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@ New results in surface groups

e New results in direct products of free and surface groups
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@ Let G be a finitely presented group.
@ Aut(G) C Mono (G) C End(G).
@ | let endomorphisms ¢: G — G act on the left, x — &(x).
@ Fix(¢p)={xe Fp|o(x)=x}<G.
o If BC End(G) then
Fix(B) ={x € G| 8(x) = x VB € B} =NgepFix(8) < G.
@ For B C Hom (G, H),
Eq (B) = {X e@ | ﬂ1(X) = ﬁz(X) Vﬁhﬁg S B}
@ Note that if G < Hand . € B then Eq(B) = Fix (B).
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What is known about free groups ?

Theorem (Dyer—Scott, 75)

Let B < Aut(F,) be a finite group of automorphisms of F,,. Then,
Fix (B) <g Fp; in particular, r(Fix(B)) < n.

Conjecture (Scott)
For every ¢ € Aut(Fp), r(Fix(¢)) < n.

Theorem (Gersten, 83 (published 87))
Let ¢ € Aut(Fp). Then r(Fix(¢)) < oo.

Theorem (Thomas, 88)

Let B < Aut(Fp) be an arbitrary group of automorphisms of F,. Then,
r(Fix(B)) < .
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Train-tracks

Main result in this story:

Theorem (Bestvina—Handel, 88 (published 92))

Let ¢ € Aut(Fy). Then r(Fix(¢)) < n.

introducing the theory of train-tracks for graphs.
After Bestvina—Handel, live continues ...

Theorem (Imrich—Turner, 89)
Let ¢ € End(Fy). Then r(Fix(¢)) < n.

Theorem (Turner, 96)

Let ¢ € End(Fp); if ¢ is not bijective then r(Fix(¢)) < n—1.
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Inertia

A subgroup H < G is called
@ inertin Gifr(HNK) < r(K) for every K < G;
@ compressed in G ifr(H) < r(K) forevery H< K < G;

N

e Free factors and cyclic subgroups of F, are inertin Fp;

e intersection of inert subgroups are inert;

e free subgroups of rank 1 and 2 in Fj, are inert in Fp;

e A< B C;ifAisinertin B, and B is inertin C then A is inert in C.
e H< Ginert = H < Gcompressed = r(H) < r(G);

e not known if all compress subgroups of Fj, are inert in F,, or not
(Compressed-Inert Conjecture, Dicks-V.)

Theorem (Dicks—V, 96)

Let B C Mon(F,) be an arbitrary set of monomorphisms of F,. Then,
Fix (B) is inert in Fp; in particular, r(Fix (B)) < n.
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The inertia conjecture

Inertia Conjecture (Dicks—V.)
For every B C End(Fp), Fix(B) is inert in Fp,.

Theorem (Bergman, 99)

Let B C End(Fy) be an arbitrary set of endomorphisms of F,. Then,
r(Fix(B)) < n.

Theorem (Martino—V., 04)

Let B C End(F,) be an arbitrary set of endomorphisms of F,. Then,
Fix (B) is compressed in F,.

N,

Theorem (Bergman, 99)

Let p: G — H be an epimorphism of free groups, with H f.g. Then,
the equalizer of any family of sections of ¢ is a free factor of H.
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Theorem (Zhang—-Wu-V., 15)

Let F be a f.g. free group, let B C End(F), and let By € (B) < End(F)
be with r(5o(F)) minimal. Then, for every subgroup K < F such that
Bo(K) N FixB < K, we have r(K N FixB) < r(K).

(Proof)

e Since, Fixa. N Fix < Fix(aB), we have Fix (B) = FixB and so, we
can assume that Id € (B) = B.

e Now choose By € B with r(8o(F)) = min{r(~(F)) | v € B}. Thus, all
elements of B act injectively on [ (F).

e Restricting SoB = {Boy | v € B} C B to 5o(F) we get the family of
injective endos:  BoY|g,F): Po(F) — Bo(F), fory € B.

e Hence, Fix(foB) = Fix(BoB|s,(F)) is inert in fo(F) that is, for every
L < Bo(F), we have r(L N Fix(5oB)) < r(L).
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Main result for free groups

o Now, let K < F be a subgroup such that 5o(K) N FixB < K; we
have to show that r(K N FixB) < r(K).

