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Abstract. The subset sum problem is to decide whether or not the O-1 integer programming problem 
” 
C aixi = M, Vi,x,=O or 1, 

i-l 

has a solution, where the ai and M are given positive integers. This problem is NP-complete, and the 
difficulty of solving it is the basis of public-key cryptosystems of knapsack type. An algorithm is proposed 
that searches for a solution when given an instance of the subset sum problem. This algorithm always 
halts in polynomial time but does not always find a solution when one exists. It converts the problem 
to one of finding a particular short vector v in a lattice, and then uses a lattice basis reduction algorithm 
due to A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz to attempt to find v. The performance of the 
proposed algorithm is analyzed. Let the density d of a subset sum problem be defined by 
d = n/log2(maxi ai). Then for “almost all” problems of density d c 0.645, the vector v we searched for 
is the shortest nonzero vector in the lattice. For “almost all” problems of density d < l/a it is proved 
that the lattice basis reduction algorithm locates v. Extensive computational tests of the algorithm 
suggest that it works for densities d < de(n), where d=(n) is a cutoff value that is substantially larger than 
I/n. This method gives a polynomial time attack on knapsack public-key cryptosystems that can be 
expected to break them if they transmit information at rates below d=(n), as n -+ 01. 

Categories and Subject Descriptors: E.3 [Data Encryption]: Public Key Cryptosystems; F.2.1 [Analysis 
of Algorithms and Problem Complexity]: Numerical Algorithms and Problems-number-theoretic 
computations; G.2.0 [Discrete Mathematics]: General 

General Terms: Algorithms, Theory 

Additional Key Words and Phrases: Knapsack public-key cryptosystem, subset sum problems, integer 
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1. Introduction 
The subset sum problem is a well-known NP-complete set recognition problem [8, 
p. 2261. The problem is stated as follows: Given a set A = (ai: 1 I i 5 n) of positive 
integers and a positive integer M, recognize when some subset of A has sum equal 
to a given integer 44. We consider the related NP-hard algorithmic problem: Find 
a feasible solution to the O-l integer programming problem 

j, &xi = My V&Xi=0 or 1, (1.1) 

when one exists. 

A preliminary version of this paper appeared in Proceedings of the 1983 IEEE 24th Annual Symposium 
on the Foundations ofcomputer Science. IEEE, New York, 1983, pp. l-10.0 IEEE 1983. 
Authors’ address: AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. 
0 1985 ACM 0004-541 l/85/0100-0229 $00.75 

Journal ofthe Association for Computing Machinery, Vol. 32, No. I, January 1985, pp. 229-246. 



230 J. C. LAGARIAS AND A. M. ODLYZKO 

Several proposed public-key cryptosystems, called knapsack public-key crypto- 
systems, are based on this problem [ 12, 15, 181. Such cryptosystems give a set of 
weights (ai: 1 5 i 15 n) as public information. A plaintext message consisting of a 
O-l vector (e,, . . . , e,) is encrypted using (1. I), the integer M being the ciphertext. 
The problem of decrypting an encrypted message M is, therefore, an instance of 
(1.1). In such cryptosystems the weights {ai: 1 5 i 5 n] are chosen in such a way 
that (1.1) can be ea.sily solved if certain secret information, called a trapdoor, is 
known. In particular, the sets of weights (a;: 1 I i I n) used in such cryptosystems 
form a very special subclass of subset sum problems (1.1). In 1982 Shamir [ 171 
announced a method for breaking the simplest such public-key cryptosystem, the 
basic Merkle-Hellman cryptosystem. Since then several attacks on more compli- 
cated knapsack cryptosystems have been proposed [ 1, 11, 161. These attacks are 
all based on the idea of recovering the trapdoor information concealed in the 
weights (ai: 1 5 i 5 .u). 

In this paper we propose a simple method, which we call Algorithm SF’, for 
directly locating a feasible solution to (1.1). Let a = (al, . . . , a,). The method 
consists of transfomring (1.1) to the problem of finding a particular short vector e 
in an integer lattice L = L(a, M). Then we apply a lattice basis reduction algorithm 
to produce a reduced basis of the lattice. This algorithm is due to A. K. Lenstra, 
H. W. Lenstra, Jr., and L. LovLsz [ 131; we call it the L3 algorithm. The method 
succeeds if fe appears in the reduced basis; a solution to ( 1.1) follows immediately 
from e. 

Since the problem ( 1.1) is NP-hard, Algorithm SV cannot always be expected to 
succeed. We analyze the circumstances under which it can be expected to work. 
We define the density d(a) of a set of weights a = (a,, . . . , a,) by 

d(a) = ’ 
lOgz(maXi ai) . 

In terms of knapsack public-key cryptosystems, d(a) is an approximate measure of 
the information rate at which bits are transmitted; that is, 

d(a) G 
number of bits in plaintext message 

average number of bits in cipher-text message ’ 

Our main result is a performance analysis of Algorithm SV, which shows that it 
succeeds for “low-de:nsity” subset sum problems as follows: 

(1) For “almost all”’ subset sum problems with d(a) < 0.645, the vector e is the 
shortest nonzero vector in the lattice L = L(a, M). (See Theorem 3.3.) 

(2) For “almost all”’ solvable subset sum problems with n weights having d(a) < 
(2 - E) (log2 4/3)-‘n-l, for any fixed c > 0, Algorithm SV finds a solution. (See 
Theorem 3.5 and the remark following its proof.) 

