An example of an automatic graph of intermediate growth

Dmytro Savchuk (joint with A. Miasnikov)

University of South Florida

May 28, 2013

Automatic groups were introduced by Thurston in 1986 motivated by earlier results of Cannon.

Initial motivation was:

- understand fundamental groups of compact 3-manifolds
- make them tractable for computing

If G is automatic, then

- Word problem in G is decidable in quadratic time
- *G* is finitely presented
- The Dehn function of G is at most quadratic
- if G is biautomatic, then the conjugacy problem is decidable
- hyperbolic (in particular free); braid; Artin groups of finite type; Coxeter groups; most of 3-manifold groups are automatic

The following groups are NOT automatic

- infinite torsion groups
- f.g. nilpotent groups (not virtually abelian)
- some $\pi_1(3$ -manifold)s
- non-abelian torsion free polycyclic groups
- $SL_n(\mathbb{Z})$
- Baumslag-Solitar groups $BS(p,q) = \langle x, y \mid y^{-1}x^py = x^q \rangle$ unless p = 0, q = 0 or $p = \pm q$

So the class of automatic groups is NICE but NOT WIDE ENOUGH

Suggested generalizations

- Combable groups (relax requirement on the language)
- Geometric generalization of automaticity that covers all 3-manifold groups (Bridson-Gilman)
- Stackable groups (Brittenham-Hermiller)
- C-graph automatic groups (Elder-Taback)

Suggested generalizations

- Combable groups (relax requirement on the language)
- Geometric generalization of automaticity that covers all 3-manifold groups (Bridson-Gilman)
- Stackable groups (Brittenham-Hermiller)
- C-graph automatic groups (Elder-Taback)

We look at:

• Graph automatic groups (relax restriction on the alphabet) - Kharlampovich, Khoussainov, Miasnikov (2011)

Retains nice algorithmic properties and includes many more examples: f.g. nilpotent of class 2 and some of higher nilpotency class; BS(1, n); many metabelian and solvable groups; infinitely presented groups

Suggested generalizations

- Combable groups (relax requirement on the language)
- Geometric generalization of automaticity that covers all 3-manifold groups (Bridson-Gilman)
- Stackable groups (Brittenham-Hermiller)
- C-graph automatic groups (Elder-Taback)

We look at:

• Graph automatic groups (relax restriction on the alphabet) -Kharlampovich, Khoussainov, Miasnikov (2011)

Retains nice algorithmic properties and includes many more examples: f.g. nilpotent of class 2 and some of higher nilpotency class; BS(1, n); many metabelian and solvable groups; infinitely presented groups

Question

Are there graph automatic groups of intermediate growth?

Dmytro Savchuk (USF)

Automatic Graph

Automatic vs. Graph Automatic groups

Definition (Automatic (Thurston))

A f.g. group $G = \langle S \rangle$ is called automatic if

- There exists a regular language $L \subset S^*$ such that $\overline{}: L \to G$ is onto
- The relations $E_s = \{(u, v) \mid u, v \in L, \overline{u} = \overline{vs}\}$ on S^* are regular for $s \in S \cup \{id\}$

Definition (Graph Automatic (KKM))

A f.g. group $G = \langle S \rangle$ is called graph automatic if there is a finite alphabet X such that

- There exists a regular language $L \subset X^*$ and an onto map $\overline{}: L \to G$
- The relations $E_s = \{(u, v) \mid u, v \in L, \overline{u} = \overline{v}s\}$ on X^* are regular for $s \in S \cup \{id\}$

X need not coincide with a generating set S.

More general definition of graph automaticity

Let $\Gamma = (V, E, \sigma \colon E \to S)$ be a labeled graph. We interpreted it as a system of |S| binary relations E_s on V:

$$E_s = \{(v, v') \mid (v, v') \in E \text{ and the label of } (v, v') \text{ is } s\}.$$

Each map $\overline{}: V \to X^*$ induces |S| binary relations \overline{E}_s on X^*

$$\overline{E}_s = \{ (\overline{v}, \overline{v'}) \mid (v, v') \in E_s \}.$$

Definition

 $\Gamma = (V, E, \sigma \colon E \to S)$ is called automatic, if there is a finite alphabet X and an injective map $: V \to X^*$ such that

- \overline{V} is a regular language over X and
- \overline{E}_s is a regular binary relation on X^* for each $s \in S$.

Proposition

A f.g. group $G = \langle S \rangle$ is graph automatic \Leftrightarrow Cayley graph Cay(G, S) with respect to S is automatic.

Automatic

VS

Generated by Automata

Dmytro Savchuk (USF)

Automata – transducers

 $V(T) = X^*$, $X = \{0, \dots, d-1\}$ – alphabet

 $G < \operatorname{Aut} T$

Action on T given by finite initial automaton

Definition (By Example)

 $S_2 = \{\varepsilon, \sigma\}$ acts on $X = \{0, 1\}.$

 \mathcal{A} — noninitial automaton, \mathcal{A}_q — initial automaton, $q \in \{a, b, id\}$.

