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(Joint work with Q. Zhang and J. Wu.)

Most of this talk is contained in the paper:

Q. Zhang, E. Ventura, J. Wu,
“Fixed subgroups are compressed in surface groups”, International
Journal of Algebra and Computation 25 (5) (2015), 865-887.
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Notation

Let G be a finitely presented group.
Aut (G) ⊆ Mono (G) ⊆ End (G).
I let endomorphisms φ : G→ G act on the left, x 7→ φ(x).
Fix (φ) = {x ∈ Fn | φ(x) = x} 6 G.
If B ⊆ End (G) then
Fix (B) = {x ∈ G | β(x) = x ∀β ∈ B} = ∩β∈BFix (β) 6 G.
For B ⊆ Hom (G,H),
Eq (B) = {x ∈ G | β1(x) = β2(x) ∀β1, β2 ∈ B}.
Note that if G 6 H and ι ∈ B then Eq (B) = Fix (B).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Notation

Let G be a finitely presented group.
Aut (G) ⊆ Mono (G) ⊆ End (G).
I let endomorphisms φ : G→ G act on the left, x 7→ φ(x).
Fix (φ) = {x ∈ Fn | φ(x) = x} 6 G.
If B ⊆ End (G) then
Fix (B) = {x ∈ G | β(x) = x ∀β ∈ B} = ∩β∈BFix (β) 6 G.
For B ⊆ Hom (G,H),
Eq (B) = {x ∈ G | β1(x) = β2(x) ∀β1, β2 ∈ B}.
Note that if G 6 H and ι ∈ B then Eq (B) = Fix (B).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Notation

Let G be a finitely presented group.
Aut (G) ⊆ Mono (G) ⊆ End (G).
I let endomorphisms φ : G→ G act on the left, x 7→ φ(x).
Fix (φ) = {x ∈ Fn | φ(x) = x} 6 G.
If B ⊆ End (G) then
Fix (B) = {x ∈ G | β(x) = x ∀β ∈ B} = ∩β∈BFix (β) 6 G.
For B ⊆ Hom (G,H),
Eq (B) = {x ∈ G | β1(x) = β2(x) ∀β1, β2 ∈ B}.
Note that if G 6 H and ι ∈ B then Eq (B) = Fix (B).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Notation

Let G be a finitely presented group.
Aut (G) ⊆ Mono (G) ⊆ End (G).
I let endomorphisms φ : G→ G act on the left, x 7→ φ(x).
Fix (φ) = {x ∈ Fn | φ(x) = x} 6 G.
If B ⊆ End (G) then
Fix (B) = {x ∈ G | β(x) = x ∀β ∈ B} = ∩β∈BFix (β) 6 G.
For B ⊆ Hom (G,H),
Eq (B) = {x ∈ G | β1(x) = β2(x) ∀β1, β2 ∈ B}.
Note that if G 6 H and ι ∈ B then Eq (B) = Fix (B).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Notation

Let G be a finitely presented group.
Aut (G) ⊆ Mono (G) ⊆ End (G).
I let endomorphisms φ : G→ G act on the left, x 7→ φ(x).
Fix (φ) = {x ∈ Fn | φ(x) = x} 6 G.
If B ⊆ End (G) then
Fix (B) = {x ∈ G | β(x) = x ∀β ∈ B} = ∩β∈BFix (β) 6 G.
For B ⊆ Hom (G,H),
Eq (B) = {x ∈ G | β1(x) = β2(x) ∀β1, β2 ∈ B}.
Note that if G 6 H and ι ∈ B then Eq (B) = Fix (B).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Notation

Let G be a finitely presented group.
Aut (G) ⊆ Mono (G) ⊆ End (G).
I let endomorphisms φ : G→ G act on the left, x 7→ φ(x).
Fix (φ) = {x ∈ Fn | φ(x) = x} 6 G.
If B ⊆ End (G) then
Fix (B) = {x ∈ G | β(x) = x ∀β ∈ B} = ∩β∈BFix (β) 6 G.
For B ⊆ Hom (G,H),
Eq (B) = {x ∈ G | β1(x) = β2(x) ∀β1, β2 ∈ B}.
Note that if G 6 H and ι ∈ B then Eq (B) = Fix (B).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Notation

Let G be a finitely presented group.
Aut (G) ⊆ Mono (G) ⊆ End (G).
I let endomorphisms φ : G→ G act on the left, x 7→ φ(x).
Fix (φ) = {x ∈ Fn | φ(x) = x} 6 G.
If B ⊆ End (G) then
Fix (B) = {x ∈ G | β(x) = x ∀β ∈ B} = ∩β∈BFix (β) 6 G.
For B ⊆ Hom (G,H),
Eq (B) = {x ∈ G | β1(x) = β2(x) ∀β1, β2 ∈ B}.
Note that if G 6 H and ι ∈ B then Eq (B) = Fix (B).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Outline

1 Fixed subgroups in free groups (history)

2 New results in free groups

3 Fixed subgroups in surface groups (history)

4 New results in surface groups

5 New results in direct products of free and surface groups



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

What is known about free groups ?