o Take E = 3, 1(Bo(K) N Fix(BoB)) < F. By construction, (3, restricts
to an epimorphism Bo|e: E — Bo(K) N Fix(B8oB). And every v € B
restricts to a section of 5y|g, namely
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Main result for free groups

o Now, let K < F be a subgroup such that 5o(K) N FixB < K; we
have to show that r(K N FixB) < r(K).

o Take E = 3, 1(Bo(K) N Fix(BoB)) < F. By construction, (3, restricts
to an epimorphism Bo|e: E — Bo(K) N Fix(B8oB). And every v € B
restricts to a section of 5y|g, namely

E  Bo(K) N Fix (BoB): Y g, k)~ Fix (505)°

since x € Bo(K) N Fix(BoB) = Boy(x) = x and so, v(x) € E.
e By Bergman’s Thm, Eq (5| 800K FiX (B B)) is a free factor of
Bo(K) N Fix (oB). ,
o But, Eq(BlgionFix(as) = FXBlsynFixas)
= FixBn Bo(K) N FIX(ﬁoB)
= Bo(K)N FixB
= KnFixB.
e Thus, intersecting with L = 3o(K) < fo(F), we conclude

r(K N FixB) < r(Bo(K) N Fix(FoB)) < r(Bo(K)) < r(K). O
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Corollaries

As a first corollary, we obtain

Theorem (Martino—V., 04)

Let B C End(F,) be an arbitrary set of endomorphisms of F,. Then,
Fix (B) is compressed in F,.

(Easier alternative proof)

Clearly, FixB < K < F = [o(K) N FixB < K. So, main theorem
applies to those K, and r(FixB) = r(K N FixB) < r(K).

| \

Corollary
Let F be afg. free group, let B C End(F), and let 5y € (B) < End(F)

be with r(5o(F)) minimal. Then, FixB is inert in So(F). Moreover, if
Bo(F) is inert in F then FixB is inert in F as well.
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K < Bo(F) = Bo(K) N FixB < K.
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Corollaries

o [t follows easily from the main theorem, since
K < Bo(F) = Bo(K) N FixB < K.
o Infact, x € Bo(K) N FixB = Bo(k) = x = Bo(x) for some k € K. But
both k, x € Bo(F), where /3y is injective. Thus, x = k € K.
o For the last statement we just use transitivity of the inertia property.

Let F be a f.g. free group, and B C End(F). If some composition of
endos from B has image of rank 1 or 2, then FixB is inert in F.
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Notation

¥4 denotes the orientable surface of genus g, g > 0;
Sg =m1(Xg) = (a1, b1,...,ag,bg | [a1,b1] - - [ag, bg]);
So = (])=1, S =72

N% denotes the connected sum of k projective planes, k > 1
NSk =7T1(Nzk) = (ah...,ak ‘ a?---aﬁ);
NS = 7/27, NS, = (ay,a, | @2a3) ~ (a,b | aba'b).

@ Euler characteristic: X(Zg) =2-2g,x(NZx) =2—Kk;

@ Euclidean type (x > 0): So, Si, NSy, NS, (and F =17);

@ Hyperbolic type (X <0): Sq,9>2, NS¢, k>3, (and Fp, n > 2).
Observation

r(Sg) = 29, r(NSx) = k, (and r(F,) = n).




Surface groups (history)
oce

What is known about surface groups ?

Theorem (Jiang—Wang—Zhang, 11)
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What is known about surface groups ?

Theorem (Jiang—Wang—Zhang, 11)
Let G be a surf. gr. x(G) < 0. Then, r(Fix(¢)) < r(G) V¢ € End(G).
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(i) r(FixB) < %r(G), if B contains a non-epimorphic endomorphism;
(i) if B C Aut(G), then FixB is inert in G.
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What is known about surface groups ?

Theorem (Jiang—Wang—Zhang, 11)
Let G be a surf. gr. x(G) < 0. Then, r(Fix(¢)) < r(G) V¢ € End(G).