We believe that the first result is essentially the best possible in the sense that it 
is no longer true when 0.645 is replaced by 0.646. (Our belief is based on heuristic 
arguments that we describe in Section 5.) 

The second result is weaker than what we believe to be true. The reason for this 
is as follows. The L3 algorithm is not guaranteed to produce the shortest nonzero 
vector Xmin in a lattice L G Z”, but only a relatively short vector. To prove that the 
algorithm succeeds on “almost all” problems with n weights having density d(a) < 
(2 - C) (log2 (4/3))-‘n-l, we use a worst-case bound on the length of the shortest 
vector found by the L3 algorithm (Proposition 2.1). Empirical experience with the 
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L3 algorithm suggests that it usually finds considerably shorter vectors than those 
guaranteed by this bound. Computational evidence suggests that the algorithm 
succeeds on “almost all” problems with n items for which d(a) < d,(n) where d,(n) 
is a cutoff value that is substantially larger than 2(log2 (4/3))-‘n-l. We do not have 
enough data to make a reasonable guess on the behavior of &(a), but it seems 
likely that d,(n) + 0 as y1+ 00. (See Section 4 for more details.) 

The algorithm we present uses the L3 algorithm because it is currently the only 
algorithm known for finding short vectors in a lattice that has been rigorously 
proved both to have a polynomial running time and to find reasonably short 
vectors in a lattice. Instead in Algorithm SV, one could use modifications of other 
algorithms for finding short vectors in a lattice or for finding good multidimensional 
Diophantine approximations such as those described in [2], [4], [6], and [7]; these 
might perform well in practice. 

What are the consequences of these results for breaking knapsack-type public- 
key cryptosystems? First, the empirical evidence implies that this method will very 
likely break nearly all knapsack cryptosystems for which d(a) < &(n) in polynomial 
time. In particular, it may well break “almost all” ultimate knapsack cryptosystems 
of Shamir [ 181, since these cryptosystems have d(a) < l/logln. Second, this method 
complements the existing attacks on knapsack cryptosystems that are based on 
recovering trapdoor information. When the information rate is low, the method 
described here should succeed. When the information rate is high, the trapdoor 
information is more difficult to conceal, and attacks based on finding the trapdoor 
are more likely to succeed, see [ 111. 

Brickell [ 51 has developed another method to solve general subset sum problems, 
which can be expected to break most “low-density” problems. Although his method 
is superficially dissimilar to our method, its success seems to be based on the same 
basic principles. His method is more complicated and seems difficult to analyze in 
detail theoretically. Some further remarks on Brickell’s algorithm are made in 
Section 5. 

2. The Method 
Before describing the method, we state the basic facts about integer lattices and the 
L3 algorithm that we shall use. 

We present the vector space R” using row vectors, and define the length (i.e., 
Euclidean norm) 11 v 11 of a vector v = (vl, . . . , v,) by 

II v II * = iI d- (2.1) 

An integer lattice L is an additive subgroup of Z” that contains n linearly inde- 
pendent vectors over R”. An (ordered) basis [vr, . . . , v,] of a lattice L is a set of 
elements of L such that L = Zv, CB Zv2 fI3 . . . @ Zv,. We represent an ordered basis 
of a lattice L by the n x n basis matrix 

VI 
v= : 

11 V, 

whose rows are the basis vectors. If V, and V2 are basis matrices of the same lattice 
L, then there is a unimodular matrix U E GL(n, Z) such that 

uv, = v,. 
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Conversely, if V is a basis matrix of L and U E GL(n, Z), then UV is a basis matrix 
of L. Lenstra et al. (define the notion of a reduced (ordered) basis [vr, . . . , v,] of a 
lattice L. For the Ipurpose of this paper, we do not need to know the precise 
definition of a reduced basis (it is given in the Appendix); we need only know that 
any reduced basis contains a relatively short vector [ 13, prop. 1.111. 

PROPOSITION 2.1. Let [vl, . . . , v,] be a reduced basis of a lattice L. Then 

(Iv, )I2 5 2”-%;; IIxl12. (2.2) 
x+0 

In fact, all of the basis vectors in a reduced basis tend to be short [ 13, prop. 
1.121; we take advantage of this in our method. Lenstra et al. [ 131 present an 
algorithm, which we call the L3 algorithm, that, when given a basis [v,, . . . , v,] of 
a lattice L as input, produces a reduced basis [w,, . . . , w,] as output. They give the 
following polynomial worst-case running time bound for its performance [ 13, prop. 
1.261. 

PROPOSITION 2.2. Let [v,, . . . , v,] be a basis of an integer lattice L such that 
I] v; ]I 2 5 B for 1 I i I n. Then the L3 algorithm produces a reduced basis [w,, . . . , 
w,] for L using at most O(n410g B) arithmetic operations, and the integers on which 
these operations are performed have binary length at most O(n log B). 

If we use the classical algorithms for addition, subtraction, multiplication, and 
division, this algorithm has a guaranteed running time of O(n6(log B)3) bit opera- 
tions. There are some practical speedups possible for this algorithm so that it seems 
possible in practice to find a reduced basis in O(n(log B)3) bit operations. (See 
Section 4, [9], and [ 161.) 

Now we can describe the method. We suppose we are given a vector a = (a,, 
. . . > a,,) of positive integers and an integer M. Our object is to find a feasible 
solution to 

j, ai& = M Vi,&=0 or 1. (2.3) 

We need only consider the case that 1 5 M < CY=r ai. We use the following 
algorithm. 