Theorem (Dyer–Scott, 75)

Let B 6 Aut (Fn) be a finite group of automorphisms of Fn. Then,
Fix (B) 6ff Fn; in particular, r(Fix (B)) 6 n.

Conjecture (Scott)

For every φ ∈ Aut (Fn), r(Fix (φ)) 6 n.

Theorem (Gersten, 83 (published 87))

Let φ ∈ Aut (Fn). Then r(Fix (φ)) <∞.

Theorem (Thomas, 88)

Let B 6 Aut (Fn) be an arbitrary group of automorphisms of Fn. Then,
r(Fix (B)) <∞.
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Train-tracks

Main result in this story:

Theorem (Bestvina–Handel, 88 (published 92))

Let φ ∈ Aut (Fn). Then r(Fix (φ)) 6 n.

introducing the theory of train-tracks for graphs.

After Bestvina–Handel, live continues ...

Theorem (Imrich–Turner, 89)

Let φ ∈ End (Fn). Then r(Fix (φ)) 6 n.

Theorem (Turner, 96)

Let φ ∈ End (Fn); if φ is not bijective then r(Fix (φ)) 6 n − 1.
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Inertia

Definition
A subgroup H 6 G is called

inert in G if r(H ∩ K ) 6 r(K ) for every K 6 G;
compressed in G if r(H) 6 r(K ) for every H 6 K 6 G;

• Free factors and cyclic subgroups of Fn are inert in Fn;
• intersection of inert subgroups are inert;
• free subgroups of rank 1 and 2 in Fn are inert in Fn;
• A 6 B 6 C; if A is inert in B, and B is inert in C then A is inert in C.
• H 6 G inert ⇒ H 6 G compressed ⇒ r(H) 6 r(G);
• not known if all compress subgroups of Fn are inert in Fn, or not
(Compressed-Inert Conjecture, Dicks-V.)

Theorem (Dicks–V, 96)

Let B ⊆ Mon (Fn) be an arbitrary set of monomorphisms of Fn. Then,
Fix (B) is inert in Fn; in particular, r(Fix (B)) 6 n.
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The inertia conjecture

Inertia Conjecture (Dicks–V.)

For every B ⊆ End (Fn), Fix (B) is inert in Fn.

Theorem (Bergman, 99)

Let B ⊆ End (Fn) be an arbitrary set of endomorphisms of Fn. Then,
r(Fix (B)) 6 n.

Theorem (Martino–V., 04)

Let B ⊆ End (Fn) be an arbitrary set of endomorphisms of Fn. Then,
Fix (B) is compressed in Fn.

• • •

Theorem (Bergman, 99)

Let φ : G� H be an epimorphism of free groups, with H f.g. Then,
the equalizer of any family of sections of φ is a free factor of H.
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Main result for free groups

Theorem (Zhang–Wu–V., 15)

Let F be a f.g. free group, let B ⊆ End (F ), and let β0 ∈ 〈B〉 6 End (F )
be with r(β0(F )) minimal. Then, for every subgroup K 6 F such that
β0(K ) ∩ FixB 6 K , we have r(K ∩ FixB) 6 r(K ).

(Proof)

• Since, Fixα ∩ Fixβ 6 Fix (αβ), we have Fix 〈B〉 = FixB and so, we
can assume that Id ∈ 〈B〉 = B.
• Now choose β0 ∈ B with r(β0(F )) = min{r(γ(F )) | γ ∈ B}. Thus, all
elements of B act injectively on β0(F ).
• Restricting β0B = {β0γ | γ ∈ B} ⊆ B to β0(F ) we get the family of
injective endos: β0γ|β0(F ) : β0(F )→ β0(F ), for γ ∈ B.
• Hence, Fix (β0B) = Fix (β0B|β0(F )) is inert in β0(F ) that is, for every
L 6 β0(F ), we have r(L ∩ Fix (β0B)) 6 r(L).
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Corollaries

As a first corollary, we obtain

Theorem (Martino–V., 04)

Let B ⊆ End (Fn) be an arbitrary set of endomorphisms of Fn. Then,
Fix (B) is compressed in Fn.

(Easier alternative proof)

Clearly, FixB 6 K 6 F ⇒ β0(K ) ∩ FixB 6 K . So, main theorem
applies to those K , and r(FixB) = r(K ∩ FixB) 6 r(K ).

Corollary

Let F be a f.g. free group, let B ⊆ End (F ), and let β0 ∈ 〈B〉 6 End (F )
be with r(β0(F )) minimal. Then, FixB is inert in β0(F ). Moreover, if
β0(F ) is inert in F then FixB is inert in F as well.
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Corollaries

(Proof)

• It follows easily from the main theorem, since
K 6 β0(F ) ⇒ β0(K ) ∩ FixB 6 K .