Theorem (Wu-Zhang, 14)

Let G be a surface group with x(G) < 0, and B C End(G). Then,

(i) r(FixB) < r(G), with equality if and only if B = {id};

(i) r(FixB) < %r(G), if B contains a non-epimorphic endomorphism;
(i) if B C Aut(G), then FixB is inert in G.

Inertia Conjecture
Let G be a surface group. For every B C End(Q), Fix(B) is inert in G.

Theorem (Wu—-Zhang, 14)

Let G be a surface group with x(G) < 0, and H a f.g. free group. If
¢: G — H is an epimorphism and B is a family of sections of ¢, then
r(Eq(B)) < r(H) < 3r(G).
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@ New results in surface groups
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Main result for surface groups

The proof of main Theorem for free groups works for surface groups
of negative Euler characteristic as well. For non-negative Euler
characteristic one can prove the inertia conjecture directly.
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let B C End(G). Then, FixB is inertin G.
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Theorem (Zhang—Wu-V., 15)

Let G be a surface group, let B C End(G), and let 5y € (B) < End(G)
be with r(50(G)) minimal. Then, for every subgroup K < G such that
Bo(K) N FixB < K, we have r(K N Fix) < r(K).
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Main result for surface groups

The proof of main Theorem for free groups works for surface groups
of negative Euler characteristic as well. For non-negative Euler
characteristic one can prove the inertia conjecture directly.

Proposition

Let G be either Fy = Sy = 1, or Sy = Z?, or NSy = Z/27Z, or NS, and
let B C End(G). Then, FixB is inertin G.

Theorem (Zhang—Wu-V., 15)

Let G be a surface group, let B C End(G), and let 5y € (B) < End(G)
be with r(50(G)) minimal. Then, for every subgroup K < G such that
Bo(K) N FixB < K, we have r(K N Fix) < r(K).

(Proof)

The proof for the free group case adapts perfectly here, distinguishing
whether E is free or finite index, and replacing the use of Bergman’s
sections Theorem by Wu-Zhang’s Theorem.
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Corollaries

Theorem (Zhang—Wu-V., 15)

Let G be a surface group and B C End(G). Then, Fix(B) is
compressed in G.
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Corollaries

Theorem (Zhang—Wu-V., 15)

Let G be a surface group and B C End(G). Then, Fix(B) is
compressed in G.

Let G be a surface group, let B C End(G), and let B, € (B) < End(G)
be with r(5o(G)) minimal. Then, Fix B is inert in Bo(G). Moreover, if
Bo(G) is inert in G then Fix B is inert in G as well.
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Corollaries

Theorem (Zhang—Wu-V., 15)

Let G be a surface group and B C End(G). Then, Fix(B) is
compressed in G.

Let G be a surface group, let B C End(G), and let B, € (B) < End(G)
be with r(5o(G)) minimal. Then, Fix B is inert in Bo(G). Moreover, if
Bo(G) is inert in G then Fix B is inert in G as well.

For every B C End(NSs), FixB is inert in NSs.
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Q New results in direct products of free and surface groups
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Product groups

A product group is a group of the form G = Gy x --- x G, where
n>1, and each G; is either F,,r > 1, 0or Sq, g > 1, or NSx, k > 1.
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A product group is a group of the form G = Gy x --- x G, where
n>1, and each G; is either F,,r > 1, 0or Sq, g > 1, or NSk, k > 1.
Block notation: G = G{" x --- x Go", nj > 1, and G; # Gj fori # j; of
course, N =Ny + - - -+ Np,.
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e hyperbolic type if G; is hyperbolic for every i;
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Product groups

Definition

A product group is a group of the form G = Gy x --- x G, where
n>1, and each G; is either F,,r > 1, 0or Sq, g > 1, or NSk, k > 1.
Block notation: G = G{" x --- x Go", nj > 1, and G; # Gj fori # j; of
course, N =Ny + - - -+ Np,.

Definition

A product group G = Gy x --- x G is of

e hyperbolic type if G; is hyperbolic for every i;

e Euclidean type if G; is Euclidean for every i;

o mixed type if G; is hyperbolic and G; is Euclidean, for some i, j,
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In general, r(A x B) < r(A) + r(B), but... )
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In general, r(A x B) < r(A) + r(B), but... )

For a product group, r(Gy x -+ x Gp) = r(Gy) + - - + r(Gp).
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Initial properties

In general, r(A x B) < r(A) + r(B), but... )

For a product group, r(Gy x -+ x Gp) = r(Gy) + - - + r(Gp).