Algorithm SV (SV == Short Vector) 
(1) Take the following vectors as a basis [b,, . . . , b,+,] for an n + l-dimensional integer 

lattice L = L(a, M): 

b, = (1, 0, . . .) 0, -a,) 
b2 = (0, 1, . . . ) 0, -&) 

(2.4) 
bn =(O,O )...) 1,-a,) 
b n+, = (0, 0, . . . , 0, M). 

(2) Find a reduced basis [by, . . . , bn*+J of L using the L3 algorithm. 
(3) Check if any bf= (bEI, . . . , bTn+,) has all b$ = 0 or X for some fixed X for 1 (j zs n. For 

any such b: check whether Xj = X-’ b?j for 1 5 j 5 n gives a solution to (2.3), and if so, 
halt. Otherwise, continue. 

(4) Repeat steps (l)-(.3) with M replaced by M’ = x7=, a, - M. Then halt. 

If Algorithm SV produces a solution to (1) we say it succeeds; otherwise, it fails. 
Since Algorithm SV is essentially two applications of the L3 algorithm, we 

immediately obtain the following running time bound. 
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LEMMA 2.3. Let (a;: 1 5 i I n) and M < CY=, a; be given as input to Algorithm 
SV, and suppose max ai I B. Then Algorithm SV halts after at most O(n6(lognB)3) 
bit operations. 

3. Performance Analysis 
Our goal is to analyze the performance of Algorithm SV on a class of subset sum 
problems 

i UiXi = M, Vi, Xi = 0 or 1, (3.1) 
i=l 

that are known to have a solution. To this end, we suppose that (3.1) has a 
particular distinguished O-l solution (e,, . . . , e,,), which we treat as fixed, and that 

lsieiI?Z-1; 
i=l 

that is, we exclude the trivial cases where M = 0 or X7-, ai. We set e = (ei, . . . , 
en, 0). 

We analyze the performance of Algorithm SV over a sample space of lattices. 
We define this sample space A(B, e) to consist of all lattices L(a, M) defined by 
(2.4) such that 

a = (a,, . . . , a,) has 1 I ai I B for all i, (3.2) 
n 

M = M(a, e) = i aiei. 
i=l 

(3.3) 

In particular there is exactly one lattice L(a, M) in A(B, e) for each a satisfying 
(3.2); hence h(B, e) contains exactly B” lattices. The distinguished vector e is in all 
the lattices in the sample space A(B, e) since (2.4) and (3.2) give 

e = i eibi + b,+l. 
i=l 

(3.4) 

The connection between the sample space A(B, e) and the density d(a) of its 
associated subset sum problems is as follows. All subset sum problems (3.1) 
associated with lattices in A(B, e) have 

d(a) I L 
logz B ’ (3.5) 

and every a satisfying (3.5) contributes exactly one lattice to A(B, e). Furthermore, 
for any t > 0 the fraction of lattices in A(B, e) with 

d(a) 5 logz(B; - E)) 

goes to 1 as n + UJ if 1ogzB - cn for some c > 0. Consequently, the sample space 
A(B, e) may be regarded as sampling subset sum problems of density n/log2B. 

We can now formulate the problem we want to solve as follows: Determine how 
often Algorithm SV finds the distinguished vector e, when applied to all the lattices 
in the sample space A(B, e). This problem is intimately tied to the question: How 
short is e relative to other short vectors in the lattices in A(B, e)? We consider this 
question first. 

The expected length of other short vectors in lattices in A(B, e) other than the 
distinguished vector e can be determined using Theorem 3.1 below. The bound 
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given by Theorem 3.1 involves the number of lattice points in spheres in n- 
dimensional space:. We define S,(R) to be the number of integer solutions to the 
inequality 

i x: 5 R, 
i=l 

(3.6) 

that is, the number of integer lattice points inside or on the n-dimensional sphere 
of radius fi centered at the origin. 

THEOREM 3.1. The number of lattices L(a) in the sample space h(B, e) that 
contain a vector w such that 

(i) w # k e for all integers k, 
(ii) 11 w 11’ 5 R, 

is 

O(R &(R)B”-’ log(BR)). (3.7) 

PROOF. Let T = T(R, B, e) denote the number of such lattices. Let w = 
(WI, . . . , w,, r) E lZ”+’ be a fixed vector satisfying 

11 w II2 = f, wf + r2 I R (3.8) 

and suppose that w # k e for every integer k. We count how many lattices L(a) in 
h(B, e) contain w. If w E L(a), then expressing w in 
of L(a) gives 

terms of the basis vectors (2.4) 

W = i wibi + Xb,+l 
i=l 

for some integer A. In particular, evaluating the last coordinate of (3.9) gives 

(3.9) 

n 

and using (3.3) gives 

r = 2 WiUi - AM(a), 
i=l 

r = i (Wi - Xei)Ui. 
i=l 

(3.10) 

(3.11) 

We can easily bound X using (3.10); we obtain 

1x1 MI It-1 + i (WiUiI 5 B(lrl + i IWil) I RB (3.12) 
i=l i=l 

using (3.Q since r and the Wi are integers, so that A4 L 1 implies 

1x1 5 RB. (3.13) 

Next we note that since e # 0, it has a nonzero coordinate, which we suppose to 
be el for convenience in subsequent calculations. Then 

M = M(a) = M(a, e) L ale1 = al, (3.14) 

so that (3.12) gives 

RB 
alsK, if X # 0. 
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Also we note that (3.8) implies 

1 rI P RI’*. (3.16) 

Now we commence counting. Let N(w, X) denote the number of lattices L(a) in 
h(B, e) for which w is in L(a) and for which h satisfies (3.9). Then (3.13) gives 

Ts C’ 
1 

“c” NW, v 
11 w II%R A=-RB 1 

> (3.17) 

where the prime in the summation indicates that all w with 

w = ke; k an integer; (3.18) 

are excluded. To estimate this sum, we divide the sum on the right side of (3.17) 
into four sums, depending on the value of the auxiliary vector 

2 = z(w, A) = (w, - Xel, . . . , w, - Ae,) (3.19) 

and the value of X. 