• In fact, x ∈ β0(K ) ∩ FixB ⇒ β0(k) = x = β0(x) for some k ∈ K . But
both k , x ∈ β0(F ), where β0 is injective. Thus, x = k ∈ K .
• For the last statement we just use transitivity of the inertia property.

Corollary

Let F be a f.g. free group, and B ⊆ End (F ). If some composition of
endos from B has image of rank 1 or 2, then FixB is inert in F .
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Outline

1 Fixed subgroups in free groups (history)

2 New results in free groups

3 Fixed subgroups in surface groups (history)

4 New results in surface groups

5 New results in direct products of free and surface groups
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Notation

Σg denotes the orientable surface of genus g, g > 0;
Sg = π1(Σg) = 〈a1,b1, . . . ,ag ,bg | [a1,b1] · · · [ag ,bg ]〉;
S0 = 〈 | 〉=1, S1 = Z2.

NΣk denotes the connected sum of k projective planes, k > 1;
NSk = π1(NΣk ) = 〈a1, . . . ,ak | a2

1 · · · a2
k 〉;

NS1 = Z/2Z, NS2 = 〈a1,a2 | a2
1a2

2〉 ' 〈a,b | aba−1b〉.

Euler characteristic: χ(Σg) = 2− 2g, χ(NΣk ) = 2− k ;
Euclidean type (χ > 0): S0, S1, NS1, NS2, (and F1 = Z);
Hyperbolic type (χ < 0): Sg , g > 2, NSk , k > 3, (and Fn, n > 2).

Observation

r(Sg) = 2g, r(NSk ) = k, (and r(Fn) = n).
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What is known about surface groups ?

Theorem (Jiang–Wang–Zhang, 11)

Let G be a surf. gr. χ(G) < 0. Then, r(Fix (φ)) 6 r(G) ∀φ ∈ End (G).

Theorem (Wu–Zhang, 14)

Let G be a surface group with χ(G) < 0, and B ⊆ End (G). Then,
(i) r(FixB) 6 r(G), with equality if and only if B = {id};
(ii) r(FixB) 6 1

2 r(G), if B contains a non-epimorphic endomorphism;
(iii) if B ⊆ Aut (G), then FixB is inert in G.

Inertia Conjecture

Let G be a surface group. For every B ⊆ End (G), Fix (B) is inert in G.

Theorem (Wu–Zhang, 14)

Let G be a surface group with χ(G) < 0, and H a f.g. free group. If
φ : G� H is an epimorphism and B is a family of sections of φ, then
r(Eq (B)) 6 r(H) 6 1

2 r(G).
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Main result for surface groups

The proof of main Theorem for free groups works for surface groups
of negative Euler characteristic as well. For non-negative Euler
characteristic one can prove the inertia conjecture directly.

Proposition

Let G be either F0 = S0 = 1, or S1 = Z2, or NS1 = Z/2Z, or NS2, and
let B ⊆ End (G). Then, FixB is inert in G.

Theorem (Zhang–Wu–V., 15)

Let G be a surface group, let B ⊆ End (G), and let β0 ∈ 〈B〉 6 End (G)
be with r(β0(G)) minimal. Then, for every subgroup K 6 G such that
β0(K ) ∩ FixB 6 K , we have r(K ∩ Fix ) 6 r(K ).

(Proof)

The proof for the free group case adapts perfectly here, distinguishing
whether E is free or finite index, and replacing the use of Bergman’s
sections Theorem by Wu–Zhang’s Theorem.
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Corollaries

Theorem (Zhang–Wu–V., 15)

Let G be a surface group and B ⊆ End (G). Then, Fix (B) is
compressed in G.

Corollary

Let G be a surface group, let B ⊆ End (G), and let β0 ∈ 〈B〉 6 End (G)
be with r(β0(G)) minimal. Then, FixB is inert in β0(G). Moreover, if
β0(G) is inert in G then FixB is inert in G as well.

Corollary

For every B ⊆ End (NS3), FixB is inert in NS3.
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Product groups

Definition
A product group is a group of the form G = G1 × · · · ×Gn, where
n > 1, and each Gi is either Fr , r > 1, or Sg , g > 1, or NSk , k > 1.
Block notation: G = G n1

1 × · · · ×G nm
m , ni > 1, and Gi 6' Gj for i 6= j ; of

course, n = n1 + · · ·+ nm.

Definition
A product group G = G1 × · · · ×Gn is of
• hyperbolic type if Gi is hyperbolic for every i;
• Euclidean type if Gi is Euclidean for every i;
• mixed type if Gi is hyperbolic and Gj is Euclidean, for some i , j ;



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Product groups

Definition
A product group is a group of the form G = G1 × · · · ×Gn, where
n > 1, and each Gi is either Fr , r > 1, or Sg , g > 1, or NSk , k > 1.
Block notation: G = G n1

1 × · · · ×G nm
m , ni > 1, and Gi 6' Gj for i 6= j ; of

course, n = n1 + · · ·+ nm.