Let G be a product group. Then, Z(G) =1 < G is of hyperbolic type.
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Initial properties

In general, r(A x B) < r(A) + r(B), but... )

For a product group, r(Gy x -+ x Gp) = r(Gy) + - - + r(Gp).

Let G be a product group. Then, Z(G) =1 < G is of hyperbolic type.

Let G be Euclidean, G = NS} x ZP x (Z/2Z)9, for ¢,p,q > 0. Then
any subgroup H < G satisfies r(H) < r(G) =2(+ p + q.
In particular, r(Fix(¢)) < r(G) for every ¢ € End(G).
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Initial properties

For g; € G, Ceng(91, .- -,9n) ~ Ceng,(g1) x -+ x CenG,,(gn)
So in the hyperbollc case, Ceng(91,...,0n ) G1 - X G,,, where
G =G ifgi=1, or G =Zifgi #1.
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Initial properties

For gi € G, Ceng(g1,...,9n) ~ Ceng,(g1) X --- X CenGn(g,,)
So in the hyperbollc case, Ceng(91,...,0n ) G1 X +oe X G,,, where
G =G ifgi=1, or G =Zifgi #1.

Ingeneral Z x A~7 x B 5 A~ B, but... )
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Initial properties

For gi € Gi, Ceng(gs, - .., gn) =~ Ceng,(g1) x -+ X Cenen(gn)
So in the hyperbollc case, Ceng(91,...,0n ) G1 X +oe X G,,, where
G =G ifgi=1, or G =Zifgi #1.

Ingeneral Z x A~7 x B 5 A~ B, but... )

Proposition

LetG= Gy x---x Gpand H = H; x --- x Hy, be two product groups
of hyperbolic type. Then, G~ H < n= m and G; ~ H; up to
reordering.

Not true for the Euclidean type: 7? = 7. x 7.
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Main result for product groups

Theorem (Zhang—-Wu-V., 15)

Let G= Gj x --- x G, be a product group. Then, r(Fix¢) < r(G)
Vo € Aut(G) < G is either of Euclidean or of hyperbolic type.

(Proof)
e Step 1: If G Euclidean then ok. Done.
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Let G= Gj x --- x G, be a product group. Then, r(Fix¢) < r(G)
Vo € Aut(G) < G is either of Euclidean or of hyperbolic type.

(Proof)

e Step 1: If G Euclidean then ok. Done.
e Step 2: If G hyperbolic the ok ...
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Main result for product groups

Theorem (Zhang—Wu-V., 15)

Let G= Gj x --- x G, be a product group. Then, r(Fix¢) < r(G)
Vo € Aut(G) < G is either of Euclidean or of hyperbolic type.

(Proof)

e Step 1: If G Euclidean then ok. Done.
e Step 2: If G hyperbolic the ok ...
e Step 3: For any mixed type G, 3¢ € Aut(G) s.t. r(Fix¢) > r(G) ...

Proposition (Zhang—Wu-V., 15)

LetG= G" x --- x Gp" be a product group in block notation. If G is
of hyperbolic type then, V¢ € Aut(G), 3¢;; € Aut(G;) and o; € Sy,
such that

m n;

=0 “00mo HH¢I} H(JiOH¢i,j)'
j=1

i=1 j=1 i=1
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Main result for fee products

e Assume G of hyperbolic type, let ¢ € Aut(G), and let us prove that
r(Fix¢) < r(G).
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Main result for fee products

e Assume G of hyperbolic type, let ¢ € Aut(G), and let us prove that
r(Fix¢) < r(G).
e By previous result, ¢ = [T (oi o [1i4 ¢i;). So,

