∈ I) be representatives of the conjugacy classes of the central-
izers of all non-trivial elements in G. By Lemma 4.1, all Ci are Γ(G)-invariant,
hence for every φ ∈ Γ(G) the restriction φi of φ to Ci belongs to P (Ci). Each
φi is a normal quasi-endomorphism of Ci, therefore φi ∈ Γ(Ci). Moreover, the
restriction map λi : φ → φi is a homomorphism of rings λi : Γ(G) −→ Γ(Ci).
This gives rise to the diagonal homomorphism

λ : Γ(G) −→ Πi∈IΓ(Ci),

where λ = Πi∈Iλi. We claim that the homomorphism λ is injective. Let
0 6= φ ∈ Γ(G). Then there exists an element g ∈ G such that gφ 6= 1. Now,
some conjugate h−1gh of g belongs to Ci for some i and

gφ = (h(h−1gh))h−1)φ = h(h−1gh)φh−1 = h(h−1gh)φih−1 6= 1.

therefore, (h−1gh)φi 6= 1 and, consequently, φi 6= 0. 2

If all the centralizers Ci in the proposition above are abelian, then Γ(Ci) =
End(Ci) and we have the following

Corollary 4.1 Let G be a group in which all the centralizers of all non-trivial
elements of G are abelian. Then there exists an embedding

λ : Γ(G) −→ Πi∈IEnd(Ci),

where Ci (i ∈ I) are representatives of the conjugacy classes of the centralizers
of all non-trivial elements in G.
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4.2 Centroids of CSA–groups

Definition 4.1 [20] A group G is termed a CSA-group if all maximal abelian
subgroups in G are malnormal.

Recall [14] that a subgroup H in a group G is malnormal if for any g ∈ G
the condition Hg∩H 6= 1 implies g ∈ H. Below we collect some known results
about CSA groups. To do this we need the following

Definition 4.2 Subgroups A and B of a group G are called conjugate sepa-
rated if Ag ∩B = 1 for any g ∈ G.

Proposition 4.2 [20] Let G be a CSA–group. Then the following statements
are true:

1. Any two maximal abelian subgroups of G either coincide or have trivial
intersection;

2. Any two maximal abelian subgroups of G are either conjugate or conju-
gate separated;

3. Commutation is an equivalence relation on the set of all non-trivial ele-
ments of G;

4. The centralizer of any non-trivial element of G is a maximal abelian
subgroup of G; conversely, any maximal abelian subgroup of G 6= 1 is a
centralizer of any of its non-trivial elements.

Now, we are ready to apply Corollary 4.1 to CSA-groups.

Theorem 4.1 Let G be an arbitrary CSA–group. Then

Γ(G) = Πi∈IEnd(Ci),

where Ci (i ∈ I) are representatives of the conjugacy classes of the centralizers
of all non-trivial elements in G.

Proof. Let λ : Γ(G) −→ Πi∈IEnd(Ci) be the embedding from Corollary 4.1.
We claim that λ is onto. Choose an arbitrary φ = Πi∈Iφi ∈ Πi∈IEnd(Ci). Each
such φ acts on Ci as the endomorphism φi, and we can extend this action to
the union

Zi =
⋃

g∈G

Cg
i

of all conjugates of Ci by the rule

(g−1xg)φi = g−1xφig (x ∈ Ci).
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This action is well-defined, since the centralizers of non-trivial elements in G
either coincide or have trivial intersection. Notice that for any i 6= j we have
Zi ∩ Zj = 1, therefore the union

⋃

i∈I

φi = ψ

gives rise to a well-defined mapping on G. From the definition of ψ one can
see that ψ is a normal quasi-endomorphism of G, i.e. ψ ∈ Γ(G). Obviously,
λ(ψ) = φ. 2

Corollary 4.2 1. Let Fn be a free group on n generators. Then

Γ(Fn) = Πi∈IZ ,

where I is an infinite countable set.

2. Let G be a torsion-free hyperbolic group. Then

Γ(G) = Πi∈IZ .