Definition
A product group G = G1 × · · · ×Gn is of
• hyperbolic type if Gi is hyperbolic for every i;
• Euclidean type if Gi is Euclidean for every i;
• mixed type if Gi is hyperbolic and Gj is Euclidean, for some i , j ;



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Product groups

Definition
A product group is a group of the form G = G1 × · · · ×Gn, where
n > 1, and each Gi is either Fr , r > 1, or Sg , g > 1, or NSk , k > 1.
Block notation: G = G n1

1 × · · · ×G nm
m , ni > 1, and Gi 6' Gj for i 6= j ; of

course, n = n1 + · · ·+ nm.

Definition
A product group G = G1 × · · · ×Gn is of
• hyperbolic type if Gi is hyperbolic for every i;
• Euclidean type if Gi is Euclidean for every i;
• mixed type if Gi is hyperbolic and Gj is Euclidean, for some i , j ;



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Product groups

Definition
A product group is a group of the form G = G1 × · · · ×Gn, where
n > 1, and each Gi is either Fr , r > 1, or Sg , g > 1, or NSk , k > 1.
Block notation: G = G n1

1 × · · · ×G nm
m , ni > 1, and Gi 6' Gj for i 6= j ; of

course, n = n1 + · · ·+ nm.

Definition
A product group G = G1 × · · · ×Gn is of
• hyperbolic type if Gi is hyperbolic for every i;
• Euclidean type if Gi is Euclidean for every i;
• mixed type if Gi is hyperbolic and Gj is Euclidean, for some i , j ;



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Product groups

Definition
A product group is a group of the form G = G1 × · · · ×Gn, where
n > 1, and each Gi is either Fr , r > 1, or Sg , g > 1, or NSk , k > 1.
Block notation: G = G n1

1 × · · · ×G nm
m , ni > 1, and Gi 6' Gj for i 6= j ; of

course, n = n1 + · · ·+ nm.

Definition
A product group G = G1 × · · · ×Gn is of
• hyperbolic type if Gi is hyperbolic for every i;
• Euclidean type if Gi is Euclidean for every i;
• mixed type if Gi is hyperbolic and Gj is Euclidean, for some i , j ;



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Initial properties

In general, r(A× B) 6 r(A) + r(B), but...

Lemma

For a product group, r(G1 × · · · ×Gn) = r(G1) + · · ·+ r(Gn).

Lemma

Let G be a product group. Then, Z (G) = 1 ⇔ G is of hyperbolic type.

Corollary

Let G be Euclidean, G = NS `
2 × Zp × (Z/2Z)q , for `,p,q > 0. Then

any subgroup H 6 G satisfies r(H) 6 r(G) = 2`+ p + q.
In particular, r(Fix (φ)) 6 r(G) for every φ ∈ End (G).
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Initial properties

Lemma

For gi ∈ Gi , CenG(g1, . . . ,gn) ' CenG1 (g1)× · · · × CenGn (gn).
So, in the hyperbolic case, CenG(g1, . . . ,gn) ' Ĝ1 × · · · × Ĝn, where
Ĝi = Gi if gi = 1, or Ĝi = Z if gi 6= 1.

In general Z× A ' Z× B 6⇒ A ' B, but...

Proposition

Let G = G1 × · · · ×Gn and H = H1 × · · · × Hm be two product groups
of hyperbolic type. Then, G ' H ⇔ n = m and Gi ' Hi up to
reordering.
Not true for the Euclidean type: Z2 = Z× Z.
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Main result for product groups

Theorem (Zhang–Wu–V., 15)

Let G = G1 × · · · ×Gn be a product group. Then, r(Fixφ) 6 r(G)
∀φ ∈ Aut (G)⇔ G is either of Euclidean or of hyperbolic type.

(Proof)

• Step 1: If G Euclidean then ok. Done.
• Step 2: If G hyperbolic the ok ...
• Step 3: For any mixed type G, ∃φ ∈ Aut (G) s.t. r(Fixφ) > r(G) ...