 \mathcal{A}_q acts on X^* (and on T)

Definition of automaton group

Given an automaton A every state q defines an automorphism A_q of X^*

Definition

The automaton group generated by automaton A is a group

 $G(A) = \langle A_q \mid q \text{ is a state of } A \rangle < \operatorname{Aut} X^*$

Definition of automaton group

Given an automaton A every state q defines an automorphism A_q of X^*

Definition

The automaton group generated by automaton A is a group

$$G(A) = \langle A_q \mid q \text{ is a state of } A \rangle < \operatorname{Aut} X^*$$

Example

 $a(w) = \overline{w}$. Thus $a^2 = 1$ and $G(A) \simeq C_2$.

Let $G = \langle S \rangle$ act transitively on X.

Definition

The Schreier graph $\Gamma(G, X, S)$ of the action of G on X with respect to generating set S is the graph with set of vertices X and edges

Schreier Graphs

Schreier Graphs

Automaton generating group G

Theorem (Bondarenko, Ceccherini-Silberstein, Donno, Nekrashevych, 2012)

All Schreier graphs Γ_{ω} for $\omega \in \{0,1\}^{\infty}$ of the group G have intermediate growth. More specifically, the growth function satisfies

$$n^{\frac{1}{2}\log_2 n} \preceq |B(\omega, n)| \preceq n^{\log_2 n}$$

Graph $\Gamma_{(01)^{\infty}}$

Theorem (Miasnikov,S.)

The graph $\Gamma_{(01)^{\infty}}$ is an automatic graph of intermediate growth.

Dmytro Savchuk (USF)

Automatic Graph

May 28, 2013 19 / 27

Definition of

Definition

 $\omega = x_1 x_2 x_3 \dots$ and $\omega' = y_1 y_2 y_3 \dots$ in X^{∞} are called *cofinal* if there exist N > 0 such that $x_n = y_n$ for all $n \ge N$.

Proposition (Bondarenko, Ceccherini-Silberstein, Donno, Nekrashevych, 2012)

The orbit of $\omega = (01)^{\infty}$ coincides with a cofinality class of $(01)^{\infty}$.

Definition of

Definition

 $\omega = x_1 x_2 x_3 \dots$ and $\omega' = y_1 y_2 y_3 \dots$ in X^{∞} are called *cofinal* if there exist N > 0 such that $x_n = y_n$ for all $n \ge N$.

Proposition (Bondarenko, Ceccherini-Silberstein, Donno, Nekrashevych, 2012)

The orbit of $\omega = (01)^{\infty}$ coincides with a cofinality class of $(01)^{\infty}$.

Thus, each vertex of $\Gamma_{(01)^{\infty}}$ is labelled by an infinite word over X that is cofinal with $(01)^{\infty}$.

Definition of

For

where $x_k \neq 1$, define

$$\overline{\omega} = x_1 x_2 x_3 \dots x_k$$

Example

•
$$\overline{(01)^{\infty}} = \emptyset$$

•
$$\overline{110011(01)^{\infty}} = 11001$$

Automaton \mathcal{A}_V accepting $\overline{V(\Gamma_{(01)^{\infty}})}$

Observation

 $\overline{V(\Gamma_{(01)^{\infty}})}$ consists of the empty word and words whose last letter is different from corresponding letter of $(01)\infty$.

Automaton \mathcal{A}_a accepting L_a

Automaton \mathcal{A}_b accepting L_b

24 / 27

Let's be more specific!

 $X_\diamond = X \cup \{\diamond\}$, $\diamond \notin X$ - padded alphabet.

Definition

For $(w_1, w_2) \in (X^*)^2$ a convolution $\otimes(w_1, w_2)$ is a word over $(X_\diamond)^2$ of length max{ $|w_1|, |w_2|$ }, whose *j*-th symbol is (σ_1, σ_2) , where

$$\sigma_i = \begin{cases} \text{ the } j\text{-th symbol of } w_i, & \text{if } j \leq |w_i| \\ \diamond, & \text{ otherwise} \end{cases}$$

Example

$$\otimes$$
 (011, 00110) $= \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} \diamond \\ 1 \end{pmatrix} \begin{pmatrix} \diamond \\ 0 \end{pmatrix}$

Definition

Let *R* be a binary relation on X^* . The convolution of *R* is the language over $(X_{\diamond})^2$ defined by

$$\otimes R = \{ \otimes (w_1, w_2) \mid (w_1, w_2) \in R \}.$$

Definition

A binary relation R on X^* is called regular if its convolution $\otimes R$ is a regular language over $(X_{\diamond})^2$.

Automata groups as a source of counterexamples

- Burnside problem on infinite periodic groups
- Milnor problem on groups of intermediate growth
- Day problem on amenability
- Atiyah conjecture on L^2 Betti numbers