3. Let FA be a free A-group (see [19, 20]) over an associative unitary ring
A of characteristic 0. Then Γ(FA) is an unrestricted Cartesian product
of infinitely many copies of the ring of endomorphisms of the additive
group A+ of the ring A:

Γ(FA) = Πi∈IEndZ(A+),

where I is the set of representatives of the conjugacy classes of the cen-
tralizers of all non-trivial elements in FA.

Proof. In the case of a free group F it suffices to notice that all centralizers
Ci of non-trivial elements in F are infinite cyclic, hence End(Ci) ' Z.

If G is a torsion-free hyperbolic group, then the centralizers of all non-
trivial elements are infinite cyclic [8]. This implies, in particular, that G is a
CSA-group [20]. Now the statement follows from the theorem above.

In the paper [20] the free A-group FA over a ring A was described in terms
of HNN-extensions. It was proved there that FA is a CSA-group, and that the
centralizers of non-trivial elements are isomorphic to the additive group A+ of
the ring A. 2

The following theorem clarifies the structure of the centroids of free prod-
ucts of groups.
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Theorem 4.2 Let G and H be arbitrary groups, then

Γ(G ∗H) = Γ(G)× Γ(H)× ΠZ,

where the unrestricted direct product is taken over all the conjugacy classes of
the centralizers of elements in G ∗H which are not conjugate to an element of
G or H.

Proof. If G or H is trivial then the statement of the theorem is obvious. So
we can assume that both G and H are non-trivial.

We begin by recalling several properties of free products of groups (see
details in [14]).

It follows from the Kurosh Subgroup Theorem that every proper centralizer
in G∗H is either infinite cyclic or conjugate to a centralizer in one of the factors.

From The Conjugacy Theorem for Free Products (see [14]) we have that
G and H are malnormal and conjugate separated in G ∗H.

Let Ci (i ∈ I) be the complete set of representatives of the conjugacy
classes of the centralizers of elements in G ∗H which are not conjugate to an
element of G or H. Notice that if i 6= j then Ci ∩ Cj = 1. Indeed, suppose
Ci = gp(x), Cj = gp(y) and 1 6= z ∈ Ci ∩Cj, then the subgroup gp(x, y) has a
non-trivial center, and hence by the subgroup theorem gp(x, y) is cyclic. That
implies that x and y commute, hence Ci = Cj.

Define a homomorphism of rings

ξ : Γ(G)× Γ(H)× Πi∈IZ −→ Γ(G ∗H)

as follows. Let φ ∈ Γ(G) × Γ(H) × Πi∈IZ. Then φ = (σ, δ, f) where σ ∈
Γ(G), δ ∈ Γ(H), f ∈ Πi∈IZ ( we think of f as a function f : I → Z). Now we
define a mapping ξ(φ) : G∗H → G∗H according to the following three cases.
Take an arbitrary g ∈ G∗H. Then either g is in a conjugate of Ci for some i or
it is conjugate to some element in G or else it is conjugate to some element in
H. Suppose first that g is in a conjugate of some Ci0 . As we mentioned above,
this g does not belong to any other Cj, therefore the number i0 is uniquely
determined by g. In this case put

gξ(φ) = gf(i0).

If g is in a conjugate of G, say g = z−1az, (a ∈ G), then put

gξ(φ) = z−1aσz.

Similarly, if g is in a conjugate of H, say g = z−1bz, (b ∈ H), then define

gξ(φ) = z−1bδz.
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The mapping ξ(φ) is well-defined and by construction it is a normal quasi-
endomorphism, hence ξ(φ) ∈ Γ(G∗H). One can check directly that ξ is a ring
homomorphism.

We claim that ξ is an isomorphism. To show that ξ is onto, consider an
arbitrary mapping ψ ∈ Γ(G ∗ H). For any non-trivial g ∈ G the centralizer
C(g) of g in G∗H is contained in G; since this centralizer is Γ(G∗H)-invariant,
we have that gψ ∈ G, and consequently, Gψ ⊂ G. Thus the restriction ψG of ψ
to G belongs to Γ(G). Similarly, the restriction ψH of ψ to H belongs to Γ(H).
Again, each centralizer Ci is ψ-invariant and cyclic; therefore the restriction
of ψ to Ci acts on Ci as the multiplication by a given integer, say ni. Define
a function fψ : I → Z by fψ(i) = ni. Now, for φ = (ψG, ψH , fψ) we have
ξ(φ) = ψ. Thus ξ is onto.

