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Abstract

Given a monotone graph property P, consider p,(P), the proba-
bility that a random graph with edge probability p will have P. The
function dpu,(P)/dp is the key to understanding the threshold behavior
of the property P. We show that if dy,(P)/dp is small (corresponding
to a non-sharp threshold), then there is a list of graphs of bounded
size such that P can be approximated by the property of having one of
the graphs as a subgraph. One striking consequences of this result is
that a coarse threshold for a random graph property can only happen
when the value of the critical edge probability is a rational power of
n.

As an application of the main theorem we settle the question of the
existence of a sharp threshold for the satisfiability of a random k-CNF
formula.

An appendix by Jean Bourgain was added after the first version
of this paper was written. In this appendix some of the conjectures
raised in this paper are proven, along with more general results.
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1 Introduction & Definitions

Consider G(n, p) the probability space of random graphs on n vertices with
edge probability p. We will be considering subsets of this space defined by
monotone graph properties. A monotone graph property P is a property of
graphs such that

a) P is invariant under graph automorphisims.

b) If graph H has property P than so does any graph G having H as a sub-
graph.

A monotone symmetric family of graphs is a family defined by such a prop-
erty.

One of the first observations made about random graphs by Erdos and Rényi
in their seminal work on random graph theory [12] was the existence of
threshold phenomena, the fact that for many interesting properties P, the
probability of P appearing in G(n,p) exhibits a sharp increase at a certain
critical value of the parameter p. Bollobdas and Thomason proved the exis-
tence of threshold functions for all monotone set properties ([6]), and in [14]
it is shown that this behavior is quite general, and that all monotone graph
properties exhibit threshold behavior, i.e. the probability of their appear-
ance increases from values very close to 0 to values close to 1 in a very small
interval. More precise analysis of the size of the threshold interval is done in
[7].

This threshold behavior which occurs in various settings which arise in com-
binatorics and computer science, is an instance of the phenomenon of phase
transitions which is the subject of much interest in statistical physics. One of
the main questions that arise in studying phase transitions is: how “sharp”
is the transition? For example, one of the motivations for this paper arose
from the question of the sharpness of the phase transition for the property of
satisfiability of a random £—CNF Boolean formula. Nati Linial, who intro-
duced me to this problem, suggested that although much concrete analysis
was being performed on this problem the best approach would be to find gen-
eral conditions for sharpness of the phase transition, answering the question
posed in [14] as to the relation between the length of the threshold interval
and the value of the critical probability.

In this paper we indeed introduce a simple condition and prove it is suffi-
cient. Stated roughly, in the setting of random graphs, the main theorem
states that if a property has a coarse threshold then it can be approximated
by the property of having certain given graphs as a subgraph. This condition



can be applied in a more general setting such as that of the k-sat problem,
where, indeed, it can be used to demonstrate the sharpness of the threshold.

Let us now define precisely the question with which we wish to deal.
Consider A,,, a family of graphs on n vertices, defined by a monotone graph
property P,. Let us define what we mean by a sharp threshold vs. a coarse
one, for a series of such properties:
Recall that G(n,p) is actually a product space of (Z) copies of the 2 point
space endowed with the product measure, and s,(A), the measure of A, is
the probability that a random graph with edge probability p will belong to
A, and is a monotone function of p. Fix ¢ > 0 and for a property P, and
the family A defined by it let py be such that su,,(A) = €, and p; be de-
fined by pi,,(A) = 1 — €. Define the threshold length 6 to be p; — pg. There
exists p. € [po,p1] the critical p such that p, (A) = 1/2. Now for a series
of properties P(n) we will say that the properties have a sharp threshold if
lim 6(n)/p.(n) = 0 where p.(n) is the critical p for P(n). If the ratio 6/p. is
bounded away from zero we will say that properties have a coarse threshold.
(Bollobés and Thomason [6] showed that this ratio is bounded from above.)
From [14] a coarse threshold for a graph property can only happen for small
enough p, i.e. p bounded from above by a negative power of n. The question
of understanding coarse thresholds for non-symmetric properties at values of
p that are bounded from 0 is also interesting, see [13].
Example: Connectivity has a sharp threshold since the critical p is approxi-
mately log(n)/n where as 6 ~ 1/n. On the other hand the property of having
a triangle in the graph has a coarse threshold since both the critical p and
the length of the threshold interval are of magnitude 1/n.
The first naive conjecture that one might raise is that a coarse threshold
happens only for such properties, i.e. having a certain graph as a subgraph.
The following example shows, however, that this conjecture must be slightly
modified:
Consider the property “G is a graph on n vertices with a triangle as a sub-
graph, and at least log(n) edges”. A moment’s reflection shows that this
property is probabilisticly equivalent to the previous one, and differs from it
by a set of graphs with total probability which is negligible. What we suggest
in this paper is that the naive conjecture is correct except for such artificial
examples.

