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Abstract

An algebraic set over a group G is the set of all solutions of some
system {f(x1, . . . , xn) = 1 | f ∈ G ∗ 〈x1, . . . , xn〉} of equations over
G. A group G is equationally noetherian if every algebraic set over G
is the set of all solutions of a finite subsystem of the given one. We
prove that a virtually equationally noetherian group is equationally
noetherian and that the quotient of an equationally noetherian group
by a normal subgroup which is a finite union of algebraic sets, is
again equationally noetherian. On the other hand, the wreath product
W = U o T of a non-abelian group U and an infinite group T is not
equationally noetherian.

∗The research of this author was partially supported by the NSF, grant DMS-9103098
†The research of this author was partially supported by the NSF, grant DMS-9103098
‡The research of this author was partially supported by the RFFI, grant 95-01-00513

1



Equationally noetherian groups 2

1 Introduction

Let G be a group, let Fn be the free group, freely generated by x1, . . . , xn

and let
G[x1, . . . , xn] = G ∗ Fn

be the free product of G and Fn. We use functional notation here, denoting
an element f ∈G[x1, . . . , xn] by

f = f(x1, . . . , xn) = f(x1, . . . , xn, g1, . . . , gm) (1)

thereby expressing the fact that word representing f in G[x1, . . . , xn] involves
the variables x1, . . . , xn and, as needed, the constants g1, . . . , gm ∈ G. We
term

v = (v1, . . . , vn) (vi ∈ G) (2)

a root of f if
f(v) = f(v1, . . . , vn, g1, . . . , gm) = 1.

If S is a subset of G[x1, . . . , xn] then v is said to be a root of S if it is a root
of every f ∈ S. Let S be a subset of G[x1, . . . , xn] . The algebraic set over
G defined by S, or, more simply, the algebraic set defined by S, is then, by
definition, the set V (S) of all roots of S:

V (S) = {v = (v1, . . . , vn) | vi ∈ G, f(v) = 1, for all f ∈ S}.

We term the group G equationally noetherian if for every choice of the integer
n and every subset S of G[x1, . . . , xn]

V (S) = V (S0),

where S0 is a finite subset of S. If there is any ambiguity as to which group G
is involved in any algebraic set under consideration, then we use the notation
VG(S) to emphasise the fact that the algebraic set is over G. These notions
are introduced and studied in Baumslag, Miasnikov and Remeslennikov [1]
(see also [2]).

The object of this note is to prove the following two theorems.

Theorem 1 Let G be a group and suppose that G contains a subgroup H
of finite index which is equationally noetherian. Then G is also equationally
noetherian.
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Theorem 1 answers a question raised by Roger Bryant [3].

Theorem 2 Let G be equationally noetherian and let N be a normal sub-
group of G which is a finite union of algebraic sets over G. Then G/N is
also equationally noetherian.

Every singleton of a group G is an algebraic set. So it follows, in particular,
that the quotient of an equationally noetherian group by a finite normal
subgroup is again equationally noetherian. In addition, it follows also that
the quotient of a noetherian group by a normal subgroup which is an algebraic
set, is equationally noetherian. Now the center ζ(G) group G is the set of
roots of the system of equations

S = {[g, x] | g ∈ G}.

Consequently ζ(G) is an algebraic set. So, by Theorem 2, we find

Corollary 1 If G is equationally noetherian, then so too is G/ζ(G).

The converse of Corollary 1 is false. We shall give an appropriate example
in section 4. In fact groups which are not equationally noetherian are not
hard to come by. A whole family of them is provided by the

Proposition 1 Let U be any non-abelian group and let T be infinite. Then
the wreath product W = U o T is not equationally noetherian.

Some additional examples are described in section 4, one of which settles
another question of Roger Bryant [3].

2 The proof of Theorem 1

We recall first from [1] that every subgroup of an equationally noetherian
group is equationally noetherian. So, replacing H by the intersection of its
finitely many conjugates in G, we can assume that H is normal. Now G
embeds in the wreath product W = H o T , where T = G/H (see, e.g., [4]).
W is the semidirect product of T and the direct product of | T | copies of H.
Now the direct product of a finite number of equationally noetherian groups
is equationally noetherian [1] and, as noted above, subgroups of equationally
noetherian groups are equationally noetherian. Thus it suffices to prove that
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a group which splits over an equationally normal subgroup of finite index is
again equationally noetherian. So we can assume that G is of the form

G = TH (T finite, H normal in G, T ∩H = 1).

