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Abstract

We prove here that there is an algorithm whereby one can decide
whether or not any finitely generated subgroup of a finitely generated free
group is malnormal.

1 Introduction

If H is a finitely generated subgroup of a finitely generated free group F then it
is well-known that there is an algorithm whereby one can decide whether or not
any element of F is contained in H, i.e., the generalized word problem is decid-
able for finitely generated free groups. There are a number of other problems
involving finitely generated subgroups of finitely generated free groups that are
also algorithmically solvable; for example, whether a given finitely generated
subgroup is of finite index, whether a pair of finitely generated subgroups are
conjugate, whether there is an automorphism of the ambient free group which
maps onefinitely generated subgroup onto another. There is an algorithms which
compute the normalizer of a finitely generated subgroup and the (finitely gen-
erated) intersection of two finitely generated subgroups, of a finitely generated
free group. Proofs of these results and related references are contained in the
book by Lyndon and Schupp [3].

It follows immediately from the fact that the generalised word problem is
solvable in a finitely generated free group that there is an algorithm whereby
one can decide whether or not any finitely generated subgroup is normal. The
purpose of this note is to add one more positive result to this list, which should
be compared with the preceding remark, by proving the following

Theorem 1 There is an algorithm whereby one can decide whether or not a
finitely generated subgroup of a free group is malnormal.

We recall that a subgroup H of a group G is termed malnormal if g−1Hg∩H = 1
whenever g ∈ G, g /∈ H.

The existence or otherwise of the above algorithm was proposed to us a few
years ago by a number of our colleagues and has since been programmed by D.
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Serbin in Omsk and added to the algorithms in the software package MAGNUS
[4]. In part the interest in malnormality stems from the fact that if

G = {A ? B;H}

is an amalgamated product of two finitely generated free groups A and B with
a finitely generated subgroup H amalgamated, then G is hyperbolic if either
H is a malnormal subgroup of A or if H is a malnormal subgroup of B [2].
Malnormality also enters into the the study of certain one-relator groups, where
the question as to whether such one-relator groups are automatic hinges on the
malnormality of certain subgroups of free groups [1].

2 The proof of the theorem

We shall have need of the following definition.

Definition 1 Let G be a group and let H be a subgroup of G. We term g ∈ G
potentially H-normalizing, or simply pn in the event that H is understood, if

g 6∈ H and g−1Hg ∩H 6= 1

We denote the set of all potentially H-normalizing elements by pn(H), which
we refer to as the potential normalizer of H.

It follows that H is malnormal in G if pn(H) = φ.
The following simple lemma will be useful in the proof of the theorem.

Lemma 1
H.pn(H).H ⊆ pn(H).

The proof is straightforward. For suppose that g is pn. Then there exists an
element h ∈ H,h 6= 1 such that g−1hg = h1 ∈ H. So if u, v ∈ H we have

(ugv)−1(uhu−1)ugv = v−1h1v ∈ H,

which completes the proof.
The proof of Theorem 1 will be divided up into four lemmas, the last of

which demonstrates that malnormality of finitely generated subgroups of free
groups is decidable.

We will need to make use of a so-called Nielsen set of generators of a subgroup
of a free group. In order to explain, let F be a free group, freely generated by
the set X. As usual, every element f ∈ F, f 6= 1 can be written uniquely as a
reduced X-word. We denote the number of elements of X ∪X−1 occurring in f
by `X(f), which we refer to as the X-length of f . If g ∈ F, g 6= 1, then we write

f ◦ g
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in order to express the fact that the X-word fg is reduced as written, i.e., that
there is no cancellation on computing the reduced form of the product fg. Now
let H be a subgroup of F . Then there exists a set Y of free generators of H,
termed a Nielsen set of generators, with the following properties:

1. each y ∈ Y can be written in the form

y = y′ ◦ µ(y) ◦ y′′

where y′ and y′′ are reduced X-words, µ(y) is an element of X ∪X−1 and

| `X(y′)− `X(y′′ |≤ 1.

2. If y and y1 are distinct elements of Y , then the letters µ(y)±1 and µ(y1)±1

do not cancel on computing the reduced form of y±1y±1
1 .

This letter µ(y) is called the middle or, more usually, the central letter of y ∈
Y ∪ Y −1.

We begin with the proof of

Lemma 2 Let f be an element in F , which is pn and of minimal length in
HfH. If

fhf−1 = h1 (h, h1 ∈ H,h 6= 1),

then at least one of the letters of h appears in the reduced form of fhf−1, i.e.,
in h1.

Proof. Suppose that all of h cancels in fhf−1. Since, f is of minimal length in
pn(H), f cannot end in h−1. Consequently, h cancels partly with f and also
with f−1. Hence, h can be written in the form h = u ◦ v ◦ u−1, f = f1u

−1 with
u of maximal possible length. Then fhf−1 = f1vf−1

1 and v cancels completely
with either f1 or f−1

1 . Suppose, f1 = f2v
−1. Then f = f1u

−1 = f2v
−1u−1.