To show that ξ is a monomorphism consider an arbitrary

φ = (σ, δ, f) ∈ Γ(G)× Γ(H)× ΠZ

and assume that ξ(φ) = 0. Then σ = 0, δ = 0, f = 0, i.e., φ = 0. 2

5 Centroids of nilpotent groups

5.1 Centroids of free nilpotent groups

Let G be a group. By
G = G1 ≥ G2 ≥ . . .

we denote the lower central series of G, here Gi+1 = [Gi, G]. The upper central
series of G is denoted by

1 = Z0(G) ≤ Z1(G) ≤ Z2(G) ≤ . . .

where Zi+1(G) is the preimage in G of the center Z(G/Zi(G)) under the canon-
ical epimorphism G → G/Zi(G). The subgroup Z1(G) is the center of G and
we often write simply Z(G) instead of Z1(G).

We begin with the following lemma.

Lemma 5.1 Let G be an arbitrary group. For every g, h ∈ G, φ ∈ Γ(G) such
that [g, [g, h]] = 1 the following equality holds

[gφ, h] = [g, h]φ.

Proof. Observe that if [g, [g, h]] = 1, then g and h−1gh commute (since h−1gh =
g[g, h]). Therefore,

[gφ, h] = g−φh−1gφh = g−φ(h−1gh)φ = (g−1(h−1gh))φ = [g, h]φ.

2
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Corollary 5.1 Let g, h ∈ G, φ ∈ Γ(G). If [g, h] ∈ Z(G) then

[gφ, h] = [g, hφ] = [g, h]φ.

Corollary 5.2 The following statements are true for an arbitrary group G:

1. Z(G) is a Γ(G)-subgroup of G;

2. Z2(G) is a Γ(G)-subgroup of G.

Proof. If z ∈ Z(G), then [z, g] = 1 for any g ∈ G. Hence by the lemma above
for any φ ∈ Γ(G) we have [zφ, g] = [z, g]φ = 1, therefore zφ ∈ Z(G). This
proves 1).

By definition Z2(G) = {z ∈ G|[z, g] ∈ Z(G) for every g ∈ G}. By the
lemma above for any z ∈ Z2(G), g ∈ G, and φ ∈ Γ(G) we have

[zφ, g] = [z, g]φ ∈ Z(G),

which shows that zφ ∈ Z2(G). 2

From now on we will assume that G is a finitely generated non-abelian free
nilpotent group of class c with basis x1, . . . , xm. in this case Gi = Zc−i+1(G)
for each i = 1, . . . , c and each subgroup Gi is isolated in G, i.e., for any g ∈ G
and any integer n 6= 0, if gn ∈ Gi, then g ∈ Gi.

Notice that every non-trivial element g ∈ G has a unique maximal root in
G, i.e., the unique element g0 ∈ G such that g = gm

0 , where m is the greatest
positive integer for which the equation g = xm has a solution in G.

We presume that the following proposition is known, but we need the proof
to be able to describe centralizers of elements in an arbitrary free nilpotent
R-group at the end of this section.

Proposition 5.1 Let G be a free nilpotent group of class c. If g ∈ Gi−Gi+1,
then

CG(g) = 〈g0〉 ·Gc−i+1,

where g0 is the maximal root of g modulo Gc−i+1 (and g0 = 1 if g ∈ Gc−i+1).

