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Abstract

The subset-sum problem (SSP) is defined as follows: given a positive integer bound
and a set of n positive integers find a subset whose sum is closest to, but not greater
than, the bound. We present a randomized approximation algorithm for this problem
with linear space complexity and time complexity of O(nlogn). Experiments with random
uniformly-distributed instances of SSP show that our algorithm outperforms, both in run-
ning time and average error, Martello and Toth’s [MT84] quadratic greedy search, whose
time complexity is O(n?). We propose conjectures on the expected error of our algorithm
for uniformly-distributed instances of SSP and provide some analytical arguments justifying
these conjectures. We present also results of numerous tests.

1 Introduction

The subset-sum problem (SSP) is a special case of the knapsack problem and is defined as
follows: given a set! of positive integers {a1,...,an}, n > 1, and a positive integer B (the
bound), find a subset of the a;’s such that their sum is as close as possible to B, without
exceeding B.

This problem is NP-hard (see e.g. [GJ79]), therefore finding an optimal solution for big n
and big values of a;’s is currently not feasible. In practice however one is often satisfied with
an approximate solution, which can be found quite efficiently (i.e. in polynomial time).

We present a new, randomized approximation algorithm for the SSP which runs in O(n logn)
time using O(n) space. Tests with random uniformly-distributed instances of SSP show that
our algorithm performs significantly better than the best algorithms known so far.

1.1 An Alternative Formulation of the SSP and Some Notation

The subset-sum problem can be defined equivalently as: given [a1,... ,a,] € N* and B € N,
find a vector x = [z1,... ,z,), with z; € {0,1}, i=1,... ,n, which

n
maximizes g a;T;
=1

n
subject to Zaiwi <B.
i=1
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1The considered sets are actually multi-sets since the numbers a; do not have to be distinct.



In this case a number g@; is in the solution subset if and only if z; is equal 1, and the vector
X = [z1,... ,Zp] can be interpreted as a representation of this subset.

Let P denote an instance of SSP, S, (P) a subset of a;’s constituting an optimal solution of
P and V,(P) its value, i.e. the sum of the numbers belonging to S,(P). Furthermore let Sa(P)
and Va(P) denote the analogous quantities obtained when a heuristic algorithm A is applied
to P. The worst-case performance ratio of algorithm A is the largest real number ry,.(A), such
that

Va(P
Fwe(A) < VA(( P)), for all P.
For a solution x=[z1,... ,x,] of the problem P the absolute error §(x) of x is defined as

(S(X) == V*(P) - inai ,
=1

and the relative error ¢(x) as

e(x) =
An approximation algorithm A is said to have a relative error bound ¢ if every solution x
returned by A for any given problem P fulfills
e(x) <e.

Finally, the density d(P) of a problem P is defined as

d(P) = -
N ]Og2 maxi<i<n @4 )

2 The Best Known Approximation Algorithms

This section surveys some approximation algorithms for SSP found in the literature, including
the best algorithms currently available.

2.1 Greedy Methods

The standard greedy algorithm G for solving the SSP starts with an empty solution-subset and
examines the numbers a; in the decreasing order of their values. Each considered q; is inserted
into the current solution if and only if it is smaller than the difference between B and the sum
of the current solution. Its time complexity, clearly dominated by the sorting operation, is
O(nlogn) and the space required is O(n). The worst-case performance ratio 7,.(G) is equal
to %
If in the greedy algorithm G the numbers a; are examined in random order, i.e. no sorting

is performed, the running time reduces to O(n) and the resulting randomized greedy algorithm



RG gives often surprisingly good results (see [TS86] and Section 5). Since RG is a randomized
algorithm its result is not deterministic and two independent runs on the same instance of SSP
can yield different solutions. To reduce the probability of an “unlucky” solution, whose error
is significantly larger than the expected error, one can perform a few independent trials of RG
on the given instance and finally return the best solution. Such an algorithm with ¢ trials is
denoted by RG(%).