Before presenting the main theorems here are a few definitions and nota-
tions:
A balanced graph is a graph with average degree no smaller than that of any



of its subgraphs. A strictly balanced graph is one where the average degree
is strictly larger than that of any proper subgraph. For example any cycle is
a strictly balanced graph, where as two disjoint copies of a cycle make up a
balanced but not strictly balanced graph.

For a family of graphs A we will call a graph H minimal if H belongs to
A but no subgraph of H does. Let ||A]| denote the number of edges of the
largest minimal graph in A, when A is non empty, and define ||A|| = 0 when
A is the empty family. Throughout this paper ¢ will denote a constant, not
necessarily the same one each time it appears. When dealing with graphs, n
will denote the number of vertices and N = (g), the number of edges in the
complete graph. We will be interested in p = p(n) such that p tends to zero
as n tends to infinity. Let ¢ =1 — p.

For a graph H, |H| will denote the number of edges in H , and v(H) the
number of vertices. F(H) will denote the expected number of copies of H in
G(n,p), E(H) = p‘H|(U(’§))%. For graphs H, S we will denote the fact
that they are isomorphic by H ~ S. For a graph H, let ©(H), the orbit of
H, be the set of all subgraphs of the complete graph on n vertices which are
isomorphic to H. So F(H) = |0(H)|p!"l. We define also another function of
H which is more convenient to work with: D(H) = n*")pll. Note that for
H of bounded size D(H) > E(H) > ¢D(H).

Obviously for a property to have a coarse threshold there must be points
within the critical interval for which the derivative of the function s,(A) with
respect to p is small. More precisely:

Remark: if {A;} is a series of properties with a coarse threshold, i.e.
6(An)/pe(An) > C for all n then for each n there exists p* = p*(n) such
that p* s in the critical interval for A, and p* - Z_;|P=P* <1/C.

We will attack this aspect of the problem: denoting the slope at a point p
by I (for reasons to be explained) give a condition on the family A such that
p - I is bounded from above.

We now come to our main theorem:

Theorem 1.1 There exists a function k(e,c), such that for all ¢ > 0, any
n and any monotone symmetric family of graphs A on n wvertices, such that
p- 1 <, for every e > 0 there exists a monotone symmetric family B such
that ||B|| < k(e, ¢) and p,(AAB) < €. Furthermore the minimal graphs in B
are all balanced.

What the theorem essentially means is that a family with a coarse threshold



can be approximated by a family whose minimal graphs are all small. (Notice
that any monotone family is characterized by its minimal graphs.)

The following theorem seems at first sight to be slightly less informative
than the previous one, it is, however, more suitable for applications, i.e.
proving certain properties have a coarse threshold.

Theorem 1.2 Let 0 < a < 1. There exist functions B(e,c), bi(e€,c), ba(e, c)
such that for all ¢ > 0, any n and any monotone symmetric family of graphs
A on n vertices such that p-1 < ¢ and o < p,(A) <1 —«, for every e >0
there exists a graph G with the following properties:

o (G 1s balanced
o b < E(G) < by
e |G|<B

o Let Pr(A|G) denote the probability that a random graph belongs to A
conditioned on the appearance of G, a specific copy of G. Then

Pr(A|G) >1—¢

Note that conditioning on the appearance of, say, a triangle in G(n,p)
is not the same as conditioning on the appearance of three specific edges
(i,7), (j, k), (k,i) that are the edges of a specific triangle.