Proposition (Zhang–Wu–V., 15)

Let G = G n1
1 × · · · ×G nm

m be a product group in block notation. If G is
of hyperbolic type then, ∀φ ∈ Aut (G), ∃φi,j ∈ Aut (Gi ) and σi ∈ Sni ,
such that

φ = σ1 ◦ · · · ◦ σm ◦ (
m∏

i=1

ni∏
j=1

φi,j ) =
m∏

i=1

(σi ◦
ni∏

j=1

φi,j ).
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Main result for fee products

• Assume G of hyperbolic type, let φ ∈ Aut (G), and let us prove that
r(Fixφ) 6 r(G).
• By previous result, φ =

∏m
i=1

(
σi ◦

∏ni
j=1 φi,j

)
. So,

Fixφ = Fix
(
σ1◦(φ1,1×· · ·×φ1,n1 )

)
×· · ·×Fix

(
σm◦(φm,1×· · ·×φm,nm )

)
,

we are reduced to the case m = 1, i.e., G = G n
1 = G1,1 × · · · ×G1,n

(G1,i = G1) and φ = σ ◦
(
φ1 × · · · × φn

)
, for σ ∈ Sn, φj ∈ Aut (G1,j ).

• If σ = Id then Fixφ = Fixφ1 × · · · × Fixφn and so,

r(Fixφ) 6 r(Fixφ1) + · · ·+ r(Fixφn) 6 n r(G1) = r(G n
1 ) = r(G).

• If σ 6= Id, considering its decomposition as a product of cycles, we
can reduce to the case of a cycle, σ = (n,n − 1, . . . ,1).
• In this situation, φ = σ ◦

(
φ1 × · · · × φn

)
has the form

φ : G1,1 × · · · ×G1,n → G1,1 × · · · ×G1,n
(g1, . . . ,gn) 7→ σ(φ1(g1), φ2(g2), . . . , φn(gn)) =

= (φn(gn), φ1(g1), . . . , φn−1(gn−1)).
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(
σi ◦

∏ni
j=1 φi,j

)
. So,

Fixφ = Fix
(
σ1◦(φ1,1×· · ·×φ1,n1 )

)
×· · ·×Fix

(
σm◦(φm,1×· · ·×φm,nm )

)
,

we are reduced to the case m = 1, i.e., G = G n
1 = G1,1 × · · · ×G1,n

(G1,i = G1) and φ = σ ◦
(
φ1 × · · · × φn

)
, for σ ∈ Sn, φj ∈ Aut (G1,j ).

• If σ = Id then Fixφ = Fixφ1 × · · · × Fixφn and so,

r(Fixφ) 6 r(Fixφ1) + · · ·+ r(Fixφn) 6 n r(G1) = r(G n
1 ) = r(G).

• If σ 6= Id, considering its decomposition as a product of cycles, we
can reduce to the case of a cycle, σ = (n,n − 1, . . . ,1).
• In this situation, φ = σ ◦

(
φ1 × · · · × φn

)
has the form

φ : G1,1 × · · · ×G1,n → G1,1 × · · · ×G1,n
(g1, . . . ,gn) 7→ σ(φ1(g1), φ2(g2), . . . , φn(gn)) =

= (φn(gn), φ1(g1), . . . , φn−1(gn−1)).
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and so,

Fixφ = {
(
g, φ1(g), φ2φ1(g), . . . , (φn−1 · · ·φ1)(g)

)
| g ∈ Fix (φn · · ·φ1)}.

• Hence, r(Fixφ) = r(Fix (φn · · ·φ1)) 6 r(G1) 6 r(G n
1 ) = r(G).

• This finishes step 2.

Finally, for step 3 let us prove that ...

Proposition (Zhang–Wu–V., 15)

Let G be a product group of mixed type. Then, ∃φ ∈ Aut (G) such that
r(Fixφ) > r(G).

(Proof)

•We can reduce to the case G = G1 ×G2 with G1 Euclidean and G2
hyperbolic. Take 1 6= t ∈ Z (G1)), and Z (G2) = 1.
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Main result for product groups

• Since Z (G1) is Z (F1) = Z, or Z (S1) = Z2, or Z (NS1) = Z/2Z, or
Z (NS2) = Z, we deduce o(t) = 2,∞.
• Let us distinguish the 3 cases: G2 = Fr , G = Sg , or G = NSk .

→ Case 1: G2 = Fr = 〈a1, . . . ,ar | 〉, r > 2.
• Consider φ ∈ Aut (G) fixing G1 pointwise and mapping
a1 7→ ta1, a2 7→ a2, . . . , ar 7→ ar . This is well defined because t
commutes with all of G1.
• Now, φ maps w(a1, . . . ,ar ) 7→ w(ta1,a2, . . . ,ar ) = t |w|1w(a1, . . . ,ar ),
where |w |1 ∈ Z is the total a1-exponent of w ∈ G2.
• Hence, Fixφ = G1 × {w ∈ G2 | |w |1 ≡ 0} = G1 × kerπ, where
π : G2 � Z/o(t)Z, w 7→ |w |1, and ≡ means equality of integers
modulo o(t).
• But kerπ is a normal subgroup of G2 = Fr of either infinite index
(and so, infinitely generated) or of index 2 (and so, r(kerπ) =
1 + 2(r − 1) = 2r − 1).
• In both cases, r(kerπ) > r = r(G2) and so,
r(Fixφ) = r(G1) + r(kerπ) > r(G).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Main result for product groups

• Since Z (G1) is Z (F1) = Z, or Z (S1) = Z2, or Z (NS1) = Z/2Z, or
Z (NS2) = Z, we deduce o(t) = 2,∞.
• Let us distinguish the 3 cases: G2 = Fr , G = Sg , or G = NSk .