Cusel. z=O. 

In this case (3.19) gives 

for some Nf 0. Then 

w = (Ae,, . . . , he,, N) (3.20) 

w - Xe = (0, . . . , 0, N) 

is in L(a), so that necessarily N = kM(a) for some integer k. If k = 0, then w = Xe, 
which is ruled out by hypothesis (i). Hence 1 k 1 > 1 and 

Ilwll 2 IMa)I 2 a~, 
using (3.14). The condition 11 w ll* < R implies that 

aI 5 R’/*. 

Consequently, we obtain the bound 

N(w, A) 5 R1/*B”-I. 

(3.21) 

Now there are no more than S,(R) choices of w, and each such w uniquely 
determines X via (3.20), so that 

c N(w, A) = O(R”*&(R)B”-I). (3.22) 
Case 1 

Case2. wr-Xer#Oandwj-Xej=Ofor2Ijrn. 

In this case, (3.11) gives 

r = (w, - he&,. 

Together with (3.16), this gives 

1 5 ai I R112, 

so that 

for such pairs (w, X). 

N(w, A) 5 R’/*B”-’ 

(3.23) 

(3.24) 

(3.25) 
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How many such pairs (w, A) can occur? We have the bound 

1 WI 1 < R”2 

from (3.8), while (3.23) and (3.16) yield 

(3.26) 

1 WI - XelI 5 L 5 R “2. 
a1 

Combining (3.26:) ;and (3.27) and using el = 1 give 

1 X 1 s 2R”2. 

The values of (~2, . . . , w,) are all determined by 

Wj = Xej, 

(3.27) 

(3.28) 

so that there are O(R) choices of pairs (w, A) in Case 2. Hence 

c. N(w, A) = O(R3’2B”-‘). 
case2 

(3.29) 

Case 3. wj - XlFj # 0 for some j L 2, and X # 0. 

Consider w and X as fixed. Now by (3.15) there are at most RI?/)\ choices for al. 
Now choose all the other ai arbitrarily, except for i = j. There are Bnm2 such choices. 
For each such choice, there is at most one possible choice for Uj, since aj is 
determined by eq. (3.1 l), since Wj - Xej # 0. Hence in this case 

Hence 

5 2RB”-‘S,,(R) z $. 

Since 
RB 

zl ; = WxdRBN, 

this yields 

2 iV(w, A) = O(RS,(R)B”-‘log(RB)). 
case3 

Case 4. Some wj - Xej # 0 for j z 2 and X = 0. 

(3.31) 

Consider w as fixed. In this case we can pick all ai except aj arbitrarily, and there 
are B”-* such choices. There are at most 2R ‘I2 -t 1 choices for aj, since it must 
satisfy (3.11) and t.here are at most 2R ‘I2 + 1 choices of r by (3.16). Hence in this 
case 

N(w, 0) 5 (2R”2 + l)B”-‘. 

Consequently, summing over all w gives 

x N(w, A) I (2R”2 + l)S,(R)B”-‘. 
Case4 

(3.32) 
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Theorem 3.1 follows on combining the bounds (3.22), (3.29), (3.31), and (3.32) 
and the trivial inequality S,(R) r R. 0 

We remark that the dependence on B in Theorem 3.1 cannot be much improved, 
since all L(a, M) for which aI = ~22 contain the short vector w = (1, - 1, 0, 0, . . . , 
0) which satisfies the conditions of Theorem 3.1, and there are B”-’ such lattices 
in A(B, e). It is an interesting question as to whether or not substantial improvement 
is possible in the dependence on R in (3.7). 

To apply Theorem 3.1, we need explicit estimates for the number of lattice 
points in spheres. A general principle here is that S,(R) should be equal to the 
volume V,,(R) of a sphere of radius R ‘I*, with an error proportional to the surface 
area A,(R) of such a sphere. Now 

I/,(R) = c,,R”/*, (3.33) 
A,(R) = nc,,R(“-‘)/2, 

where 

(3.34) 

is the volume of an n-dimensional sphere of radius 1. For large R one has Vn(R) 
much larger than A,,(R), but for R small enough, say R = ~uy1, this is not true, and 
spheres of this radius centered at the origin contain many more lattice points than 
their volume would suggest. It turns out, furthermore, that for n-dimensional 
spheres of such small radius (an) , ‘I2 the number of lattice points in the sphere 
depends strongly on the location of the center of the sphere [ 141. For our application 
we need a good upper bound for S,,(~ n), and to obtain it we use the following 
simplified version of the proof in [ 141. 

THEOREM 3.2. For all n I 1, S&n) 5 2’.54725n. 