Proof. Let g ∈ Gi − Gi+1, v ∈ Gj − Gj+1, and [g, v] = 1. If j ≥ c − i + 1,
then v ∈ 〈g0〉 · Gc−i+1. Suppose now that j < c − i + 1. Then by corollary
5.12 in [16] the following holds: i = j and for some element w ∈ Gi we
have gGi+1 = wpGi+1 and vGi+1 = wqGi+1. It follows that gqv−p ∈ Gi+1

and still [g, gqv−p] = 1. By the argument above gqv−p ∈ Gc−i+1, and hence
gqGc−i+1 = vpGc−i+1. The nilpotent group G/Gc−i+1 is torsion-free, therefore
the canonical images of the g and v in G/Gc−i+1 are powers of one and the
same element, so they are powers of g0Gc−i+1. This implies that v is a power
of g0 modulo Gc−i+1, as desired.

2
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Lemma 5.2 For every ϕ ∈ Γ(G) there exists nϕ ∈ Z such that

1. if g ∈ G, but g 6∈ G2, then gϕ = gnϕ modulo Z(G);

2. if z ∈ Z(G), then zϕ = znϕ .

Proof. We show first that xϕ
i = xnϕ for every basic element xi. By Proposition

5.1
CG(xi) = 〈xi〉 · Z(G), CG(xixj) = 〈xixj〉 · Z(G)

for every i, j = 1, . . . , m. Fix an arbitrary ϕ ∈ Γ(G). Since centralizers of
elements are Γ(G)-invariant, for every i, j = 1, . . . , m we have:

xϕ
i = xni

i zi, (xixj)
ϕ = (xixj)

nijzij

for some integers ni, nij and some elements zi, zij ∈ Z(G). Let us show that
n1 = ni for all i = 1, . . . , m. Indeed, let

u = [xi, x1, x1, . . . , x1︸ ︷︷ ︸
c−2

].

Then u is a basic commutator of weight c− 1. Then by corollary 5.1

[u, xix1]
ϕ = ([u, xi][u, x1])

ϕ = [u, xi]
ϕ[u, x1]

ϕ = [u, xϕ
i ][u, xϕ

1 ] = (2)

= [u, xni
i ][u, xn1

1 ] = [u, xi]
ni [u, x1]

n1 .

On the other hand,

[u, xix1]
ϕ = [u, (xix1)

ϕ] = [u, (xix1)
ni1 ] = [u, xix1]

ni1 = [u, xi]
ni1 [u, x1]

ni1 . (3)

Since [u, xi] and [u, x1] are basic commutators, we deduce from 2 and 3 that
ni = ni1 = n1. Put nϕ = n1.

The next step is to prove that zϕ = znϕ for every z ∈ Z(G). Since Z(G)
is an abelian group it suffices to show that this equality holds for generators
of Z(G). The center Z(G) is generated by simple commutators of weight c in
the generators x1, . . . , xn. We have

[xi1 , . . . , xic−1 , xic ]
ϕ = [xi1 , . . . , xic−1 , x

ϕ
ic ] = [xi1 , . . . , xic−1 , x

nϕ

ic ] = [xi1 , . . . , xic−1 , xic ]
nϕ ,

which proves the statement.
Now we show that gϕ = gnϕ modulo Z(G) for all elements g in G but

not in G2 which are not proper powers modulo Z(G). By Proposition 5.1,
CG(g) = 〈g〉 · Z(G). Thus, gϕ = gng,ϕzg,ϕ, where ng,ϕ ∈ Z and zg,ϕ ∈ Z(G).
We need to show that ng,ϕ = nϕ. Since g 6∈ G2, there exists an element
u ∈ Z2(G) such that 1 6= [g, u] ∈ Z(G). In this case [g, u]ϕ = [g, u]nϕ . On the
other hand,

[g, u]ϕ = [gϕ, u] = [gng,ϕ , u] = [g, u]ng,ϕ .
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Since the center of a free nilpotent group is a free abelian group, this implies
that ng,ϕ = nϕ.

Now let g ∈ G be an arbitrary element which does not belong to G2. Then
g = gk

0z, where g0 is not a proper power modulo Z(G) and z ∈ Z(G). Then,

(gk
0z)ϕ = (gk

0)
ϕzϕ = (gϕ

0 )kznϕ = (g
nϕ

0 zg0,ϕ)kznϕ = (gk
0z)nϕzk

g0,ϕ,

which completes the proof of the lemma. 2

Definition 5.1 Let
I = {ϕ ∈ Γ(G) | nϕ = 0}.