Martello and Toth [MT84] presented another greedy method: a quadratic greedy algorithm,
QG, with running time O(n?), space complexity O(n) and r,.(QG)=2.

Kellerer et al. [KMS98| proposed two linear algorithms with rwc:% and rwc:%. For uni-
formly distributed instances of SSP their algorithm gives results similar to RG(40), which is
also linear (cf. [KMS98] and Section 5).

2.2 Approximation Schemes

An approzimation scheme for an optimization problem is an approximation algorithm that
takes as input not only an instance of the problem but also a value € > 0. For any fixed ¢ the
scheme is an approximation algorithm with relative error bound e.

A polynomial-time approzimation scheme is an approximation scheme which for any fixed
€ > 0 runs in time polynomial in the input size n.

An approximation scheme is a fully polynomial-time approximation scheme if its running
time is polynomial both in 1/¢ and in the input size n, where ¢ is the relative error bound of
the scheme.

Approximation schemes are preferred over “normal” approximation algorithms, since they
offer a trade-off between the computation time and the quality of the approximation, i.e. they
can achieve increasingly smaller relative error bounds by using more and more time and/or
space.

There exist fully polynomial approximation schemes for the SSP (e.g. [IK75]), which how-
ever either require a large amount of space and become infeasible for relatively small n, or are
in practice outperformed by the best known polynomial approximation schemes [MT85].

Martello and Toth [MT84] presented a polynomial approximation scheme MT(s), s > 2,
which for s > 3 gives r4,.(MT(s)) > (s+3)/(s+4). Its time complexity is O(n®) and the space
complexity O(n).

Soma et al. [SZYH95] proposed a variation of the MT scheme, denoted by PS(s, v), s > 2,
v > 1. PS(s, v) can be theoretically two times slower than MT(s) and gives the same maximum
error, but practically is as fast as MT(s) and produces on the average slightly smaller errors
(cf. Figure 2 in Section 5 and [SZYH95)).

For s=2 both algorithms MT and PS are equivalent to the quadratic greedy algorithm QG.

3 A New Fast Algorithm

Although both MT(s) and PS(s, v) run in polynomial time, already their simplest and fastest
versions, i.e. MT(2) resp. PS(2, 1), are equivalent to QG and hence have time complexity
O(n?). This is considerably worse than O(nlogn) achieved by the greedy algorithm G, which
however produces significantly larger errors.

The proposed new solution method for the SSP is a randomized algorithm called “Ran-
domized Greedy with Local Improvement” (RGLI), whose time complexity is O(nlogn), the
space complexity is O(n), and which on average produces much better solutions than G or QG.



One drawback of the algorithm RGLI is that it does not generalize easily to create a polynomial
approximation scheme.

3.1 The Algorithm

The algorithm consists of one or more independent trials, each being a composition of two
phases. In each trial a new solution is found, and the solution returned by the algorithm is the
best solution from all the trials. Test runs (cf. Section 5.3) show that the maximal number of
trials can be set to a small constant (~ 50), independently of n and of the magnitude of the
numbers. The algorithm consisting of ¢ independent trials of RGLI is denoted by RGLI(¢).

In the first phase of a trial we choose randomly a solution vector x, which is permissible, i.e.
it does not exceed the bound B, and which is mazimal, i.e. for which adding any still available
number a; would exceed the bound B. The first phase can be realized by a random greedy
approach, i.e. starting with an empty solution subset (x = [0,...,0]), the numbers a; are
examined in random order and each considered a; is inserted into the current solution if and
only if it is smaller than the difference between B and the sum of the current solution.

The second phase is a local improvement: we examine all the numbers determined by the
solution vector x found in the first phase, and for each considered number a; (with z; = 1) we
search for the largest number not in the current solution, which would reduce the error §(x)
when taken into the solution instead of a;. If we find such a number, we replace a; with it and
proceed with the next number in the solution.

After the second phase the improved solution is compared with the best solution found so
far, and, if appropriate, the best solution is updated. Figure 1 presents the whole algorithm in
pseudo-code.