Notice then that every element g ∈ G can be uniquely written in the form
g = ta (t ∈ T, a ∈ H). Suppose that v ∈ Gn. Then v can be expressed as

v = (s1a1, . . . , snan) (si ∈ T, ai ∈ H) (3)

Consider now a word f ∈ G[x1, . . . , xn] (see (1)). If gi = ribi (ri ∈ T, bi ∈
H (i = 1, . . . , m)), then

f(v) = f(s1a1, . . . , snan, r1b1, . . . , rmbm)

We re-express f(v) in the form ta by successively moving the various occur-
rences of the elements of T across to the left of the word, starting with those
elements which occur furthest to the left. If we keep track of the words that
result from this process, we see first that

t = f̄(s1, . . . , sn),

where f̄(x1, . . . , xn) = f(x1, . . . , xn, r1, . . . , rm) is obtained from f(x1, . . . , xn)
by replacing each of the constants gi = ribi in f by the constants ri. In
particular, f̄(x1, . . . , xn) ∈ T [x1, . . . , xn]. We need to elaborate on the form
that we concoct for a. Suppose, first of all, that T = {t1 = 1, . . . , t`}. We
then put

aj
i = t−1

j aitj (i = 1, . . . , n, j = 1, . . . , `)

and introduce n` variables yj
i (i = 1, . . . , n, j = 1, . . . , `) in a one-to-one

correspondence with the set of aj
i . Consider now what happens when we

start moving the elements of T across to the left hand side of

f(s1a1, . . . , snan, r1b1, . . . , rmam).

Every time we move an element of t ∈ T past a bi we replace it by t−1bit ∈ H.
The first time we move an element tj ∈ T past an ai, we replace ai by aj

i . If
we next have to move tk past aj

i , then we replace aj
i by ap

i , where tp = tjtk.
At the end of this process, we replace all occurrences of the ai which have
not been changed, by ai

1.
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The net result of this discussion is that we have defined a word, depending
on f and v

f ′v ∈ H[y1
1, . . . , y

`
1, . . . , y

1
n, . . . , y`

n],

which has the form

f ′v = f ′(y1
1, . . . , y

`
1, . . . , y

1
n, . . . , y

`
n, c1, . . . , cm`) (cj ∈ H)

such that
a = f ′v(a

1
1, . . . , a

`
1, . . . , a

1
n, . . . , a`

n, c1, . . . , cm`)

(Notice that we have taken advantage of the fact that the conjugates ck of
the bi that arise from the right-to-left collecting process are contained in the
set of all of the conjugates of the elements b1, . . . , bm by all of the elements
of T ).

We have also defined an n`-tuple

v′ = (a1
1, . . . , a

`
1, . . . , a

1
n, . . . , a`

n) ∈ Hn`,

which depends only on v. If we think of v ∈ Gn as given and the elements of
G[x1, . . . , xn] as variables, then v gives rise to the function

d

dv
: f 7→ f ′v (f ∈ G[x, . . . , xn]).

Observe that d
dv

maps G[x1, . . . , xn] into H[y1
1, . . . , y

`
1, . . . , y

1
n, . . . , y

`
n].

For v = (s1a1, . . . , snan), where si ∈ T, ai ∈ H, we define

λ(v) = (s1, . . . , sn).

Now we can summarise some of the discussion above as

Lemma 1

f(v) = f̄(s1, . . . , sn)f ′v(a
1
1, . . . , a

`
1, . . . , a

1
n, . . . , a

`
n, c1, . . . , cm`)

i.e.,
f(v) = f(λ(v))f ′v(v

′).

If we review the way in which f ′v is defined, then we find that

Lemma 2 The word f ′v depends only on λ(v).
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We will adopt the notation

f ′v =
df

dv
=

df

dλ(v)

which is unambiguous, in view of Lemma 2. It follows then from Lemma 1
that

Lemma 3 Let f ∈ G[x1, . . . , xn] and let v ∈ Gn. Then v is a root of f if
and only if λ(v) is a root of f̄ and v′ is a root of df

dλ(v)
.

We come now to the proof of Theorem 1. To this end, suppose that S is
a subset of G[x1, . . . , xn] and V (S) is the variety defined by S.

According to Lemma 3 for any v ∈ Gn we have

v ∈ VG(S) ⇐⇒ λ(v) ∈ VT (S̄) & v′ ∈ VH(
dS

dλ(v)
), (4)

where here
S̄ = {f̄ | f ∈ S} ⊆ T [x1, . . . , xn]},

dS

dλ(v)
= { df

dλ(v)
| f ∈ S} ⊆ H[x1, . . . , xn`]}.