Now `X(v−1u−1) > 1
2`X(h), which implies that `X(fh) < `X(f), contradicting

the choice of f at the outset.
We will adopt the notation introduced in Lemma 2 throughout the rest of

this note without further mention.
Next we prove the

Lemma 3 Suppose f is of minimal length in fH and that h = a1 . . . an (ai ∈
Y ∪ Y −1) is a reduced Y -product. Then either the central letter of a1 remains
in

fa1 . . . aj . . . an (1)

and in this case the cancellation with f in fh is exactly that of f in fa1; or the
central letter µ(a1) cancels in the product 1, and in this case a1 is of even length
and exactly half of a1 cancels with f .
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The proof follows immediately from the fact that f is minimal in fH and from
the properties of a Nielsen set of generators.

We come next to the the third lemma needed to prove Theorem 1.

Lemma 4 Let m be the number of elements in Y . Suppose that f is of minimal
length in the coset fH and that a1 . . . an (ai ∈ Y ∪Y −1) is a reduced Y -product.
Furthermore, suppose that the central letter of aj cancels in the product

fa1 . . . aj . . . an (j < n) (2)

but that the central letter of aj+1 does not. Then

1. j ≤ m;

2. for any k = 1, . . . , j the length `X(ak) is even and µ(ak) cancels in 2;

3. for any k = 1, . . . , j − 1 exactly the right half a′′k of ak cancels completely
in akak+1;

4. `X(a1) < . . . < `X(aj);

5. if the right half of aj does not cancel completely with aj+1, then

a1 . . . aj−1a
′
jµ(aj)

is precisely the part of a1 . . . an that cancels with f and

`X(a1 . . . aj−1a
′
jµ(aj)) =

1
2
`X(aj);

6. if the right half of aj does cancel with aj+1, then a1 . . . ajp, where p is
an initial segment of aj+1 of length at most half that of aj+1 and at least
half of that of aj, is precisely the part of a1 . . . an that cancels with f and
`X(a1 . . . ajp) ≤ 1

2`X(aj+1).

Proof. Since the central letter of a1 cancels, it follows from Lemma 3, that
the length of a1 is even, that the first half of a1 cancels with f and hence
f1 = fa1 has the same length as f and ends with a′′1 . In particular, f1 is of
minimal length in f1H(= fH). If the right half of a1 does not cancel completely
with a2, then the cancellation with f is exactly that of a1 with f , which as we
noted before, is a′1 - the left half of a1. In this event j = 1, (1), (2), (3) hold,
(4) does not apply. Suppose next that j > 1 and consider f1 in the place of f .
Then it follows, by induction on j, that

`X(a2) < `X(a3) < . . . `X(aj)

.
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Now f1 ends with a′′1 and by Lemma 3, not more then half of a2 cancels with
f1. Since a′′1 must cancel in f1a2, `X(a1) < `X(a2). So, (2) holds. (3) and (4)
follows again immediately by induction on j. Finally, (1) follows immediately
from (2). This completes the proof of Lemma 4.

Finally we prove

Lemma 5 Suppose that

c1 . . . cmfa1 . . . anf−1 = 1,

where ci, aj ∈ Y ∪ Y −1, and f is of minimal length in HfH. Then there exists
f ′ ∈ HfH of the same length as f which is a product of two pieces of generators
from Y ∪ Y −1.

We have already noted that not all of a1 . . . am cancels on forming fa1 . . . amf−1.
Therefore, f must cancel completely in the product

c1 . . . cmfa1 . . . an

.

1. f cancels completely in fa1 . . . am. By Lemma 3, there exists j ≤ n such
that f ′ = fa1 . . . aj−1 has the same length as f and f ′ cancels completely
into a′jµ(aj) which must be of even length. So f ′ is a piece of aj and
satisfies the derived conclusion.

2. Suppose f does not cancel completely in fa1 . . . an. Then choosing j as
before, put

f1 = fa1 . . . aj−1.

Then f1 cancels with not more then half of aj , say, bj . This f1 ends with
a piece of aj . So

f1f2 ◦ p

and f2 cancels completely on forming c1 . . . cmf1. There exists an i such
that µ(ci) cancels but µ(ci−1 does not. Then f ′1 = cici+1 . . . cmf1 has the
same length as f1. Then f ′1 cancels completely on forming

ci−1f
′
1aj

But by Lemma 4 no more than half of ci−1 nor more than half of aj cancel.
Therefore f ′1 is a product of a piece of ci−1 and a piece of aj and both
pieces are respectively of length at most one half of ci−1 and aj .

This completes of Lemma 5.
As noted earlier, Theorem 1 is a consequence of Lemma 5.

5



3 Examples

We illustrate Theorem 1 by giving here two examples. The first of these is

Example 1 The subgroup H of the free group F on a, b generated by

[a, b], [a2, b2], [a3, b3], [a4, b4], [a5, b5], [a6, b6], [a7, b7], [a8, b8], [a9, b9], [a10, b10]

is malnormal in F .

The determined reader can check the truth of this assertion by following out
the steps in the proof of the theorem.

By way of contrast, we have analogously, the

Example 2 The subgroup of F generated by

ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, a10b10

is not malnormal.

Again, the determined reader can verify the truth of this assertion by hand.
There is an easier method for verifying both of the above assertions, namely

to make use fo the software package MAGNUS [4] that is under development at
the Mathematics Department of the City College of the City University of New
York.
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