PROOF. Let 19(z) = 1 + 2 CE, zi2. Let r,(k) count the number of solutions to 

Then 

;, x: = k. 

[WI” = j. mWk. 

Now for x 2 0 we have 

S&n) = k_C, Gk) 
-=a 

5 enax *c, r,,(k)e-k” 

=e “““[~(e-x)]“, 

since for x r 0 we have 

(3.35) 

e naxe-kr 2 1 when k I ncu. 

Now set 

a((~, x) = ax + In 8(emX) 
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and observe that (3.35) gives 
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Sn(an) 4 ,na = p&dN~J)~~ (3.36) 

We are interested in (Y = $ and choose x 2 0 to optimize (3.36); the value x = x0 = 
0.997994 is a nearly optimal choice. Then 

S(+, x0) 5 1.07247 

and 

(logze)b(i, x0) 5 1.54725. 0 

We remark that the constant 1.54725 in Theorem 3.2 is the best possible to 
within one unit in the last decimal place (see [ 141). 

Now we prove ;a result about short vectors in lattices in the class h(B, e) where 
e satisfies 

” 
1 e; 5 $2. 

i=l 
(3.37) 

The reason we consider this extra condition is that Algorithm SV examines two 
lattice problems, one of which is a lattice L(a, e) and the other L(a, e*) where e* = 
(et . * * , e,*> is the O-l vector complementary to e; that is, et= 1 - ei for all i. Since 

min(j,e,, i,et) 5 tn, 

the hypothesis (3.37) applies to at least one of these lattice problems. 

THEOREM 3.3. Let e be a O-l vectorfor which CZ, ei I n/2. Then ifB = 2”” 
for any constant @ > 1.54725, the number of lattices L in h(B, e) for which e is the 
nonzero vector of shortest Euclidean norm in L is 

B” + O(Bn-CI(P)(ZogB)2) 

where c&3) = 1 - 1.54725/p > 0. 

This theorem a:sserts that, under the stated hypotheses, “almost all” the lattices 
in h(B, e) have e as the shortest vector. In particular, for B = 2@” the density d(a) 
of lattices in A(B, e) is p-l, so that this theorem applies to sets of lattices with 
density less than (1.54725)-l = 0.645. 

PROOF OF THEOREM 3.3. Theorem 3.1 estimates the number of such lattices by 

B” + O(nS&n)B”-’ log(B,)). 

Applying Theorern 3.2 gives 
S,(in) 5 2’.54725n 5 B’-Cl(fl), 

where B 2 2? Finally nlog B, = O((log B)‘) for B L 2O”, and the theorem 
follows. 0 

Theorem 3.3 gave a result when the vector e is fixed. We can immediately derive 
a result where e varies. 

THEOREM 3.4. Let B = 2@‘for any p > 2.54725. The number of vectors a = (a,, 
. . . ) a,,) with 1 I ai I B for 1 5 i 5 n for which e is the shortest vector in L(a, e) 
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for all 0- 1 vectors e for which 
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is 

B” + O(Bn-c”8’(logB)2), (3.39) 

where c2(p) = 1 - 2.54725/p > 0. 

PROOF. Sum the result of Theorem 3.1 over all 2”-’ - 1 vectors e satisfying 
(3.38). The resulting bound is 

O( n2 “S, 

This is certainly an upper bound for the error term in (3.39). Now use 

< B 1 -z(p) - 9 

and the result follows. Cl 

Theorem 3.4 makes an assertion about lattices of density d(a) 5 0.393 < 
(2.54725)-l. Now we prove the main result on the performance of Algorithm SV. 

THEOREM 3.5. Let B > 2(“2+8)n2 for some fixed p > 0. Then the number of 
vectors a = (a,, . . . , a,) with 1 5 ai < B for all i for which Algorithm SV will 
succeed for all 0- 1 vectors e is 

B” + O(Bn-C~(p)+4(lunn)/n), 

where c@) = 2p/( 1 + 2p) > 0. 

This theorem asserts then that for any fixed P > 0 one can solve the subset sum 
problem for “almost all” a = (a,, . . . , a,) for which d(a) < (1 + ,8)-‘n-l, provided 
n 2 no(P). 

PROOF OF THEOREM 3.5. At least one of the two lattice problems that Algorithm 
SV considers has an associated e satisfying 

j, ei 5 tn. (3.40) 

Now suppose, for this lattice problem, that the lattice L(a, e) has the property that 
all vectors w in L(a, e) that are not a scalar multiple of e satisfy 

(I w 11 > n2”-2 r 2”-’ 11 e 11 

using (3.40). Then Proposition 2.1 guarantees that some vector Xe must appear in 
the reduced basis produced by the L3 algorithm applied to L(a, e). Hence Algorithm 
SV succeeds in this case. (We remark that if Xe appears in a reduced basis, then 
necessarily X = + 1.) 

It remains to bound the exceptional cases in which this does not occur. We use 
the bound of Theorem 3.1 with R = n2”-2, summing over all e satisfying (3.40) to 
obtain the upper bound 

O(n2”S,(n2”-2)B”-1 log(n2”-‘B)), (3.41) 
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for the exceptional cases. Then, using the trivial bound 

S,,(R) 5 (2R”’ + 1)” 4 3”R”“, 

we can easily obtain an upper bound for (3.41) of 

ot2 n2/2+nlW7Bn-l lo,&2”B)). 