These two theorems can also be stated analogously for hypergraphs, and
also in a slightly more general setting which is relevant in the case of the
k-sat problem:

Consider a k-CNF formula on n boolean variables, i.e. a conjunction of
clauses each of which is a disjunction of £ of the variables and their nega-
tions. A random formula with parameter ¢ consists of ¢n such clauses chosen
uniformly from all 2(7}) clauses. Let

Py(c) = Pr(a random formula with cn clauses is satisfiable.)

In section 5 we will prove the following, which was not known for £ > 2:

Theorem 1.3 For every fived k > 2 there exists a function c(n) such that
for every e > 0
Pk(C - 6) — 1.

Pi(c+¢€) — 0.



The next theorem gives a characterization of the possible values of the critical
edge probability for graph properties with a coarse threshold:

Theorem 1.4 For any ¢ > 0 and any 0 < 7 < 1/2 there ezist positive real
numbers by, by, L such that for any monotone graph property A, if pI < ¢ and
7 < pp(A) <1 —7 then byn® < p < byn™ with o rational, o« = —k/l, k and |
positive integers and | < L .

In other words, coarse thresholds only happen near rational powers of n.
Theorems 1.1 and 1.4 each separately imply, for example, the well known
fact that connectivity has a sharp threshold. Theorem 1.4 shows this since
the critical probability for connectivity is p = log(n)/n. Theorem 1.1 implies
this since it is possible to show that at the critical probability it is not possible
to approximate connectivity by the property of having a subgraph from a list
of graphs of bounded size.

We conjecture that our characterization of coarse thresholds holds in a
more general setting, where symmetry plays no role: for any monotone set
A C {0,1}" define

||A]| = max {Z €; | € is a minimal element in A} :

Conjecture 1.5 There exists a function k(e,c) such that for all ¢ > 0, for
any A that is a monotone subset of the probability space {0,1}" endowed
with the product measure p,, if p+ I < c, then for every e > 0 there exists a
monotone set B C {0,1}" such that ||B|| < k and p,(AAB) <.

This conjecture seems to be related to conjecture 2.4, that will be presented
in the following section, although we are not able to show that one of them
implies the other.

2 Fourier analysis & sketch of the proof

We will now define an orthonormal basis , with respect to u, for the space of
real functions on G(n, p). The use of these functions and their nice properties
in a similar setting is introduced by Talagrand in [28]. These functions will
be indexed by all subgraphs of the complete graph on n vertices. Let E
denote the set of all edges of the complete graph. Define Uy to be identically
equal to 1. for any edge e € F let U, be defined as follows:



p/lq ifegH

It is not hard to check that these functions indeed are orthonormal with
respect to the inner product defined by y. For any real function f on G(n, p)
define f(H) as (f,Uy). This gives us the Fourier expansion of f :

f:Zf(H)UH-

For p = 1/2 this is the usual Fourier-Walsh expansion of a real function on
ZY. For any value of p we define as usual the L, norm of f, and Parseval’s

identity holds:
715 =>" f*

A crucial property of f that we will use is that if f is symmetric, so is f, ie.
if f(H) depends only on the isomorphism type of H, the same is true of f

For a given edge e define I,(f) , the influence of e on f to be the measure of
the set of graphs H such that f(H) # f(H @ e) where H & e is the graph
obtained from H by deleting e if e is an edge of H, or adding it if it is not.
Put I =3 _pI. Let A be monotone, and f = x(A).

The following three lemmas connect I with f and with du(A)/dp.
Lemma 2.1 (Russo, Margulis) du(A)/dp=1/p [, h(a)dw,

where h(a) is [{da'|a" ¢ A, dist(a,a’) = 1}|. (Here dist(a,d’) is the Hamming
distance.)

For proofs of this lemma see [23], [25]. An equivalent statement in different
notation is:

Lemma 2.2 du(A)/dp=1.

(Notice that I is a function of p.)
Remark: These two lemmas imply an easy converse of theorem 1.1 : if || A]|
is small than so is the quantity p - I.



Lemma 2.3 ¢-p-l. =) y.cy f2(H). Consequently q-p-I = You F2(H)|H]|.

One consequence of this last lemma, that we shall use, is as follows:

Y F(H) < gl/L

H:|H|>L

For proof of this lemma see [28].