The center Z(G) is a Γ(G)-subgroup of G, hence for every φ ∈ Γ(G) the
restriction φ∗ of φ to Z(G) belongs to Γ(Z(G)). Denote by

τ : Γ(G) −→ Γ(Z(G))

the corresponding ring homomorphism τ(φ) = φ∗. The definition above implies
that I = ker(τ).

Notice that every integer n gives rise to a mapping ψn : g → gn which
belongs to Γ(G). We will identify the ring of integers Z with the corresponding
subring in Γ(G) under the embedding n → ψn. Now we can formulate the
following

Lemma 5.3 I is an ideal in Γ(G) and Γ(G) ' Z
⊕

I.

Proof. We have mentioned already that I = ker(τ), hence I is an ideal in
Γ(G). So we need only to prove that Γ(G) ' Z

⊕
I.

By definition, ϕ ∈ I if and only if nϕ = 0, so Z∩ I = 0. Let ϕ ∈ Γ(G) and
z ∈ Z(G). Then

zϕ−nϕ = znϕ · z−nϕ = 1.

Therefore ϕ− nφ ∈ I, and Γ(G) = Z
⊕

I. 2

Lemma 5.4 Let g be an arbitrary element from Gi such that g 6∈ Gi+1. Then
the following hold:

1. if i ≥ c/2, then gϕ = gnϕ modulo Gi+1;

2. if i < c/2 then gϕ = gnϕ modulo Gc−i+1.

Proof. We prove the first part of this lemma by induction on i. If i = c,
then the statement holds by Lemma 5.2, part 2. Let i ≥ c/2 and let g be
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an arbitrary element from Gi which does not belong to Gi+1. Then for every
x ∈ G we have [g, x] ∈ Gi+1 and hence by induction

[g, x]ϕ = [g, x]nϕ modulo Gi+2.

Observe that g−1 commutes with x−1gx since

[g−1, x−1gx] = [g−1, [g, x]] ∈ G2i+1 ⊂ Gc+1 = 1.

Therefore

[g, x]ϕ = (g−1x−1gx)ϕ = g−ϕ(x−1gx)ϕ = g−ϕx−1gϕx = [gϕ, x].

This implies that

[gϕ, x] = [g, x]ϕ = [gnϕ , x] modulo Gi+1.

Thus, for any x ∈ G we have [gφ−nϕ , x] ∈ Gi+2, and consequently, gφ−nϕ ∈
Gi+1. Part 1 of the lemma follows.

Now, let us prove part 2. Suppose i < c/2. For any x ∈ Gc−i we have
[g, x] ∈ Z(G), so

[gϕ−nϕ , x] = [g, x]ϕ−nϕ = 1.

This implies that gϕ−nϕ ∈ Gi+1. Observe that [g, gϕ−nϕ ] = 1 , hence by
Proposition 5.1 we have

gϕ−nϕ ∈ Gi+1 ∩ CG(g) = Gc−i+1

(we used here that i < c/2 and hence i + 1 < c− i + 1). 2

Corollary 5.3 Let G be a free nilpotent group of finite rank. Then Zi(G) is
Γ(G)-invariant for each i.

Theorem 5.1 If G is a non-abelian free nilpotent group of class c, then Γ(G) =
Z

⊕
I, and Id = 0, where d is the smallest integer such that d > c/2.

Proof. This theorem follows directly from Lemma 5.3 and Lemma 5.4. 2

Analyzing the proof of the theorem above, one can see that the argument
works also for free nilpotent R-groups in the sense of P. Hall [11]. Recall that
an integral (commutative) domain R of characteristic 0 is termed a binomial
domain if for any r ∈ R and n > 0 the equation

r(r − 1) . . . (r − n + 1) = n!x

has a solution in R. Now, following P.Hall [11] we describe the R-completion
GR of an arbitrary torsion-free finitely generated nilpotent group G.
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An ordered set of elements a1, . . . , an ∈ G is called a Mal’cev basis for G if
every element g of G can be uniquely expressed in the form

g = a
t1(g)
1 . . . atn(g)

n ,

where t1(g), . . . , tn(g) ∈ Z and the subgroups Gi = < ai, . . . , an > form a
central series

G = G1 ≥ G2 ≥ . . .

in the group G. The numbers ti(g)’s are called the coordinates of g with respect
to the given basis a1, . . . , an.