Since B 2 2(‘/2+8)rq2, we find that for large n, 

and 

log(n2”B) I B”“, 

where c3(p) = 2,8( 1 + 2@). 0 

Theorem 3.5 can be sharpened by using an improved form of the L3 algorithm. 
Lenstra et al. [ 1311 actually defined a notion of y-reduced basis, which depends on 
a parameter y satisfying a 5 y < 1. The notion of reduced basis corresponds to 
choosing y = a; the general definition is given in the Appendix. For a y-reduced 
basis the bound (12.2) of Proposition 2.1 is replaced by 

IIVil12~ & ( ) 
n-1 

yj: II x II 2. 
X#O 

They gave an algorithm, which we may call the L3( y) algorithm, that produces a 
y-reduced basis. An analog of Proposition 2.2 holds for this algorithm, in which 
the constants implied by the 0 symbols depend on the choice of y. We can modify 
Algorithm SV to use the L3(y) algorithm and obtain Algorithm SV(y). Then we 
may prove Theorem 3.5 for Algorithm SV( JJ), obtaining a similar bound for B = 
2(1+B)c(y)n2 where c(y) = 1 log2(4/(4y - 1)). With this bound, letting y + 1, we get a 
result that asserts that we can solve the subset sum problem for “almost all” 
problems of density d(a) < (2 - E) (log2(4/3))-‘n-l. 

4. Computational Results 
We performed extensive computational tests using Algorithm SV. We tested several 
variants of Algorithm SV, obtained by modifying the L3 algorithm in ways designed 
to improve its chance of finding the shortest vector in a lattice. We considered two 
such modifications. 

(1) Running the L3( y) algorithm for y = 1 instead of y = $. In the case y = 1, 
the algorithm is not proved to run in polynomial time; however, in practice, it 
takes about three times as long as the algorithm with y = i. It seems to find much 
shorter vectors than the algorithm with y = $. 

(2) Running the L3 algorithm several times for the same lattice, starting with 
different initial ordered bases for the lattice. The rationale for this is that running 
the L3 algorithm with different initial ordered bases will tend to produce different 
reduced bases; finding several reduced bases improves our chance of finding one 
containing the shiortest vector in the lattice. We obtained different ordered bases 
by randomly permuting the given ordered basis. 

Our initial computations were done on a VAX 1 l/780 using the Vaxima 
symbolic manipulation system on lattices of dimension 521. Then we made 
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TABLE I. TEST RESULTS USING THE L’(y) ALGORITHM WITH y = 1 
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Dimension 
n log2B 

Number of Successes Success Rate 
Density Number of after 5 

d Tests 1 trial 5 trials Trials 

14 16 0.875 50 42 48 0.96 
20 0.700 50 50 50 1 .oo 

20 24 0.833 50 16 36 0.72 
30 0.667 50 47 50 1 .oo 
36 0.555 50 50 50 1 .oo 

26 30 0.867 50 IO 23 0.46 
36 0.722 50 29 49 0.98 
44 0.591 50 42 50 1 .oo 

30 36 0.833 50 10 19 0.38 
44 0.682 50 17 38 0.76 
45 0.667 IO 5 8 0.80 
51 0.588 IO 7 10 1 .oo 
60 0.500 10 8 10 1 .oo 

40 60 0.667 9 2 6 0.67 
68 0.588 9 4 8 0.89 
80 0.500 10 8 10 1 .oo 

50 85 0.588 5 1 1 0.20 
100 0.500 3 1 2 0.67 

extensive computations on a CRAY- 1, using standard FORTRAN double-precision 
arithmetic when possible and otherwise the Brent MP (multiprecision) package 
[3]. The version of the L3( y) algorithm we used differed from that described in 
[ 131 in the use of floating-point approximations to the p;j. This version of the 
algorithm is not guaranteed to produce a reduced basis in polynomial time, but in 
practice it does. The running times of our implementation on the CRAY-1 using 
the Brent MP package were proportional to n(logB)3 over a wide range of values 
of n and B, up to n = 80. The n = 50, log2B = 100 runs of the L3( 1) algorithm 
described below took on the order of 14 minutes of CPU time on a CRAY- 1. 

The results of the most systematic of our tests are presented in Table I. In these 
tests we fixed the dimension of the subset sum problem n and fixed log& and 
then we generated at random a vector a = (a,, . . . , a,) with 1 I ai 5 B, and defined 
avectore=(el, . . . . en) by ei = 1 for 1 5 i 5 n/2 and ei = 0 otherwise. We ran 
the L3( y) algorithm with y = 1 on a basis of the lattice L(a, M(a, e)) obtained by 
randomly permuting the rows of the basis (2.4). The run was a success if +e 
appeared in the reduced basis. In cases of failure, the L3 algorithm was applied 
again to another permutation of the basis (2.4), and this was repeated for up to 
live trials. 

Table I defines the density d of a problem as n/log2B. It reports the number of 
successes both on the first trial and after five trials of permuting the basis. The 
final column gives the success rate after five permutations of the basis. We observed 
that when the run was a success and fe appeared in the reduced basis, it was not 
always the first vector in the reduced basis. In most cases in which +e appeared in 
the reduced basis, it was the shortest vector in the reduced basis. If we use an 
observed success rate of 1 .OO as an estimate for an upper bound for the cutoff value 
de(n), we have d,(30) I 0.60, d,(40) 5 0.50. This suggests to us that d=(n) & 0 as 
n + m. 
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We also examined the effect of varying the parameter y in the L3( y) algorithm. 
The effect of setting y = 1 is to increase the running time (by roughly a factor of 3 
compared with tlhe usual variant with y = a) but also to produce considerably 
shorter vectors in the reduced basis, and thereby to increase the chances of success 
of Algorithm SW.. For example, although the 50 runs with n = 26, log2B = 36 
described in Table I led to 49 successes for y = 1 with 29 of them on the first try, 
the same algorithm with y = $ achieved only 19 successes, 2 of them on the first 
try. We encountered a few cases where values of y < 1 led to success, whereas 
y = 1 did not, but such cases were rare. 