→ Case 1: G2 = Fr = 〈a1, . . . ,ar | 〉, r > 2.
• Consider φ ∈ Aut (G) fixing G1 pointwise and mapping
a1 7→ ta1, a2 7→ a2, . . . , ar 7→ ar . This is well defined because t
commutes with all of G1.
• Now, φ maps w(a1, . . . ,ar ) 7→ w(ta1,a2, . . . ,ar ) = t |w|1w(a1, . . . ,ar ),
where |w |1 ∈ Z is the total a1-exponent of w ∈ G2.
• Hence, Fixφ = G1 × {w ∈ G2 | |w |1 ≡ 0} = G1 × kerπ, where
π : G2 � Z/o(t)Z, w 7→ |w |1, and ≡ means equality of integers
modulo o(t).
• But kerπ is a normal subgroup of G2 = Fr of either infinite index
(and so, infinitely generated) or of index 2 (and so, r(kerπ) =
1 + 2(r − 1) = 2r − 1).
• In both cases, r(kerπ) > r = r(G2) and so,
r(Fixφ) = r(G1) + r(kerπ) > r(G).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Main result for product groups

• Since Z (G1) is Z (F1) = Z, or Z (S1) = Z2, or Z (NS1) = Z/2Z, or
Z (NS2) = Z, we deduce o(t) = 2,∞.
• Let us distinguish the 3 cases: G2 = Fr , G = Sg , or G = NSk .

→ Case 1: G2 = Fr = 〈a1, . . . ,ar | 〉, r > 2.
• Consider φ ∈ Aut (G) fixing G1 pointwise and mapping
a1 7→ ta1, a2 7→ a2, . . . , ar 7→ ar . This is well defined because t
commutes with all of G1.
• Now, φ maps w(a1, . . . ,ar ) 7→ w(ta1,a2, . . . ,ar ) = t |w|1w(a1, . . . ,ar ),
where |w |1 ∈ Z is the total a1-exponent of w ∈ G2.
• Hence, Fixφ = G1 × {w ∈ G2 | |w |1 ≡ 0} = G1 × kerπ, where
π : G2 � Z/o(t)Z, w 7→ |w |1, and ≡ means equality of integers
modulo o(t).
• But kerπ is a normal subgroup of G2 = Fr of either infinite index
(and so, infinitely generated) or of index 2 (and so, r(kerπ) =
1 + 2(r − 1) = 2r − 1).
• In both cases, r(kerπ) > r = r(G2) and so,
r(Fixφ) = r(G1) + r(kerπ) > r(G).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Main result for product groups

• Since Z (G1) is Z (F1) = Z, or Z (S1) = Z2, or Z (NS1) = Z/2Z, or
Z (NS2) = Z, we deduce o(t) = 2,∞.
• Let us distinguish the 3 cases: G2 = Fr , G = Sg , or G = NSk .

→ Case 1: G2 = Fr = 〈a1, . . . ,ar | 〉, r > 2.
• Consider φ ∈ Aut (G) fixing G1 pointwise and mapping
a1 7→ ta1, a2 7→ a2, . . . , ar 7→ ar . This is well defined because t
commutes with all of G1.
• Now, φ maps w(a1, . . . ,ar ) 7→ w(ta1,a2, . . . ,ar ) = t |w|1w(a1, . . . ,ar ),
where |w |1 ∈ Z is the total a1-exponent of w ∈ G2.
• Hence, Fixφ = G1 × {w ∈ G2 | |w |1 ≡ 0} = G1 × kerπ, where
π : G2 � Z/o(t)Z, w 7→ |w |1, and ≡ means equality of integers
modulo o(t).
• But kerπ is a normal subgroup of G2 = Fr of either infinite index
(and so, infinitely generated) or of index 2 (and so, r(kerπ) =
1 + 2(r − 1) = 2r − 1).
• In both cases, r(kerπ) > r = r(G2) and so,
r(Fixφ) = r(G1) + r(kerπ) > r(G).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Main result for product groups

• Since Z (G1) is Z (F1) = Z, or Z (S1) = Z2, or Z (NS1) = Z/2Z, or
Z (NS2) = Z, we deduce o(t) = 2,∞.
• Let us distinguish the 3 cases: G2 = Fr , G = Sg , or G = NSk .