A. Mal’cev [17] proved that such basis exists in every torsion-free nilpo-
tent group G (see also [11]). Moreover, he proved that the multiplication
and exponentiation in G can be defined coordinate-wise by some polynomials
fi(x1, . . . , xn, y1, . . . , yn) and hi(x1, . . . , xn, y1, . . . , yn) (i = 1, . . . , n) with ra-
tional coefficients. Namely, for any elements u, v ∈ G and an integer λ the
following holds for each i = 1, . . . , n

ti(uv) = fi(t1(u), . . . , tn(u), t1(v), . . . , tn(v)), (4)

ti(u
λ) = hi(t1(u), . . . , tn(u), λ). (5)

Now let
GR = {ar1

1 . . . arn
n |ri ∈ R},

where ar1
1 . . . arn

n is just a formal product of this type.
If u = ar1

1 . . . arn
n ∈ GR, then elements ti(u) = ri ∈ R (i = 1, . . . , n) are

called coordinates of u. Now we can define multiplication and R-exponentiation
on GR by the formulas (4) and (5) (assuming in the latter that λ is an arbitrary
element in R). This turns GR into a nilpotent R-group. Notice that if N is a
free nilpotent group of class c with basis x1, . . . , xm, then NR is a free nilpotent
R-group (in the P.Hall category of nilpotent R-groups) of class c and with basis
x1, . . . , xm.

Analogues of Proposition 5.1 and Lemmas 5.2, 5.3 and 5.4 also hold for
the free nilpotent R-group G = NR. To explain this, denote by F the field
of fractions of the integral domain R. It follows from the P.Hall construction
above that G = NR canonically embeds into H = NF . The same argument as
above implies that if g ∈ Hi −Hi+1 then

CH(g) =< g >F Hc−i+1.

This translates into the group G = NR as follows: if g ∈ Gi − Gi+1 and
[g, u] = 1, then either u ∈ Gc−i+1 or gαGc−i+1 = uβGc−i+1 for some α, β ∈ R.
Observe that another way to prove this is to use Mal’cev’s correspondence
between free nilpotent F -groups and free nilpotent Lie F -algebras (see for
example [26]).
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Now, the argument in Lemmas 5.3 and 5.4 goes through without any
changes. Let us show how to prove the analogue of Lemma 5.2. To formulate
the analogue one needs just to replace nϕ ∈ Z by nϕ ∈ R. Then the first part
of the proof (i.e., ni = n1 = nϕ for all i) works readily for the analog. To
prove that zϕ = znϕ , observe that the argument in the lemma holds if we can
prove that each ϕ ∈ Γ(G) acts on Z(G) as an R-endomorphism. To show
this it suffices to prove that ϕ acts as an R-homomorphism on R-generators
of Z(G), for example, on all simple commutators of weight c in the generators
x1, . . . , xn. Now for any r ∈ R the following holds:

([xi1 , . . . , xic−1 , xic ]
r)ϕ = [xi1 , . . . , x

r
ic−1

, xic ]
ϕ = [xi1 , . . . , x

r
ic−1

, xϕ
ic ] =

[xi1 , . . . , xic−1 , x
ϕ
ic ]

r = ([xi1 , . . . , xic−1 , xic ]
ϕ)r,

which proves the statement and the second part of the lemma. To finish the
proof, let us consider an arbitrary g ∈ G−G2. Since the centralizer of g in G
is invariant under Γ(G), we have that

(gϕ)α = gβz

for some α, β ∈ R and z ∈ Z(G). Since g 6∈ G2, there exists an element
u ∈ Z2(G) such that 1 6= [g, uα] ∈ Z(G). In this case

[g, uα]ϕ = [g, uα]nϕ = [gnϕ , uα] = [g, u]nϕα.