Lenstra et al. [ 131 prove that if VT, . . . , v? is a reduced basis of a lattice L, and 
d(L) denotes the determinant of the lattice (which equals the determinant of the 
matrix formed by the vectors VT, . . . , v,*>, then 

r = rI~=l II VTII 
d(L) 

satisfies 

4 

( ) 

n(n- I )/4 

r5 4y-1 * (4.1) 

Our runs for n I 50 indicate that for most L-reduced lattices In r is on the order 
of n2/50 for y = I, and on the order of n2/33 for y = 3/4. 

5. Discussion 
(1) Theorem 3.3 implies that “almost all” subset sum problems (1.1) with d(a) 

< 0.645 can be solved in polynomial time if one can find a polynomial time 
algorithm that “almost always” finds the shortest Euclidean norm vector in an 
integer lattice L. This possibility may seem unlikely in view of the result that the 
corresponding sup norm minimum vector problem is NP-hard (see [IO]). On the 
other hand, there are natural NP-complete problems for which polynomial-time 
algorithms exist that solve “almost all” instances of the problem, (Wilf [ 193). 

(2) We conjecture that Theorem 3.3 is sharp in the sense that there is a critical 
density PO below which Theorem 3.3 is true for “almost all” subset sum problems 
of density d(a) 5 /3 for any ,8 < ,80 and true for “almost no” subset sum prob- 
lems with d(a) L p for any fixed /3 > PO; here we average not only over all sets 
aI, . . . , a, of the given density, but also over all binary vectors e, so that C ei - 
n/2 holds for almost all of them. Furthermore, we conjecture that this critical 
density is 

where 

/I,, = (Co)-’ = 0.645 . . . , (5.1) 

co = ;~(lopiSn (;)) = 1.54725 . . . . 

We are unable to prove these conjectures rigorously. It is possible to use arguments 
similar to those used in the proof of Theorem 3.1 to obtain a lower bound of 
Q(S,,(n/2)B”-‘) for the number of pairs (L, x), where L is a lattice in h(B, e) 
containing the ve:ctor x, where 11 x /I2 5 n/2. Using this result one can show that 
the expected number of lattice points x with II x iI2 d n/2 in a lattice drawn from 
h(B, e) with CX, ei = [n/2] and B = 2O” is at least 2’B-po-“” for any fixed t > 0, as 
n ---, cQ. The conjectures above would follow from a proof that “almost all” lattices 
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in A(B, e) contain around the expected number of short vectors x with ]I x 11’ I 
n/2. 

(3) Algorithm SV can be expected to solve even relatively dense subset sum 
problems when the solution has C e; either very small or very large, since then the 
e vector in one of the lattices considered by the algorithm will be very short. For 
example, if C e; - n/4, the critical density changes from 0.645 to 0.94. For a 
random problem, we expect C ei - n/2 by the law. of large numbers. In data 
communication one often encounters a preponderance of zeros in the message e, 
in which case Algorithm SV should succeed on much higher density problems for 
those particular e. We have verified this experimentally for n I 40. 

(4) For what kinds of low-density vectors a does Algorithm SV fail? This 
question is important if we want to design a knapsack-type public-key cryptosystem 
that is immune to this attack. 

It is easy to see that Theorem 3.3 does not hold for vectors a = (a,, . . . , a,), 
which satisfy a small linear dependency 

i a;X; = 0 
c 

i=l 

with C X3 small. In this case every lattice L(a, M) contains the short vector 
VI = (A,, . . . ) X,, 0). However Algorithm SV may still succeed in this case, since it 
may find both vo = (et, . . . , e,,, 0) and VI in the reduced basis it produces. Indeed 
this has occurred on numerical examples. It appears that for this attack to fail a 
must have many small linear dependencies. Two problems immediately face the 
would-be cipher designer: 

(i) A fast decryption algorithm for such a = (aI, . . . , a,) is needed. 
(ii) The existence of a large number of linear dependencies in the ai’s forms a 

point of attack for cryptanalysis of such problems. 

(5) How are the results of Theorem 3.3 and 3.6 to be interpreted as applying 
to knapsack-type public-key cryptosystems? Indeed, although these results apply to 
“almost all” subset sum problems in the appropriate range, the particular subset 
sum problems arising from the knapsack cryptosystems proposed so far form only 
an infinitesimal fraction of “subset sum” problems in this range. Therefore it could 
be argued that perhaps Algorithm SV will not succeed on them. 