A finite group T is equationally noetherian [1]; hence VT (S̄) = VT (S̄0) for
some finite subset S0 ⊆ S. The group H is also equationally noetherian, so
for every λ ∈ VT (S̄) there exists a finite subset Rλ ⊆ S such that

VH(
dRλ

dλ
) = VH(

dS

dλ
). (5)

Put
S1 =

⋃{Rλ | λ ∈ VT (S̄)}.
S1 is a finite subset of S because VT (S̄) is finite. We claim that VG(S) =
VG(S0 ∪ S1). Indeed, if v ∈ VG(S0 ∪ S1), then by Lemma 3

λ(v) ∈ VT (S̄0) = VT (S̄), (6)

and hence v ∈ VG(Rλ(v)) by the choice of S1. It follows, again by Lemma 3,
that

v′ ∈ VH(
dRλ(v)

dλ(v)
) = VH(

dS

dλ(v)
). (7)

Now, from (6), (7) and (5) we see that v ∈ VG(S). The reverse inclusion
VG(S0 ∪ S1) ⊆ VG(S) is obvious. This completes the proof of Theorem 1.
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3 The proof of Theorem 2

Our objective now is to prove that if G is an equationally noetherian group
and if N is a normal subgroup of G that is a finite union of algebraic sets
in G, then H = G/N is equationally noetherian. Suppose that H is not
equationally noetherian. Then there exists an integer n and a subset S of
H[x1, . . . , xn] such that

VH(S) 6= VH(S0)

for every finite subset S0 of S. Let f0 be any arbitrarily chosen element of
S. Then

VH(S) 6= VH(f0).

So there exists v1 ∈ VH(f0) and an element f1 ∈ S such that f1(v1) 6= 1.
Similarly,

VH(S) 6= VH(f0, f1).

Hence there exists v2 ∈ VH(f0, f1) and an element f2 ∈ S, such that f2(v2) 6=
1. In this way we concoct an infinite sequence f0, f1, f2, . . . of elements of S
and an infinite sequence v1, v2, . . . of elements of Hn, such that

vi ∈ VH(f1, . . . , fi−1) and fi(vi) 6= 1 in H. (8)

Notice that, in particular, f0(vi) = 1 for all i. Now let φ be the homomor-
phism of G[x1, . . . , xn] onto H[x1, . . . , xn] which maps G canonically onto H
and each xi to itself and let θ be the map of Gn onto Hn which extends the
canonical homomorphism of G onto H. Choose, for each m, a pre-image f̄m

of fm under φ and a pre-image v̄m in Gm of vm.
Now N is a finite union of algebraic sets, say

N = VG(S1) ∪ . . . ∪ VG(Sp).

The group G is noetherian, therefore we can assume that all the sets Si ⊆
G[x] are finite. Note that words in Si have at most one variable.

Consider now the set f̄0(v̄1), f̄0(v̄2), . . . , f̄0(v̄m), . . . of values under f̄0 of
the elements v̄m. Then all of these elements lie in N . Hence we can find
an infinite subsequence i1(0) < i2(0) < . . . of the sequence 1, 2, . . . such that
the elements f̄0(v̄im(o)) all lie in the same algebraic set, say VG(Sp0) (here
p0 ∈ {1, . . . , p}). Thus the values of f̄0 on these elements are roots of the
finite set Sp0 . Therefore, for m = 1, 2, . . .

v̄im(0) ∈ VG(Sp0(f̄0))
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where Sp0(f̄0) is the finite subset of G[x1, . . . , xn] defined as follows

Sp0(f̄0) = {s(f̄0) | s ∈ Sp0}.
Consider now f̄1. Since f1 takes on the value 1 at each of vim(0) > 1, all

of the images of this elements v̄im(0) under f̄1 lie in N . Therefore there is
an infinite subsequence i1(1) < . . . < im(1) . . . of {im(0)} such that f̄1 takes
on values from one and the same algebraic set, say VG(Sp1), at each element
v̄im(1). Again, if we define

Sp1(f̄1) = {s(f̄1) | s ∈ Sp1},
then for any m

v̄im(1) ∈ VG(Sp1(f̄1)).

Continuing in this way we arrive, at the k−th stage at an infinite subsequence
i1(k) < i2(k) < . . . of the previously defined sequence {im(k−1)} such that f̄k

takes on values from an algebraic set VG(Spk
), for some fixed pk ∈ {1, . . . , p},

at every v̄im(k). We then define

Spk
(f̄k) = {s(f̄k) | s ∈ Spk

}.
and observe that for any m

v̄im(k) ∈ VG(Spk
(f̄k)).