On the other hand,

[g, uα]ϕ = [gϕ, uα] = [(gϕ)α, u] = [gβ, u] = [g, u]β.

Since the center of a free nilpotent R-group is a free abelian R-group (i.e., free
R-module), this implies that αnϕ = β. But then

(gϕ)α = gβz = (gnϕ)αz

and since R-roots are unique in the quotient group G/Z(G) we have gϕ =
gnϕ modulo Z(G), as desired. This finishes the proof of the lemma.

Summarizing the discussion above, we have the following result.

Theorem 5.2 Let R be a binomial domain and G a finitely generated non-
abelian free nilpotent group of class c. Then Γ(GR) = R

⊕
I, and Id = 0, where

d is the smallest integer such that d > c/2.
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5.2 Centroid of UTn(R)

Now we will prove that the centroid of G = UTn(Z), n ≥ 3, has a structure
similar to the structure of the centroid of a finitely generated free nilpotent
group.

By tij, i < j we denote the elements of G having 1’s on the main diagonal
and in column j of row i, and 0’s everywhere else.

The center of G is the cyclic group generated by t1n. Since the center of
G is Γ-invariant, we can define a ring homomorphism τ : Γ(G) → Z, ϕ 7→ nϕ,
where nϕ ∈ Z is such that tϕ1n = t

nϕ

1n .
Note that any integer n can be viewed as an element of Γ(G): n takes

elements to their nth power.

Lemma 5.5 Γ(G) ' Z
⊕

I, where I = ker(τ) ¢ Γ(G).

Proof. Any ϕ ∈ Γ(G) can be written uniquely in the form ϕ = nϕ + (ϕ− nϕ),
where nϕ ∈ Z and ϕ− nϕ ∈ I. Also, it is easy to see that Z ∩ I = {0}, which
completes the proof. 2

Lemma 5.6 In = 0.

Proof. The elements tij constitute a Mal’cev basis for G, and every element
g ∈ G can be written uniquely in the form: g = tα12

12 tα23
23 . . . tα1n

1n . Let us fix
an arbitrary element ϕ ∈ I and write the image of g under ϕ in the form:
gϕ = tβ12

12 tβ23
23 . . . tβ1n

1n . We will prove the lemma by showing that if αij = 0 for
all j : 1 < j < N and for all i : 1 ≤ i < j, then βij = 0 for all j : 1 < j ≤ N
and for all i : 1 ≤ i < j.

Before we begin the proof, let us point out the following useful identity:

[ab, c] = [a, c]b[b, c] = [a, c][a, c, b][b, c] (6)

First, let us assume that α12 6= 0. We can think of g as g = ab, where
a = tα12

12 and b = tα23
23 tα34

34 · · · tα1n
1n . Then, using identity 6,

[g, t2n] = [tα12
12 , t2n]b[b, t2n]

Since all factors t
αij

ij in b are such that i < n and j > 2, we have [b, t2n] = 1, so

[g, t2n] = [tα12
12 , t2n]b = ([t12, t2n]α12)b = (tα12

1n )b,

but tα12
1n ∈ Z(G), hence [g, t2n] = tα12

1n ∈ Z(G). Then by Lemma 5.1 1 =
[g, t2n]ϕ = [gϕ, t2n] = tβ12

1n , which implies β12 = 0.
Suppose now that αij = 0 for all j with 1 < j < N and all i with 1 ≤ i < j.

For j and i as above, we will prove by induction on j that βij = 0. By the
induction hypothesis, βik = 0 for all k < j, i < k.
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Since all αij = 0 for j < N , we have 1 = [g, tjn], and therefore 1 =
[g, tjn]ϕ = [gϕ, tjn].