Note that the first phase is equivalent to the randomized greedy algorithm RG, which, as
shown by Tinhofer and Schreck [TS86], gives very good results for so called bounded subset-sum
problems. The second phase is similar to a heuristic of Balas and Zemel [BZ80], who used it
to derive an exact integer solution of a so called approximate core knapsack problem from an
optimal (fractional) solution of a linear program associated with the problem. As we will see
later this mixture of both phases gives remarkably good results.

4 Analysis of the Algorithm RGLI(¢)

4.1 Time and Space Complexity

The running time of the first phase is linear since we consider each number exactly once. The
random examination-order can be achieved by generating a random permutation of n elements,
which also takes linear time (see e.g. [RND77]).

In the second phase we search at most O(n) times for a number among at most O(n)
numbers, which are not in the current solution. If we sort those numbers (in time O(nlogn)),
each search can be executed in time O(logn) (binary search), so the time complexity of the
second phase is bounded by the O(nlogn). It follows that the total running time of the
algorithm RGLI is bounded by O((max-number-of-trials) - nlogn). If the number of trials is
constant we obtain an O(n logn)-algorithm.

The space complexity of the algorithm is clearly linear.
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Input: positive integer numbers a1,... ,a,, B
Output: a solution vector [z1,... ,zy,]

Xbest = [Oa s 10];
for trial:=1 to (max-number-of-trials) do
// first phase: randomized selection
x:=[0,...,0];
for each i ER {1,...,n} do // in random order
if (aZ S 5( ) then // 8(x) is the absolute error of the solution x

fi;
od;
// second phase: local improvement
Ii={j:z; =1};
for each i cg I do // in random order
if (6(x) =0) then
break; // quit the inner “for each” loop
fi;
let T' denote the set of valid replacements for a;,
e T={a:z;=0 A 0<(a;—a;) <I(x)}
if ( 7" is not empty ) then
k:= index, such that ay=max(T)
Tp=1;
z;i=0;
fi;
od;
// Xebest update
if ( 5(X) < 5(Xbest) ) then
Xbest:= X;
fi;
if ( 0(Xpest) = 0 ) then
break; // quit the outer “for” loop
fi;
od;
return Xpegt;

Figure 1: The new randomized algorithm (RGLI) for the subset-sum problem

4.2 Performance Analysis

In this section we estimate the quality of approximative solutions found by the algorithm
RGLI(1). Assume that the numbers a; are uniformly distributed over an interval [1..M], where
M is a constant. We are interested in the expected error of a solution found by RGLI(1).
Note that the first phase of the algorithm determines the size of the solution set, i.e. the
number of numbers chosen. The second phase replaces some numbers of the solution by other



numbers, while keeping the size of the solution set constant. Therefore we can split the analysis
into three parts:

1. estimating the expected size of the solution set
2. estimating the expected (absolute) error of the random solution chosen in the first phase

3. estimating the expected (absolute) error of the improved solution after the second phase.

Since the numbers a; are uniformly distributed over an interval [1..M], the first phase of
the algorithm is equivalent to starting with an amount B of free space and repeating n times
the following random experiment A:

Experiment A: let i denote the current repetition of the experiment; choose a number «;
uniform-randomly from the interval [1..M] and accept it if it still fits into the remaining
free space, reject otherwise; “accepting” reduces the amount of free space by «; and
“rejecting” leaves the free space unaltered.

The expected number of accepted numbers «; after n repetitions is equal to the expected
number of a;’s chosen in the first phase of the algorithm RGLI. Furthermore, the expected
remaining free space after n repetitions is equal to the expected error of the solution found in
the RGLI’s first phase. Therefore we can handle the first two parts of the performance analysis
by considering successive repetitions of the experiment A.

Let e(B) denote the expected amount of free space and 7 (B) the expected number of
accepted numbers after k repetitions of the experiment A for a given value of B. We are
interested in the expected error and the expected size of the solution set after the first phase,
i.e. we would like to estimate the values of €, (B) and 7, (B).