These lemmas seem to suggest that it may be useful to attack our problem
via studying the Fourier transform of the characteristic function of a family
of graphs.To further gain faith in this approach let us take a look at the
Fourier transform of a given family defined by a property that has, as we
have seen, a coarse threshold:

Let f be the characteristic function of A, the family of all graphs having
a copy of C3 (a triangle) as a subgraph. Choose p such that the expected
number of triangles in G(n,p), E = E(C3) =log(2). Standard computations
show that p,(A) — 1/2. It is a nice exercise in basic random graph theory to
show that f exhibits the following asymptotic behavior as n tends to infinity:

20 =+

S F(8) 1 F

S~C3

> (s — EEQ/Q!

S~2-Cs

o . 1 &
SNZk:C3f2(S> — B/

where k - C'3 is the graph consisting of k£ disjoint triangles. Recalling that
Parseval’s identity gives
Y sy =1/2

and summing these figures gives that asymptotically all the L, weight of f
is concentrated on these graphs. The Fourier transform is “announcing”:
“f is a function that deals with triangles!”
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We now give a short sketch of the proof of the theorem : Given a family
A, and its characteristic function f such that p - I is small we will look at
approximations of f: g1, g2, g3. First we will truncate f i.e. set §,(S) = 0 for
S| large and ¢i(S) = f(S) otherwise. Since pI is small lemma 2.3 implies
that this will still leave us with a close L, approximation of f. Next we will
show, and this will take the most effort, that most of the Ly norm of f, i.e.
most of the weight of f2 is concentrated on a small number of nicely behaved
graphs: balanced graphs such that the expected number of copies of them
in a random graph with edge probability p is bounded. So now we define
J> to be the same as ¢; but leave its support only on such “nice” graphs.
Next we show that such a function as g, “Counts” appearances of these nice
graphs, in the sense that its value on a graph H can, with a high probability,
be approximated very closely just by knowing the number of subgraphs of H
isomorphic to each of our nice graphs. Finally, ¢, is not necessarily Boolean,
but the fact that it is close to the original f in the L, norm shows that f can
also be approximated by a Boolean function ¢g; that “Counts” appearances
of the nice graphs, e.g. g3 might be of the form : g3(H) = 1 iff H has as a
subgraph a triangle or at least two copies of Cj.

Recalling conjecture 1.5 perhaps this is the place to raise the following
conjecture about the Fourier coefficients of any monotone Boolean function
on the discrete cube;

Consider the probability space {0,1}" endowed with the product measure
[tp. It is trivial to generalize the definitions of this section to this setting and

to define f for any f : {0,1}" — R.

Conjecture 2.4 Let f : {0,1}" — {0,1} be the characteristic function of
A, a monotone subset of {0,1}". Let p = p.(A). For 7 >0 let

Q, = {512(5) < 7).

Let p. — 07— 0 and n — oo. Then if p. - dju(A)/dp|p=p. < ¢ then

> FA8)=0(1)

SeQr

This conjecture is proven in the appendix.



3 Some Lemmas on Random Graphs

In this section we wish mainly to study certain functions on the probability
space G(n,p). These functions play a key role in our proof, since we will
expand f, the characteristic function of the family of graphs we consider, as
a linear combination of these functions. For any graph S we define

V=Vs= Z Us.
HeO(9)

We wish to give an expression that approximates the value of Vg in simple
terms. For a given graph R let Xz be the random variable counting the
number of copies of R in a random graph. Let Xy be defined to be identically
1. Although given a certain R, some copies of R appear as subcopies of other
subgraphs of S, the value of Vg on a graph is determined by the value of Xp
for all R that are subgraphs of S. The following lemma gives a convenient
expression for V' in terms of the Xp’s.