Write gϕ in terms of the Mal’cev basis: gϕ = tβ12
12 tβ23

23 · · · tβ1n
1n . By the

induction hypothesis, the first non-trivial term in this product is t
βj−1,j

j−1,j ; let us
denote it by a1 and the rest of the product by b1. Then by the second part of
identity 6, we have

1 = t
βj−1,j

j−1,n [t
βj−1,j

j−1,n , b1][b1, tjn]

Note that the second factor vanishes due to the fact that b1 does not contain
tik with k < j by the induction hypothesis. Thus we simply have

1 = t
βj−1,j

j−1,n [b1, tjn].

We now turn our attention to the commutator [b1, tjn]. Write b1 = a2tj−2,jb2,
where a2 commutes with tjn.

Using identity 6 again, we see that

[b1, tjn] = [tj−2,jb2, tjn] = t
βj−2,j

j−2,n [t
βj−2,j

j−2,n , b2][b2, tjn] = t
βj−2,j

j−2,n [b2, tjn]

by the same argument as before. This yields

1 = t
βj−1,j

j−1,n t
βj−2,j

j−2,n [b2, tjn]

Proceeding in the same fashion, we obtain

1 = t
βj−1,j

j−1,n t
βj−2,j

j−2,n · · · tβ1,j
1,n .

Because the elements tij constitute a Mal’cev basis for G, this implies that
βij = 0 for all i < j < N .

Note that [g, tNn] = t
βN−1 N

N−1 n t
βN−2 N

N−2 n tβ1N
1n . Moreover, [t1j, [g, tNn]] = t

αjN

1n ∈
Z(G). Since [g, [g, tNn]] = 1, by Lemma 5.1 we have 1 = [t1j, [g, tNn]]ϕ =

[t1j, [g
ϕ, tNn]] = t

βjN

1n . Therefore, βjN = 0 for every j < N . This concludes the
proof of the lemma. 2

Theorem 5.3 If G = UTn(Z), then Γ(G) = Z
⊕

I, and In = 0.

Proof. This theorem follows directly from lemmas 5.5 and 5.6. 2

It is easy to see that lemmas 5.5 and 5.6 continue to be valid if we replace
the ring of integers Z by an arbitrary associative ring R of characteristic 0 (the
same argument). This allows us to formulate the following theorem:

Theorem 5.4 If G = UTn(R), then Γ(G) = R
⊕

I, and In = 0.
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6 The rigidity problem

Definition 6.1 A torsion-free nilpotent group G is called rigid if GR ' GS

implies R ' S for any two binomial domains R and S of characteristic 0.

In [10] F.Grunewald and D.Segal proved that UTn(Z) (n ≥ 3) is rigid, and
formulated the following problem:

Problem 6.1 Is a finitely generated non-abelian free nilpotent group N rigid?

Using the structure of the centroid of the free nilpotent R-group NR ob-
tained in the previous section, we can answer this question affirmatively.

Theorem 6.1 Every finitely generated non-abelian free nilpotent group N is
rigid.

Proof. Suppose that NR ' NS. Then their centroids are also isomorphic,
so Γ(NR) ' Γ(NS), and from our description of centroids we obtain that
R⊕ I1 ' S ⊕ I2, where I1 and I2 are as in Theorem 5.2.

We now claim that I1 is an ideal containing all nilpotent elements in Γ(NR).
Indeed, all elements of I1 are nilpotent by Theorem 5.4. If r ∈ R, r 6= 0, then
(r+ i)n = rn +j 6= 0, since rn 6= 0. Similarly, I2 contains all nilpotent elements
of Γ(NS).

Denote by f the isomorphism between R⊕ I1 and S ⊕ I2. Since the image
of a nilpotent element under f is again nilpotent, f(I1) = I2. Therefore, f
induces an isomorphism f̄ : R⊕ I1/I1 −→ S ⊕ I2/I2, that implies R ' S. 2

Finally, we observe that according to Theorem 5.4, the centroid of the
group UTn(R) is isomorphic to R⊕ I, where I is a nilpotent ideal. Moreover,
UTn(Z)R ' UTn(R). Thus our method offers an alternative proof of the fact
that UTn(Z) is rigid for every n ≥ 3.
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