→ Case 1: G2 = Fr = 〈a1, . . . ,ar | 〉, r > 2.
• Consider φ ∈ Aut (G) fixing G1 pointwise and mapping
a1 7→ ta1, a2 7→ a2, . . . , ar 7→ ar . This is well defined because t
commutes with all of G1.
• Now, φ maps w(a1, . . . ,ar ) 7→ w(ta1,a2, . . . ,ar ) = t |w|1w(a1, . . . ,ar ),
where |w |1 ∈ Z is the total a1-exponent of w ∈ G2.
• Hence, Fixφ = G1 × {w ∈ G2 | |w |1 ≡ 0} = G1 × kerπ, where
π : G2 � Z/o(t)Z, w 7→ |w |1, and ≡ means equality of integers
modulo o(t).
• But kerπ is a normal subgroup of G2 = Fr of either infinite index
(and so, infinitely generated) or of index 2 (and so, r(kerπ) =
1 + 2(r − 1) = 2r − 1).
• In both cases, r(kerπ) > r = r(G2) and so,
r(Fixφ) = r(G1) + r(kerπ) > r(G).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Main result for product groups

• Since Z (G1) is Z (F1) = Z, or Z (S1) = Z2, or Z (NS1) = Z/2Z, or
Z (NS2) = Z, we deduce o(t) = 2,∞.
• Let us distinguish the 3 cases: G2 = Fr , G = Sg , or G = NSk .

→ Case 1: G2 = Fr = 〈a1, . . . ,ar | 〉, r > 2.
• Consider φ ∈ Aut (G) fixing G1 pointwise and mapping
a1 7→ ta1, a2 7→ a2, . . . , ar 7→ ar . This is well defined because t
commutes with all of G1.
• Now, φ maps w(a1, . . . ,ar ) 7→ w(ta1,a2, . . . ,ar ) = t |w|1w(a1, . . . ,ar ),
where |w |1 ∈ Z is the total a1-exponent of w ∈ G2.
• Hence, Fixφ = G1 × {w ∈ G2 | |w |1 ≡ 0} = G1 × kerπ, where
π : G2 � Z/o(t)Z, w 7→ |w |1, and ≡ means equality of integers
modulo o(t).
• But kerπ is a normal subgroup of G2 = Fr of either infinite index
(and so, infinitely generated) or of index 2 (and so, r(kerπ) =
1 + 2(r − 1) = 2r − 1).
• In both cases, r(kerπ) > r = r(G2) and so,
r(Fixφ) = r(G1) + r(kerπ) > r(G).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Main result for product groups

• Since Z (G1) is Z (F1) = Z, or Z (S1) = Z2, or Z (NS1) = Z/2Z, or
Z (NS2) = Z, we deduce o(t) = 2,∞.
• Let us distinguish the 3 cases: G2 = Fr , G = Sg , or G = NSk .

→ Case 1: G2 = Fr = 〈a1, . . . ,ar | 〉, r > 2.
• Consider φ ∈ Aut (G) fixing G1 pointwise and mapping
a1 7→ ta1, a2 7→ a2, . . . , ar 7→ ar . This is well defined because t
commutes with all of G1.
• Now, φ maps w(a1, . . . ,ar ) 7→ w(ta1,a2, . . . ,ar ) = t |w|1w(a1, . . . ,ar ),
where |w |1 ∈ Z is the total a1-exponent of w ∈ G2.
• Hence, Fixφ = G1 × {w ∈ G2 | |w |1 ≡ 0} = G1 × kerπ, where
π : G2 � Z/o(t)Z, w 7→ |w |1, and ≡ means equality of integers
modulo o(t).
• But kerπ is a normal subgroup of G2 = Fr of either infinite index
(and so, infinitely generated) or of index 2 (and so, r(kerπ) =
1 + 2(r − 1) = 2r − 1).
• In both cases, r(kerπ) > r = r(G2) and so,
r(Fixφ) = r(G1) + r(kerπ) > r(G).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

Main result for product groups

• Since Z (G1) is Z (F1) = Z, or Z (S1) = Z2, or Z (NS1) = Z/2Z, or
Z (NS2) = Z, we deduce o(t) = 2,∞.
• Let us distinguish the 3 cases: G2 = Fr , G = Sg , or G = NSk .

→ Case 1: G2 = Fr = 〈a1, . . . ,ar | 〉, r > 2.
• Consider φ ∈ Aut (G) fixing G1 pointwise and mapping
a1 7→ ta1, a2 7→ a2, . . . , ar 7→ ar . This is well defined because t
commutes with all of G1.
• Now, φ maps w(a1, . . . ,ar ) 7→ w(ta1,a2, . . . ,ar ) = t |w|1w(a1, . . . ,ar ),
where |w |1 ∈ Z is the total a1-exponent of w ∈ G2.
• Hence, Fixφ = G1 × {w ∈ G2 | |w |1 ≡ 0} = G1 × kerπ, where
π : G2 � Z/o(t)Z, w 7→ |w |1, and ≡ means equality of integers
modulo o(t).
• But kerπ is a normal subgroup of G2 = Fr of either infinite index
(and so, infinitely generated) or of index 2 (and so, r(kerπ) =
1 + 2(r − 1) = 2r − 1).
• In both cases, r(kerπ) > r = r(G2) and so,
r(Fixφ) = r(G1) + r(kerπ) > r(G).