The simplest way to address this criticism is by actually testing Algorithm SV on 
such subset sum problems. We have performed such tests on three subset sum 
problems, with n = 20, B - 240, that were constructed using a doubly iterated 
Merkle-Hellman knapsack [ 151. All three tests were successful. In fact, we expect 
that Algorithm SV will tend to be more successful on vectors a arising from 
knapsack cryptosystems than for random vectors, because these a automatically 
have all small linear dependencies of the form 

!, &Xi = 0; Vi, Xi = 1, 0, or - 1, 

ruled out by the need for unique decipherability of encrypted messages. 
(6) E. Brickell (personal communication) has suggested that “dense” subset 

sum problems might be solved by converting them to “low-density” subset sum 
problems through one or more modular multiplications. To do this, let 

j, aixi = M (5.3) 
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be the original problem, and select a pair ( W, Y) subject to 

Y > i a;; (w, r) = 4 
i=l 

and form 

bi E Wa; (mod Y); 0 5 bi < Y. (5.4) 

Algorithm SV presumably does not work on the original problem because the (ai) 
satisfy many small linear dependencies 

$, ai-% = 0. (5.5) 

Indeed, we indicated in (2) of this section that for subset sum problems of 
density /3 > ,&, where /IO is the critical density, we expect that there are many such 
small linear depeindencies (5.5), on the order of 2(8-Po+t)“. Now a single modular 
multiplication will destroy some of these dependencies. Indeed, if we write bi = 
Wai - kiY, then lwe see that 

i bixi = 0 
i=l 

(5.6) 

holds if and only if 

i kiXi = 0. 
i=l 

This last condition is equivalent to 
n WUi 

c i-1 Y 
x; = 0, 

i=l 

(5.7) 

(5.8) 

where (t ) denotes the fractional part oft. We expect a given small linear dependency 
(5.5) to hold after a single modularmultiplication with probability on the order of 
n-l/* The total number of such small linear dependencies is thus cut down by at 
most’a factor of r;!‘/*. (Note that new small linear dependencies may be introduced; 
the probability of this is quite low, however.) Therefore, we expect that it requires 
on the order of y1 successive modular multiplications to arrive at a subset sum 
problem in which all of the small linear dependencies have been eliminated and 
for which Algorithm SV can be expected to succeed. 

We expect that repeated modular multiplication used in this way are of little 
help in solving the original subset sum problem (5.3). This is because a single 
modular multiplication transforms the original subset sum problem into one of n 
different subset sum problems, for if 

M’ = WM (mod Y), OaM’5 Y, 

then we only know that 

M’ = i biXi - kY 
i=l 

holds for some k with 0 I k 5 n. A probabilistic argument suggests that usually k 
is on the order of n ‘I*, so that about 12 ‘I* subset sum problems after the modular 
multiplication by ( W, Y) have to be examined to solve the original problem (5.3). 
This blowup by a factor of n ‘/* essentially cancels the n-l’* reduction in small 
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linear dependencies; after n successive modular multiplications, we would have 
exponentially many subset sum problems to search, exactly one of which corre- 
sponds to the original problem (5.3). 

(7) The success of Brickell’s method [5] appears to be based on similar principles 
to our method. However, it seems difficult to analyze. His method has two practical 
advantages over our method: 

(i) It has an initial preprocessing step with the same asymptotic running time 
as our method. If it succeeds, however, it can subsequently solve all subset sum 
problems with the same a for each M in time O(n2(log(M + ]I a ]]))2) or less. 

(ii) If it succeeds, it can afterwards test for infeasibility of (1.1) for a given M 
in time O(n2(log(M + 11 a ]1))2) or less. 

The cutoff density d(a) below which Brickell’s method can be expected to be 
successful may turn out to be smaller than that for Algorithm SV. This is because 
it must succeed in solving all problems ( 1.1) for a given a when it succeeds (compare 
Theorems 3.3 and 3.4). 

(8) When trying to solve many subset sum problems with the same a, it might 
be possible to speed up Algorithm SV by first reducing a lattice L = L(a, M) with 
A4 = M* very large, say M* = (max Ui)2. The reduced basis would consist of y1 
vectors, call them by, . . . , bn*, that are linear combinations of bi, . . . , b, only, and 
of one vector, call it b,*,l, that is long and depends on b,,+, also. Then, to solve a 
subset sum problem with a given M, we can reduce a basis consisting of b?, . . . , b? 
and (0, . . . , 0, M). Since the b?are short, this reduction ought to be very rapid. 

Appendix. Reduced Basis of a Lattice 
Let [v,, . . . , v,] be an ordered basis of a lattice L. Associated to this basis is the 
set of vectors [VT, . . . , vn*] obtained by applying the Gram-Schmidt process to 
[VI, . . . , VA namely, 

v:= VI 
vt = v2 - I12.1vt 

where 

(Vi, $7 for j < i. 

Let y be a parameter satisfying $ I y < 1. Lenstra et al. define [VI, . . . , v,] to be y- 
reduced provided that: 

(1) 11 VT+ /.Li,i-1Vtl II2 L y]lVt* II2 for 2 I i I n, 
(2) ] pij 1 5 $ for all i > j, 

both hold. The definition of reduced basis used in [ 131 (and in this paper) takes 
y= 3. 

This definition of y-reduced basis can be reformulated in another way. Let 
5 denote the R-subspace of R” spanned by [vl, . . . , vj-l] (equivalently, [v?, . . . , 
v:,]). Let vi(j) for i I j denote the projection of vi onto the orthogonal complement 
qof 5. In particular vi(i) = v? Then the conditions above for a basis to be y- 
reduced can be written as 

(1) II vi0 - 1) II 2 2 Yll Vi-l(i - 1) 112, 
(2) 11 Vi( j + 1) - Vi(j) 11 5 t 11 Vj( j) 11, for all i > j. 
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