Fix¢ = Fix (g10(¢1,1 X+ X P1,n,)) X+ X FiX (0mo(dm,1 X+ X )

we are reduced to the case m=1,ie,G=G{ =Gy x--- x Gy
(Gii=Gi)and ¢ =co (1 x -+ X ¢n), foro € Sy, ¢ € Aut(Gy ).
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e Assume G of hyperbolic type, let ¢ € Aut(G), and let us prove that
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e By previous result, ¢ = [T (oi o [1i4 ¢i;). So,
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we are reduced to the case m=1,ie,G=G{ =Gy x--- x Gy
(Gii=Gi)and ¢ =co (1 x -+ X ¢n), foro € Sy, ¢ € Aut(Gy ).
e Ifo = Id then Fix¢ = Fix¢y x --- x Fix¢, and so,

F(Fix) < r(Fixéy) + -+ r(Fixén) < nr(Gy) = 1(GF) = r(G).
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Main result for fee products

e Assume G of hyperbolic type, let ¢ € Aut(G), and let us prove that
r(Fix¢) < r(G).
e By previous result, ¢ = [T (oi o [1i4 ¢i;). So,

Fix¢ = Fix (g10(¢1,1 X+ X P1,n,)) X+ X FiX (0mo(dm,1 X+ X )

we are reduced to the case m=1,ie,G=G{ =Gy x--- x Gy
(Gii=Gi)and ¢ =co (1 x -+ X ¢n), foro € Sy, ¢ € Aut(Gy ).
e Ifo = Id then Fix¢ = Fix¢y x --- x Fix¢, and so,

r(Fix¢) < r(Fix¢q) + - - + r(Fix¢n) < nr(Gy) = r(G{") = r(G).

e If o £ Id, considering its decomposition as a product of cycles, we
can reduce to the case of acycle,c = (n,n—1,...,1).
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Main result for fee products

e Assume G of hyperbolic type, let ¢ € Aut(G), and let us prove that
r(Fix¢) < r(G).
e By previous result, ¢ = [T (oi o [1i4 ¢i;). So,

Fix¢ = Fix (g10(¢1,1 X+ X P1,n,)) X+ X FiX (0mo(dm,1 X+ X )

we are reduced to the case m=1,ie,G=G{ =Gy x--- x Gy
(Gii=Gi)and ¢ =co (1 x -+ X ¢n), foro € Sy, ¢ € Aut(Gy ).
e Ifo = Id then Fix¢ = Fix¢y x --- x Fix¢, and so,

F(Fix) < r(Fixéy) + -+ r(Fixén) < nr(Gy) = 1(GF) = r(G).

e If o £ Id, considering its decomposition as a product of cycles, we
can reduce to the case of acycle,c = (n,n—1,...,1).
e In this situation, ¢ = o o (¢1 x -+ x ¢,) has the form

¢:G171><-~-><G1’n — G171><-~-><G1’n
(g17--~7gn) — 0-(¢1 (91)7¢2(g2)7---a¢n(gn)) —
= (¢n(gn)a ?1 (g1 )a ocay ¢n—1 (gn—1 ))
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Main result for product groups

and so,

Fix¢ = {(9, #1(g), #201(9); - - -, (dn—1---01)(9)) | g € Fix(¢n--- 1)}
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Main result for product groups

and so,

Fix$ = {(9,$1(9), 9261(9), - -, (¢n—1- - $1)(9)) | g € Fix(¢n- - $1)}.
« Hence, r(Fix) = r(Fix(¢n- -~ 1)) < r(Gy) < r(GP) = r(G).
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Main result for product groups

and so,

Fix$ = {(9,$1(9), 9261(9), - -, (¢n—1- - $1)(9)) | g € Fix(¢n- - $1)}.

e Hence, r(Fix$) = r(Fix(¢n---$1)) < r(Gy) < r(G]") = r(G).
e This finishes step 2.
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Main result for product groups

and so,

Fix$ = {(9,$1(9), 9261(9), - -, (¢n—1- - $1)(9)) | g € Fix(¢n- - $1)}.

o Hence, r(Fix¢) = r(Fix(¢n--- ¢1)) < r(G1) < r(G") = r(G).
e This finishes step 2.

Finally, for step 3 let us prove that ... )
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Main result for product groups

and so,

Fix¢ = {(9, #1(g), #201(9); - - -, (dn—1---01)(9)) | g € Fix(¢n--- 1)}

e Hence, r(Fix$) = r(Fix(¢n---61)) < r(Gy) < r(G') = r(G).
e This finishes step 2.