1.Free groups (history) Free groups (new) Surface groups (history) Surface groups (new) Direct products (new)

→ Case 2: G2 = Sg = 〈a1,b1, . . . ,ag ,bg | [a1,b1] · · · [ag ,bg ]〉, g > 2.
• Consider φ ∈ Aut (G) fixing G1 pointwise, and mapping
a1 7→ ta1, b1 7→ b1, . . . , ag 7→ ag , bg 7→ bg . It is well defined because t
commutes with b1 and all of G1.
• As in case 1, w(a1,b1, . . . ,ag ,bg) 7→ w(ta1,b1, . . . ,ag ,bg) =
t |w|1w(a1,b1, . . . ,ag ,bg), where |w |1 ∈ Z is the total a1-exponent of
w ∈ G2 (which makes sense because the def. rel. in G2 has total
a1-exponent equal to zero).
• Hence, as above, Fixφ = G1 × {w ∈ G2 | |w |1 ≡ 0} = G1 × kerπ,
where π : G2 � Z/o(t)Z, w 7→ |w |1, and ≡ means equality of integers
modulo o(t).
•We conclude like above, after proving that r(kerπ) > r(G2) = 2g.
• If o(t) = 2, this is true because kerπ 62 G2 and so, kerπ is a
surface group of bigger genus (and rank).
• If o(t) =∞ then kerπ 6∞ G2 (so, free), and kerπ is infinitely
generated by the following argument: ∀x ∈ G2 \ kerπ, we have
[G2 : 〈kerπ, x〉] = [Z : 〈π(x)〉] = |π(x)| <∞ and so, 〈kerπ, x〉 is a surf.
gr. with χ(〈kerπ, x〉) = [G2 : 〈kerπ, x〉]χ(G2) = |π(x)|(2− 2g) and
thus, r(〈kerπ, x〉) = 2 + |π(x)|(2g − 2).
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Main result for product groups

→ Case 3: G2 = NSk = 〈a1,a2, . . . ,ak | a2
1 · · · a2

k 〉, k > 3.
• Consider φ ∈ Aut (G) fixing G1 pointwise and mapping
a1 7→ ta1, a2 7→ t−1a2, a3 7→ a3, . . . , ak 7→ ak . It is well defined
because t commutes with a1,a2 and all of G1.
• Observe now that, due to the form of the def. rel. in G2, the “total
ai -exponent” of an element of w ∈ G is not well defined; however, the
difference of two of them, say |w |1 − |w |2 ∈ Z, it really is.
• Hence, the projection π : G2 � Z/o(t)Z, w 7→ |w |1 − |w |2 is well
defined, φ maps w(a1, . . . ,ak ) to
w(ta1, t−1a2,a3, . . . ,ak ) = t |w|1−|w|2w(a1, . . . ,ak ), and we proceed
and conclude as in case 2.
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Characterizing compression

It is natural to ask for similar characterizations of full compression and
full inertia.

Theorem (Zhang–Wu–V., 15)

Let G = G1 × · · · ×Gn be a product group. If Fixφ is compressed in G
for every φ ∈ Aut (G), then G must be of one of the following forms:

(euc1) G = Zp × (Z/2Z)q for some p,q > 0; or
(euc2) G = NS2 × (Z/2Z)q for some q > 0; or
(euc3) G = NS2 × Zp × (Z/2Z) for some p > 1; or
(euc4) G = NS `

2 × Zp for some ` > 1, p > 0; or

(hyp1) G = Fr × NS `
3 for some r > 2, ` > 0; or

(hyp2) G = Sg × NS `
3 for some g > 2, ` > 0; or

(hyp3) G = NSk × NS `
3 for some k > 3, ` > 0.
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Characterizing inertia

Theorem (Zhang–Wu–V., 15)

Let G = G1 × · · · ×Gn be a product group. If Fixφ is inert in G for
every φ ∈ Aut (G), then G is of one of the forms: (euc1), or (euc2), or
(euc3), or (euc4), or

(hyp1’ ) G = Fr for some r > 2; or
(hyp2’ ) G = Sg for some g > 2; or
(hyp3’ ) G = NSk for some k > 3.

Conjecture (Zhang–Wu–V., 15)

Let G = G1 × · · · ×Gn be a product group. Then, the following are
equivalent:
(a) every φ ∈ End (G) satisfies that Fixφ is inert in G,
(b) every φ ∈ Aut (G) satisfies that Fixφ is inert in G,
(c) G is of the form (euc1), or (euc2), or (euc3), or (euc4), or (hyp1’),

or (hyp2’), or (hyp3’).
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