Consider now the set

T =
⋃{Spk

(f̄k) | k = 0, 1, . . .}
of elements of G[x1, . . . , xn]. By our construction for any v ∈ Gn

v ∈ VG(T ) =⇒ fk(v) = 1 in H (k = 0, 1, 2 . . .). (9)

Since G is equationally noetherian, VG(T ) = VG(T0), where T0 is a finite
subset of T . We can assume that

T0 = Sp0(f̄0) ∪ . . . ∪ Sp`
(f̄`).

for some finite `. Notice that

v̄im(k) ∈ VG(Sp0(f̄0) ∪ . . . ∪ Sp`
(f̄`)).

whenever k ≥ `. But then for µ0 = i1(`) we have v̄µ0 ∈ VG(T0). This implies
that v̄µ0 ∈ VG(T ). Therefore by (9)

fµ0(vµ0) = 1,

which contradicts the choice of the element vµ0 (see (8)). Thus we have
arrived at a contradiction which completes the proof of the theorem.
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4 Some examples.

Our first objective now is to prove Proposition 1, which was formulated in
section 1. Suppose then that W = U o T is the wreath product of a non-
abelian group U by an infinite group T . Let B be the normal closure of U
in W and let S be the following subset of W [x]

S = {[a, bx] | a, b ∈ B}.
Since U is non-abelian and T is infinite, V (S) is empty. To see this, observe
that if x is a root of S, then x = tc, where t ∈ T and c ∈ B. Now choose u
and v to be two elements of U which do not commute. Then

[u, (tc)−1tcv(tc)−1tc] 6= 1

contradicting the fact that x = tc is a root of S. On the other hand if S0

is a finite subset of S, then there are only finitely many elements of B and
T that arise in S0. Since T is infinite and all of the elements a and b are
contained in B, there exists an element t ∈ T such that the supports of all
of the conjugates bt of all of the elements b that occur in these finitely many
equations, are disjoint from the supports of each a, which implies that every
such a commutes with every bt. This completes the proof of Proposition 1.

In particular, we have

Example 1 The wreath product of the symmetric group of degree three S3

by an infinite cyclic group C is not noetherian.

Since any direct power of a finite group is equationally noetherian [1], it
follows that even a split extension S3 oC of an equationally noetherian group
⊕∞i=1S3 by an equationally noetherian group, indeed an infinite cyclic group
C, is not always equationally noetherian, in contrast with Theorem 1.

Now Roger Bryant [3] has proved that a finitely generated abelian-by-
nilpotent group is equationally noetherian. Notice that, by Proposition 1, the
wreath product of the quaternion group of order 8 by an infinite cyclic group
is not noetherian, i.e., there exist finitely generated nilpotent-by-abelian
groups which are not equationally noetherian. This answers another one
of Bryant’s questions.

Now we will construct an example of a group G, with the center ζ(G) of
order p, such that G is not equationally noetherian but G/ζ(G) is equation-
ally noetherian.
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Example 2 Let p be any given prime and let G be the group presented as
follows:

G =< t, a, b, c; [t−matm, t−mbtm] = c, [t, c] = [a, c] = [b, c] = 1, cp = 1

[t−matm, t−natn] = [t−mbtm, t−nbtn] = 1 (all integer m, n), [t−matm, t−nbtn] = 1 (m 6= n) > .

Here C = gp(c) is the center of G and it has order p. Notice that G/C '
Z2 oZ. Consequently, G/C is equationally noetherian because it is linear [1].
To see that G is not equationally noetherian, consider the subset

S = {[x, yzn

] | (n = 0, 1, . . .)}

of G[x, y, z]. Suppose that
V (S) = V (S0)

where S0 is a finite subset of S. Then we can assume without any loss of
generality, that

S0 = {[x, yzn

] | (n = 0, 1, . . . , k)}.
But x = a, y = t−k−1btk+1 and z = t is a root of S0 but not a root of S. So
G is not equationally noetherian, as claimed.

In conclusion we will construct an example of a (restricted) direct product
P of finite (hence equationally noetherian) groups which is not equationally
noetherian. We prepare the way by first observing that the following lemma
holds.

Lemma 4 Let
S = {[x, yzn

] | (n = 0, 1, . . .)}
and let G = S3 oCn, where Cn is a cyclic group of order n and let H = S3 oC.
Then

1. the algebraic set VG(S) cannot be defined by a subset of S with fewer
than n elements;

2. the variety VH(S) cannot be defined by any finite subset of S.

The proof of Lemma 4 is analogous to the proof in Example 2 and will
therefore be omitted.

Finally we have the following
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Example 3 Let P be the restricted direct product of the groups S3 o Cn,

P =
∞∏

n=1

S3 o Cn,

and let
S = {[x, yzn

] | (n = 0, 1, . . .)}.
Then the algebraic set VP (S) can not be defined by any finite subset of S and
so, in particular P is not equationally noetherian.

It suffices here to note, that if VP (S) = VP (S0) for some finite S0 ⊆ S,
then VGn(S) = VGn(S0) for any direct factor Gn = S3oCn of P . This, however,
is impossible by Lemma 4.
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