Lemma 3.1 For any fized graph S

Vs = (v/1/qp) 1 E(S) (Z(—DR' E)((E)) :

RCS

Proof: Let H be a fixed copy of S, and for every H' C H let Yy be an
indicator random variable taking the value 1 iff all edges of H' appear in the
random graph. Uy is determined by the maximal H’ such that Yz =1,

Un = (=Va/p) ™ (=p/q) 11D
This can be expressed as follows:
Uy = (—/q/p)"! (Z (—p/q)HI=1HD Z (_1)(H’I|_H'|)YH,,> (1)
ngH H’gH”gH

In calculating Vg we sum (1) on all H € O(S). Using Xz = > Yy, we get:
Vo= (a/p™ > (=0T 3 (/)" O(H)I/IO(H")]| Xar

H'CH H'CH"

Using |H| — |H'| = (|H| — [H"|) + (|H"| — |H'|) this gives

Vs = (Va/p)® (Z Xp(=(1 +p/q>>m%@/q>'w> .

RCS

10
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Remark: The interested reader may take a look once again at the family of
graphs having a triangle as a subgraph. The values of the Fourier coefficients
as given in section 2 together with lemma 3.1 give a good understanding of
the exact structure of the Fourier transform of the characteristic function of
the family.

We now take a closer look at the sum defining Vs: Let e be an edge of the
complete graph on n vertices. For any graph H we define

V=Vg.= > Un

REO(H),e€R

Note that

Vs =1/|S|) Vs,

We wish to study the behavior of such functions, in particular to give a bound
B such that for V. = Vy., Pr(|V| > AB) decays like 1/\*. Note that the
expected value of V' is 0, since it is orthogonal to the identity.

Let H be a non-empty subgraph of H such that D(FI) is minimal, i.e.

VR C H, D(H) < D(R).
Note that H must be an induced subgraph.
Lemma 3.2 Prob<|V| > /\1/|@(H)|/(D(1€1)1/4)) < e t/n?,

Proof: The lemma will follow from a bound on the 4th moment of V:
4

swvh=r(( S ) )<or(Sieen ST

REO(H),e€R I ReL
(2)

Where on the right hand side the first sum is over all isomorphism types of
graphs S such that S is a union of 4 copies of H having an edge e in their
intersection. The second sum is on L’s that are quadruples of copies of H
with an edge e common to all 4 of them, such that their union is S.

Let us compute the contribution of a given S to the sum. Assume S is the

11



union of 4 copies of H. Let c. be the number of times an edge e of S is
covered by these copies.

E([[ur) =E(qJUe) =][EW:) =]] (p(— qa/p)* + gl 10/(1)05> :

We have used the fact that for different edges e # €’ the values of U, and
U. are independent random variables. Now if ¢, = 1 for some edge e then
E([]Ug) = 0. Otherwise the dominant summand corresponding to e is

p(=v/q/p)* and

E(JUr) ~ p®/ ™. (3)

Note that the number of summands in the double sum ) o>, is no more
than some constant depending on H. Substituting E(S) = |0(S)[p° and
(3) in (2) we have

E(VY < c-p MlmaxgE(S)/n? (4)

where the maximum is only taken over graphs S that can be covered by 4
copies of H with an edge in common, each edge being covered at least twice.
Recall that E(G) < D(G). Therefore we can replace E by D in (4) and have

E(V*Y < c-p MHmaxeD(S)/n? (5)

Claim: The S for which D(S) is maximal among the graphs in question
consists of the union of 2 copies of H, whose intersection is exactly H.
Using this S in (5) will give

E(VY < c- -2 /D(H).

Recall that |©(H)| ~ cn*™)| and the desired result follows from Markov’s
inequality .

Proof of claim: In searching for the best S we are trying to optimize the
function D = n*®plSl on S that is double-covered by 4 copies of H with a
non empty intersection. Instead let us optimize a function D which allows
edges and vertices to be covered only once and is identical with D when S is
double covered. Given a graph R and a covering of it by copies of H having
an edge in common define for any edge or vertex x, ®(z) to be 1 if z is
covered by more than one copy of H, and 1/2 if = is covered only once. Now

let 6(R) = Y. ®(e), 9(R) = 3. ®(v), and D(R) = n"™p?R)_ Tt is obvious

12



that the maximum of D is at least as large as the maximum of D, and that
if this maximum is equal to the value obtained by D on the S defined above
we are done. Let us build a graph F' which is a union of 4 copies of H with a
specific edge e belonging to their intersection. Adding the copies of H one by
one and keeping track of how much each additional copy contributes to the
value of D we have that the first 2 copies contribute \/D(H) and the next 2

no more than y/D(H)/D(H). The conclusion is D(S) > D(F) as desired.
|

Corollary 3.3 Let

X =X {IV;,H| > \/I@(H)|/D(}~I)1/4} :
Then

[ Vel < (VBT /DU )

Before proceeding to the proof of the main theorem there is one more simple
lemma we will need about the number of appearances of a given graph as a
subgraph of a random graph.