If in an experiment A the free space is greater than M, any chosen number «; will be surely
accepted. If the free space is not greater than M, «; will be accepted if and only if it is not
greater than the free space. Therefore x(B) can be computed from the following recursive
formula:

( B 1 M 1
ZM,H(B )+AZ —ep1(B) 1<B<M
i=1 i=B+1
ex(B) = (1)
Mo
Z Mik_l(B — Z) B>M

with €,(0) =0, &(B) =B Vk, VB.
Analogously we can derive a recursive formula for 7 (B):

( M

B
1 1
ZM 14 ng—1(B — ))+.Z fw-1(B)  1<B<M
=1 1=B+1
nk(B) = 4 (2)
Mo
Z 1‘|"I]k 1B )) B>M
\ =1

with 77]6(0) = 0, 770(B) =0 Vk, VB.



4.2.1 Estimating ¢(B) and n,(B) for B < M.

The formula (1) can be rewritten as

/

B-1
1 M- B
_ng—l(i)"‘f' er-1(B) 1<B<M
M — M
ex(B) = <
1 M
MZEH(B—Z) B>M
\ =1

Subtracting e (B — 1) from g (B) gives

e4(B) — ex(B—1) = (1—%)k,

which leads directly to the (non-recursive) formula for the ex(B) (for B < M):

er(B) = ex(B) —ex(0)

1 B
= g (M=) (3)
=1
Further we get
1 B 1 B-1
g | G—afas <) < gp [ 00-afa
_ k1N | B o Nk+1\ |B-L
(YN <) < o (W
M¥ k+1 ! MF k+1 .
M-1\*M—-1 (M-B)k M M + 1 — B)kt1
WM (B) < _(M+1-B) n
M k+1  MFEk+1) k+1 MF(k +1)

For B = M we obtain

M—1\*MmM—-1 M
(%57) fr < aon <55



which can be simplified further by using the following fact

<1. (5)

<
0 E+1 —

“k+1

M M—1\*Mm-1
M

The left inequality of (5) is obvious and the right can be proved as shown below.

le_ngwkfifgl < M‘(MJIYUW—D§k+1
& 1_k_]\;1S< _%>k+1
& 1o <(-a)f, (r= n=Fk+1),

where the last inequality follows directly from the Taylor series of (1 — z)®. Therefore (5) is
indeed satisfied and we obtain

M
M)=——+4+0(1). 6
k(M) = o+ O(1) )
Note that for B “close to” M, i.e. when M — B = o(M), the terms subtracted on both sides

of (4) are negligible?, therefore we get

M
ek(B) = (M) + 0(1) = ;=5 +0(1)  for BEM, M ~B=o(M). (7)
The estimation of ng(B) proceeds similarly to e4(B). Formula (2) can be equivalently

written as

B 1 M-B
— 4+ — _ _1(B 1<B<M
M+Mz:1nk 1(6) + T 1(B)
mk(B) = ¢
| XM
1+M§)”“B_” B>M
\ =1
which for B < M yields
2 (L= )
m(B) = Hp—» —M—, (8)

=1

where Hp is the B-th harmonic number.

%i.e. they can be bounded by O(1)



Equation (8) can be transformed further as follows:

m(B) = Hp— Y L)t

=1
B -1 B
11— 1 U \k-1
= Hp—) ———+3;2.0-7p)
N =1 _ =1 _
Mk—1(B) ex—1(B)
1

= mk-1(B) + 7rep-1(B)
1 k-1
=0
Using (7) in the above formula we get

nk(B) = H, + O(1) =Ink + O(1) for B< M, M —B=0o(M). (9)
Lemma 4.1 below summarizes the results obtained hitherto.

Lemma 4.1 For every subset-sum problem with k input numbers uniformly distributed over
[1..M], and a bound B < M with M-B=0o(M), the first phase of the algorithm RGLI(1) finds
a solution set, whose expected relative error e;(B) is given by

u(B) = g+ O),

and the expected number of numbers in the solution ng(B) by

nk(B) =Ink+ O(1) .