Finally, for step 3 let us prove that ... )

Proposition (Zhang—Wu-V., 15)

Let G be a product group of mixed type. Then, 3¢ € Aut(G) such that
r(Fix¢) > r(G).
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Main result for product groups

and so,

Fix$ = {(9,$1(9), 9261(9), - -, (¢n—1- - $1)(9)) | g € Fix(¢n- - $1)}.

e Hence, r(Fix$) = r(Fix(¢n---61)) < r(Gy) < r(G') = r(G).
o This finishes step 2.

Finally, for step 3 let us prove that ...

Proposition (Zhang—Wu-V., 15)

Let G be a product group of mixed type. Then, 3¢ € Aut(G) such that
r(Fix¢) > r(G).

<

(Proof)

e We can reduce to the case G = G; x Go with Gy Euclidean and G»
hyperbolic. Take 1 # t € Z(Gy)), and Z(Gz) = 1.

\




Direct products (new)
00000@000000

Main result for product groups
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Let G be a product group of mixed type. Then, 3¢ € Aut(G) such that
r(Fix¢) > r(G).

<

(Proof)

e We can reduce to the case G = G; x Go with Gy Euclidean and G»
hyperbolic. Take 1 # t € Z(Gy)), and Z(Gz) = 1.
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Main result for product groups

e Since Z(Gy) is Z(Fy) = Z, or Z(S1) = 72, or Z(NSy) = Z./2Z, or
Z(NS,) = Z, we deduce o(t) = 2, .
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Main result for product groups

e Since Z(Gy) is Z(Fy) = Z, or Z(S1) = 72, or Z(NSy) = Z./2Z, or
Z(NS,) = Z, we deduce o(t) = 2, .
e Let us distinguish the 3 cases: Go = F;, G = Sy, or G = NSy.
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e Since Z(Gy) is Z(Fy) = Z, or Z(S1) = 72, or Z(NSy) = Z./2Z, or
Z(NS,) = Z, we deduce o(t) = 2, .
e Let us distinguish the 3 cases: Go = F;, G = Sy, or G = NSy.

— Case 1: Go=F, =(a1,...,a-|), r =2
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Main result for product groups

e Since Z(Gy) is Z(Fy) = Z, or Z(S1) = 72, or Z(NSy) = Z./2Z, or
Z(NS,) = Z, we deduce o(t) = 2, .
e Let us distinguish the 3 cases: Go = F;, G = Sy, or G = NSy.

— Case 1: Go=F, =(a1,...,a-|), r =2
e Consider ¢ € Aut(G) fixing Gy pointwise and mapping
a; — tay, a — ao, ..., ar — ar. This is well defined because t

commutes with all of G.
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Main result for product groups

e Since Z(Gy) is Z(Fy) = Z, or Z(S1) = 72, or Z(NSy) = Z./2Z, or
Z(NS,) = Z, we deduce o(t) = 2, .
e Let us distinguish the 3 cases: Go = F;, G = Sy, or G = NSy.

— Case 1: Go=F, =(a1,...,a-|), r =2

e Consider ¢ € Aut(G) fixing Gy pointwise and mapping

a; — tay, a — ao, ..., ar — ar. This is well defined because t
commutes with all of G.

e Now, ¢ maps w(ay,...,a;) — w(tay, a,...,a) = t"w(ay,...,a),
where |w|y € Z is the total ai-exponent of w € Go.
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Main result for product groups

e Since Z(Gy) is Z(Fy) = Z, or Z(S1) = 72, or Z(NSy) = Z./2Z, or
Z(NS,) = Z, we deduce o(t) = 2, .
e Let us distinguish the 3 cases: Go = F;, G = Sy, or G = NSy.

— Case 1: Go=F, =(a1,...,a-|), r =2

e Consider ¢ € Aut(G) fixing Gy pointwise and mapping

a; — tay, a — ao, ..., ar — ar. This is well defined because t
commutes with all of G.

e Now, ¢ maps w(ay,...,a;) — w(tay, a,...,a) = t"w(ay,...,a),
where |w|y € Z is the total ai-exponent of w € Go.

e Hence, Fixp = Gy x {w € Gz | |w|; =0} = Gy x kerm, where

m: Go — Z/o(t)Z, w — |w|1, and = means equality of integers
modulo o(t).
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Main result for product groups

e Since Z(Gy) is Z(Fy) = Z, or Z(S1) = 72, or Z(NSy) = Z./2Z, or
Z(NS,) = Z, we deduce o(t) = 2, .
e Let us distinguish the 3 cases: Go = F;, G = Sy, or G = NSy.