4.2.2 Estimating ¢4(B) and 7, (B) for Arbitrary B.

It seems that rigorous derivation of meaningful estimations of 7, (B) and &,(B) for arbitrary
B > M is a difficult task. However with a help of simple probabilistic arguments and using
Lemma 4.1 we can find some convincing bounds which are sufficient for our needs.

Again, consider the first phase of the algorithm as a series of experiments A. If B is much
lager than M then a few first repetitions of A are always accepting — until the free space is
less than M. Hence we can estimate the expected number of accepted numbers 7, (B) by first
estimating the number 7(B) of repetitions of .4 which occur until the free space reaches M.
Then we add an estimation of 7, _5(p) (M) to it using Lemma 4.1 (we neglect here “pathological”
cases when 7i(B) > n). Similarly, we can estimate the expected error after the first phase ¢, (B)

by en_a(p) (M).



We interpret «; as a random wvariable denoting the outcome of the uniform-selection of a
number from the interval [1..M] during the i-th experiment A. Let A; be equal to the sum
a1 + --- + ag. The expected values and variances of o; and A; are given by

Bla] = (10)
Via] = (M+11;M—1) (1)
Bl = D (12)
Vmﬂ::ﬂM+gM—D 13

The value of 71(B) can be estimated the number k of repetitions of experiment .4, such that
the expected sum of all randomly selected «;’s , i.e. E[Ag], is equal to B — M. From (12)
we obtain the following equation for £ (and hence an estimation of n(B), with an error to be
specified below)

k(M +1)
2

=B-M.

Therefore we get

(B—M) 2B
M+1 — M+1

A(B) ~ k= 2 + o). (14)
To justify the above reasoning we show that Ay is indeed asymptotically close to E [Ay] with
high probability. More precisely, we prove that the probability Prob (|Ay — E[Ag]| < ¢M) for
some small value ¢ < k is big, or equivalently that the probability Prob (JA; — E[Ag]| > cM)
is small.
Using Hoeffding’s inequality [Hoe63] we get

c 2
Prob (A — E[Ag] > cM) < exp (‘%)

< 2¢?
X —_—
> €Xp A )
and analogously for Prob (Ay — E[A;] < —cM):
2¢?
Prob (Ay —E[Ag] < —cM) < exp % )

Hence for ¢ = vVkInk we obtain

2
Prob (|Ak —E[A]| > VEk lnkM) <5
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which shows that that the probability Prob <|Ak —E[A]| > VEInkM ) goes to zero if k goes

to infinity. It follows that the equation (14) provides asymptotically a good approximation
for n(B) of the form

2B
M+1

#(B) = k+O(WkInk) with k= +0().

Therefore, the above arguments and Lemma 4.1 allow us to consider the following expres-
sions as good approximations of 7, (B) and &, (B)

(B) = AB)+ oy () = oo +1n (n - 22 (19
M2

=M —2B" (16)

en(B) = en_am) (M)
Remind that the first phase of RGLI is equivalent to the randomized greedy algorithm RG.

Let B = fnM, where ( is fixed, 0 < 8 < % Assuming that (16) is exact we get the following
estimations of the expected absolute and relative errors of RG(1)

M
bRe = s

n(1—28)
M 1 1 1

RG = (1 —28)BnM _ n2B(1—28)’

and the following conjecture

Conjecture 4.1 For every subset-sum problem with n input numbers uniformly distributed
over [1..M], and a bound B = fnM with a fized 3, 0 < 8 < %, the expected relative error of a

solution found by the algorithm RG is proportional to #

4.2.3 Estimating the Final Expected Error

The arguments presented in this section, although not formally precise, give some insight into
the performance of RGLI and suggest an explanation of its experimental behavior.

Let k be the number of accepted numbers in the first phase and let [ = n — k. The second
phase consists of & “improvement” steps — one step per accepted number.

Assume that after the first phase the two following conditions are fulfilled:

1. all k accepted numbers are uniformly distributed in the interval [1..M]
2. all I not accepted numbers are also uniformly distributed in the interval [1..M]

From the above assumptions it follows that for each number as accepted in the first phase
and for each b > 0 the probability that a number a, rejected in the first phase lies in an interval
I = [(as + 1)..(as + b)] is equal to & (we neglect the pathological cases, when a; + b > M).
Note that if b is an error of the solution after the first phase, then every number a, € [ is a
potential replacement for the number a; during the second phase.

11



Let aj; be an accepted number considered in the ¢-th improvement step and b; a random
variable denoting the error of the solution before the i-th step. We have clearly E [b1]=c,(B).
The ¢-th improvement step is successful if and only if at least one of the [ candidate-numbers
is in the interval I; = [(aj; +1)..(aj; +b;)]. Let p; be the probability, that none of the / numbers

is in the interval I;, i.e.
b. l
pi = (1 - —7‘2[> .

Furthermore, for all ¢ > 1 we have

E[biy1|b;] = pib;+ (1 —p;)

IA
&

|
[\9|s®l\.3
Sk
+
/N
DN o=~
N——
N
=<
N

Since b; < by for all ¢ > 1, it follows

E [biy1] bi] <b,-—b?i+b-

Assuming that b; is a constant equal to €,(B) and having b; < %, as follows from (7) and
(16), we get further

E [bi+1] = E [E [bi+1| bi] ]

o 1 12
< B\u=bilor et
!
< Eb]-E[)] 5
l

< E[b]-E[b) N

The last of above inequalities leads to the following lemma

Lemma 4.2 Let v = ﬁ. Under the two assumptions about the uniform distribution of ac-
cepted and rejected numbers, for by = €,(B) < % and for all i > 1

Eb]< 2.
Y
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Proof

Fori=1,...,8 we obtain
M  24M 2
Ebl<h<—<-—=—
l 11 iy
Let f(z) = x — xy. For i > 8 we have
Ebi1] < f(E[b))

INA

/(5)

since for x < % the function f is monotonic and increasing. Therefore we get

2 4
Efb] < = - —
2 i+l 26+1)
(i+1)y \ i i2

_ 2 i —i+2
G+ 1)y i2

S ——

<1,
for
P> 2

IN

(t+1)y "

Lemma 4.2 gives us the following bound for E [b;]

8M
[
Let B = fnM, for some constant 3, 0 < 8 < % Then assuming validity of (15) and (16)
the above definitions lead to

E[b] <

S| =

(17)

k' = 28n+In(n(l-28))=208n+ O(lnn) (18)
= n(l-208)+0O(nn) (19)
M

Note that in this case the two assumptions about the uniform distribution of accepted and
rejected numbers are pretty good fulfilled. Both sets contain ©(n) numbers and their uniform
distribution is only slightly destroyed by the O(Inn) successful experiments .4, which take place
after the available free space has been reduced to M.

13



From (17) and (18)-(20), neglecting the O(Inn)-terms, we obtain estimations on the ex-
pected absolute and relative errors of RGLI(1)

SM 1 1 4M
dreul < Efb] < n(l—25) 28n 2 BO—25) (21)

1 4M 11 4
n? B(1—26) fnM ~ nd 2(1-2B)°

which lead to the following conjectures:

N

ereLl <

Conjecture 4.2 For every subset-sum problem with n input numbers uniformly distributed
over [1..M], and a bound B = fnM with a fized 3, 0 < 8 < %, the expected relative error of a
solution found by the algorithm RGLI(1) is proportional to Elg

Conjecture 4.3 For every subset-sum problem with n input numbers uniformly distributed
over [1..M], and a bound B = nM with a fized 3, 0 < 3 < %, if M < %nzﬁ(l — 203) then the
algorithm RGLI(1) finds an optimal solution with high probability.