— Case 1: Go=F, =(a1,...,a-|), r =2

e Consider ¢ € Aut(G) fixing Gy pointwise and mapping

a; — tay, a — ao, ..., ar — ar. This is well defined because t
commutes with all of G.

e Now, ¢ maps w(ay,...,a;) — w(tay, a,...,a) = t"w(ay,...,a),
where |w|y € Z is the total ai-exponent of w € Go.

e Hence, Fixp = Gy x {w € Gz | |w|; =0} = Gy x kerm, where
m: Go — Z/o(t)Z, w — |w|1, and = means equality of integers
modulo o(t).

e Butker 7 is a normal subgroup of G = F, of either infinite index
(and so, infinitely generated) or of index 2 (and so, r(kern) =
14+2(r—1)=2r—1).
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Main result for product groups

e Since Z(Gy) is Z(Fy) = Z, or Z(S1) = 72, or Z(NSy) = Z./2Z, or
Z(NS,) = Z, we deduce o(t) = 2, .
e Let us distinguish the 3 cases: Go = F;, G = Sy, or G = NSy.

— Case 1: Go=F, =(a1,...,a-|), r =2

e Consider ¢ € Aut(G) fixing Gy pointwise and mapping

a; — tay, a — ao, ..., ar — ar. This is well defined because t
commutes with all of G.

e Now, ¢ maps w(ay,...,a;) — w(tay, a,...,a) = t"w(ay,...,a),
where |w|y € Z is the total ai-exponent of w € Go.

e Hence, Fixp = Gy x {w € Gz | |w|; =0} = Gy x kerm, where
m: Go — Z/o(t)Z, w — |w|1, and = means equality of integers
modulo o(t).

e Butker 7 is a normal subgroup of G = F, of either infinite index
(and so, infinitely generated) or of index 2 (and so, r(kern) =
14+2(r—1)=2r—1).

e In both cases, r(kerm) > r = r(Gz) and so,

r(Fix¢) = r(Gy) + r(kerm) > r(G).
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— Case 2: Go = Sy = (ay, by,...,ag,by | [@a1,b4] - - - [ag, bg]), g > 2.
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— Case 2: Go = Sy = (ay, by,...,ag,by | [@a1,b4] - - - [ag, bg]), g > 2.

e Consider ¢ € Aut(Q) fixing Gy pointwise, and mapping

ay — tay, by —= by, ..., ag— ag, by — by. It is well defined because t
commutes with by and all of G;.
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Direct products (new)

[e]e]e]ele]ele] lele]e]e]

— Case 2: Go = Sy = (ay, by,...,ag,by | [@a1,b4] - - - [ag, bg]), g > 2.

e Consider ¢ € Aut(Q) fixing Gy pointwise, and mapping

ay — tay, by —= by, ..., ag— ag, by — by. It is well defined because t
commutes with by and all of G;.

e Asincase 1, w(ay, b1, ...,aqg,bg) — w(tay, by,...,ag,by) =
t"lw(ay, by, ..., ag, by), where |w|y € Z is the total a;-exponent of

w € Gy (which makes sense because the def. rel. in G, has total
ai-exponent equal to zero).
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— Case 2: Go = Sy = (ay, by,...,ag,by | [@a1,b4] - - - [ag, bg]), g > 2.

e Consider ¢ € Aut(Q) fixing Gy pointwise, and mapping

a — tay, by — by, ..., ag — ag, by — by. It is well defined because t
commutes with by and all of G;.

e Asincase 1, w(ay, b1, ...,aqg,bg) — w(tay, by,...,ag,by) =
t"lw(ay, by, ..., ag, by), where |w|y € Z is the total a;-exponent of
w € Gy (which makes sense because the def. rel. in G, has total
ai-exponent equal to zero).