5 Experimental Results

Although theoretical bounds for the performance of algorithms provide often a good measure
for comparisons of algorithms, they are sometimes too pessimistic or too weak to help one in
choosing the “best” algorithm in practice, especially when several algorithms provide similar
theoretical bounds (see also [SZYH95]|, [MT85]). Besides, as follows from the attempts of
the previous section, it is sometimes hard to derive any theoretical bounds at all. Therefore
it is often reasonable to compare the performance of algorithms experimentally with some
randomly-generated or especially-constructed instances of problems.

Average relative error (100 numbers) Average running time (100 numbers)
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Figure 2: MT(3) vs. PS(3, 1) and PS(3, 2)

This section presents results of various computational tests. The main aim was to ex-
amine the performance of the algorithm RGLI in practice. The test programs were written
in Java and run on Silicon Graphics’ Indy computer with a Java Virtual Machine from SGI,
version “3.0.1 (Sun 1.1.3)”.
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Figure 2 shows a comparison of performance of the algorithms MT(s) and PS(s, v), where
the corresponding tests were performed in the same way as for RGLI and other algorithms, as
described below. As mentioned in Section 2.2 and as it is apparent from the Figure 2, the
algorithms MT(s) and PS(s, v) have in practice roughly the same running time and provide
on average similar relative errors. Furthermore, for s=2 both algorithms are by definition the
same. Therefore in the tests comparing RGLI with other methods the algorithm PS(s, v) was
omitted — it is represented by MT(s).

All tests were performed on randomly generated examples of the SSP. For a specified number
n and a magnitude m, the numbers a1, ... , a, were chosen uniformly at random from the range
[1,2™], and the bound B was set to the sum of § randomly selected a;’s (the tests of Section 5.2
are an exception from this rule). This implies that the magnitude of B is roughly 2 - £~ and
assures that the optimal solution has an error equal to zero. Then every tested algorithm
was run on the generated problem. Since each considered algorithm, except RG, requires that
the numbers a; are in a monotone order, the numbers were sorted directly after generating.
Therefore the presented running times do not include the time needed for sorting, which, using
the Quick-Sort algorithm, is about 1-2ms for 100 numbers and 21-29ms for 1000 numbers (exact

values depend on the length of numbers).

Average relative error (100 numbers) Average relative error (1000 numbers)
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Figure 3: RGLI vs. other algorithms: approximative solving of sparse problems
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5.1

The performance of approximation algorithms for SSP depends significantly on the density of
the specified problems. For random low-density subset-sum problems usually there exist few,
if any, ezact solutions, i.e. solutions whose error is equal to zero. However, if there are plenty
of numbers of relatively small magnitude, i.e. if the density of the numbers a; is high, then
usually there exist many exact solutions. In such a case it is often possible for an approximation

Comparison of RGLI(¢) with Other Algorithms

algorithm to find one of those exact solutions. Hence the two cases were tested separately.

The performance of the algorithm RGLI(¢) was compared with other methods referred to in
Section 2: G, RG(t), MT(2) (i.e. QG) and MT(3). The maximal number of trials ¢ was set to 40
for the RG algorithm, and for RGLI two variants were tested: t=10 and t=40 (cf. Section 5.3 for

more about choosing the value of ).

5.1.1 Approximative Solving of Low-Density Problems

For every chosen pair (n, m), where n denotes of number of numbers and m their magnitude,

20 random problems were generated and solved with each?® tested algorithm.
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Figure 4: RGLI vs. other algorithms: exact solving of dense problems

3The algorithm MT(3) was excluded from the tests for n=1000 due to its immense running time.
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The graphs in the Figure 3 show the averaged results of the tests. Note that with max. 10
trials the algorithm RGLI gives much smaller errors than MT(2) and the errors of RGLI(40) are
comparable even with those returned by MT(3).

5.1.2 Exact Solving of High-Density Problems

In the tests investigating the behavior of the algorithms on high-density problems the algorithm
RGLI(t) was tested only for t=40. Additionally, the actual number of trials till the exact
solution, if found, was recorded. For each selected pair (n, m) 50 problems were generated and
solved with each* considered algorithm.