e Hence, as above, Fixp = Gy x {w € Gz | |[w|s =0} = Gy x ker,
where m: Gy — Z/o(t)Z, w — |w|1, and = means equality of integers
modulo o(t).
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where m: Gy — Z/o(t)Z, w — |w|1, and = means equality of integers
modulo o(t).

e We conclude like above, after proving that r(ker ) > r(Gy) = 29.

o If o(t) = 2, this is true because kerm <o Gy and so, kerr is a
surface group of bigger genus (and rank).

e Ifo(t) = o thenkerm <, G (S0, free), and ker « is infinitely
generated by the following argument: Vx € G. \ ker w, we have

[Go : (kerm, x)] = [Z : (w(X))] = |7(X)| < oo and so, (kerm, X) is a surf.
gr. with x({kerm, x)) =[Gz : (kerm, x)|x(G2) = |7(x)|(2 — 29) and
thus, r((kerm, x)) =2 + |=(x)|(2g — 2).
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because t commutes with ay, a» and all of Gy .

e Observe now that, due to the form of the def. rel. in G, the “total
aj-exponent” of an element of w € G is not well defined; however, the
difference of two of them, say |w|, — |w|2 € Z, it really is.
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Main result for product groups

— Case 3: Go = NS¢ = (ay,ap,...,ac | & - &), k > 3.
e Consider ¢ € Aut(G) fixing Gy pointwise and mapping
a; — tay, a» — t7132, as +— as, ..., dg +— . It is well defined

because t commutes with ay, a» and all of Gy .

e Observe now that, due to the form of the def. rel. in G, the “total
aj-exponent” of an element of w € G is not well defined; however, the
difference of two of them, say |w|, — |w|2 € Z, it really is.

e Hence, the projection n: Go — Z/0o(t)Z, w — |w|y — |w|z is well
defined, ¢ maps w(ay, ..., ax) to

w(tay, t 'ap, as,...,a) = t"li=Wew(ay, ... ax), and we proceed
and conclude as in case 2.
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It is natural to ask for similar characterizations of full compression and
full inertia. J
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Characterizing compression

It is natural to ask for similar characterizations of full compression and
full inertia.

Theorem (Zhang-Wu-V., 15)

Let G= Gy x --- x G, be a product group. If Fix¢ is compressed in G
for every ¢ € Aut(G), then G must be of one of the following forms:

G =1ZP x (Z/27)9 for some p,q > 0; or

)
) G = NS, x (Z/27)9 for some q > 0, or

) G= NS, x ZP x (Z/2Z) for some p > 1; or
eucd) G= NS{ x ZP forsome ¢ >1,p > 0; or
(hyp1) G= F, x NS{ forsomer >2,(>0; or
(hyp2) G = Sq x NS§ forsome g >2,¢>0;or
(hyp3) G = NSk x NS{ for some k >3, ¢ > 0.
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Characterizing inertia

Theorem (Zhang—Wu-V., 15)

Let G= Gi x --- x G be a product group. If Fix ¢ is inert in G for
every ¢ € Aut(G), then G is of one of the forms: (eucl), or (euc2), or
(euc3), or (euc4), or

(hyp1’) G = F, forsome r >
(hyp2’) G= Sy for some g >
(hyp3’) G = NSk for some k

2;0r
2;0r
> 8.
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Characterizing inertia

Theorem (Zhang—Wu-V., 15)

Let G= Gi x --- x G be a product group. If Fix ¢ is inert in G for
every ¢ € Aut(G), then G is of one of the forms: (eucl), or (euc2), or
(euc3), or (euc4), or

(hyp1’) G = F, forsomer > 2; or
(hyp2’) G= Sy for some g > 2; or
(hyp3’) G = NSk for some k > 3.

Conjecture (Zhang—Wu-V., 15)

Let G= Gy x --- x G, be a product group. Then, the following are
equivalent:

(a) every ¢ € End(QG) satisfies that Fix ¢ is inert in G,
(b) every ¢ € Aut(G) satisfies that Fix ¢ is inert in G,

(c) G is of the form (euct), or (euc2), or (euc3), or (euc4), or (hyp1’),
or (hyp2’), or (hyp3)).
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