Figure 4 shows the comparison of the algorithms’ performance. Note that RGLI(40) is much
better than G or MT(2), both in percentage of optimally solved problems and in running time.
MT (3) finds the optimal solution slightly more often than RGLI(40), but RGLI(40) is much more
efficient.
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Figure 5: RGLI(40): the actual number of trials till optimal solution

Figure 5 presents the actual number of trials used by the RGLI(40) to find the optimal
solutions, and the table below shows the upper bounds for M derived from the Conjecture 4.3

4 Also here the algorithm MT(3) was excluded from the tests for n=1000.
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for some values of n. Note that the conjectured values agree pretty well with the results from
the Figure 5.

n | max. M for optimal solution
2 1.1.1. 104 ~ 98
10 11110t~ 2
3 1.1.1.106 15
10 77 3 10°~2
4 1,1.1,108 ~ 921
10 715 10°~2
5 1.1.1 10 o 928
10 1.1.1.1010~2

5.2 Magnitude of B

In tests of this section the numbers a; were generated in a usual, random way, but the bound
B was always set exactly to a fnM for some values ﬁ, <pB<L < . In this case the sum of the
optimal solution might be smaller than B. Since it is dlﬂicult to find the optimal solution of
a random problem P, the relative errors in this section were computed by using B instead of
Vi(P), which gives values slightly greater than the actual relative errors. The aim of those
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Figure 6: RGLI(40): relative error as a function of B’s magnitude
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tests was to check two following hypotheses (under an assumption of uniform distribution of
numbers a;):

1. the relative error of RGLI does not depend on the existence of an exact solution

2. the relative error of RGLI is roughly the same for all “usual” values of 3, i.e. 0.1 < < 0.4

For each triple (n, m () 20 random sets of a;’s were generated and solved with RGLI(40).
Figure 6 shows the averaged results which apparently agree with above hypotheses. Worse
performance in degenerated cases, i.e. § = 0 or 0 = %, can be explained by the fact, that in
such cases there exist usually less “good” solutions, if any at all.
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Note: for 100000 numbers and ¢t > 9 all 32-bit-problems were solved exactly,
which is in agreement with Conjecture 4.3

Figure 7: Average relative error of RGLI as a function of number of trials
The graphs of Figure 6 present also expected errors of RGLI(1) as estimated in Section 4.2

by the formula (21). The similarity of the behaviour of the estimated and measured errors is
quite remarkable. The evident shift between the expected and the actual errors can be easily
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explained by the fact that the tested algorithm was not RGLI(1) but RGLI(40). Indeed, this
argument is strongly supported by the tests presented in the next section.

5.3 Determining the Sufficient Number of Trials

The difference of the relative errors of RGLI(10) and RGLI(40) suggests that by increasing
the maximal number of trials one could achieve smaller and smaller errors. Although this is
definitely a correct conclusion, the experimental results presented in the Figure 7 indicate that
it is worthwhile to allow maximally about 40 to 80 trials — larger numbers of trials provide only
a slight improvement of the solution while increasing the running time significantly (linearly
in t).

Note that the above upper limit on the number of trials apparently does not depend on
the number of numbers n or on their magnitude, i.e. ¢ can be considered as a constant in
the algorithm RGLI. Therefore the time complexity of RGLI can be bounded by O(nlogn), as
mentioned in Section 4.1.

6 Summary

We have presented a new randomized approximation algorithm for the subset-sum problem with
time complexity O(nlogn) and space complexity O(n). Experiments with random uniformly-
distributed examples of SSP show that our algorithm outperforms, both in running time and
average error, Martello and Toth’s quadratic greedy search, whose time complexity is O(n?).

We have proposed also some conjectures on the expected error of our algorithm for uniformly-
distributed examples of SSP and provided some analytical and experimental arguments justi-
fying those conjectures.
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