Lemma 3.4 Let R be a fized graph, and Xy be a random variable equal to
the number of copies (not necessarily induced copies) of R that appear in a
random graph G(n,p). Assume p = o(1). Then

Var(Xg) < E(R)* Y 1/E(H)
HCR
where the sum s over all nonempty subgraphs of R.

Proof: Var(Xg) is given by the formula
Y E(XY)- E(X)E(Y)

where the sum is over all pairs (X,Y’) that are indicator random variables
indicating whether a specific copy of R appeared in the random graph.
If X and Y are independent the corresponding summand is 0, otherwise
E(X)E(Y) = o(E(XY)). Partitioning the sum > E(XY") according to the
isomorphism type of the intersection of the two copies of R indicated by X
and Y gives the desired result.

|
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4 The Proof

4.1 Proof of the Main Theorems

In this subsection we present the proofs of theorems 1.1 and 1.4 using some
lemmas whose proof we put off to the following subsection. As usual let A be
a monotone symmetric family of graphs, and f be its characteristic function.
We now wish to extract information on f by analyzing f. Let H be a graph.
Choosing certain bounds L, ¢y, co call a graph H modest if

D[H|[ < L.

2)01 S E(H) S Cy .

3)H is balanced.

Remark 4.1 Note that once given the parameters L, ¢y, co that define mod-
esty, for sufficiently large n and small p this determines the average degree
of the modest graphs (if any indeed exist.) Let this degree be 6. This enables
us to define modesty by new parameters L, ¢ and ¢, such that all balanced
graphs with no more than L edges and average degree 6 are also modest. fur-
thermore ¢, and c, are simple functions of ¢y, co and L. It will be convenient
to always assume such a choice, so we may assume later that if H is modest
all subgraphs of H of the same average degree are also modest.

Moreover, note that for all subgraphs R C H, E(R) is bounded from below.
(Graphs with small expectation have large average degree.)

Note also that the average degree of a finite union of modest graphs must
have average degree larger or equal to that of the modest graphs.

Lemma 4.2 Let A be a monotone symmetric family of graphs on n vertices,
and f be its characteristic function. Assume pI < c. Then for every e > 0
there exist constants L, cq, co such that for sufficiently large n

S ez
s 18 not modest

This Lemma immediately implies theorem 1.4:
Proof: Let f be such that pI < ¢, and let Q be the set of graphs S with
|S| < L and with ¢; < E(S) < ¢3. Lemma 4.2 implies that

> s

SgQ

14



is small. Tf 5" f2 =7 (i.e. Pr(f =1) =7), we may conclude that Q is non-
empty, i.e. there exist graphs S with less than L edges with ¢; < E(S) < ¢y
which implies that p must be in the range asserted by the theorem. (Note
that since Pr(f = 1) is bounded away from 1 we cannot approximate f by
the function that is identically equal to 1, corresponding to the case where
Q2 has only the empty graph as a member in it.)

We now present the proof of theorems 1.1 and 1.2:

Proof: Let Si,55,...,5; be a list of all the modest graphs. For any graph
S let Cs be the set of all graphs T on n vertices such that the union of all
copies of the S;’s that appear as a subgraph of 7" is isomorphic to S. We will
subdivide the space of subgraphs of the complete graph on n vertices into
these disjoint sets and approximate f separately on each. While doing this
we will define certain parts of our space in which rare events occur:

1)Cy is the union of Cg for S which are large.

2)C, is the union of Cs for which p(Cy) is small.

3)C3 is the union of Cs for which Pr(f = 1) is not close to 0 or 1.

Let C4 be the union of the remaining sets. We will now define a sequence
of approximations of f, according to small constants €, €s,...¢5. Our final
approximation of f will be equal to 1 on a graph R iff R has a subgraph S
such that C's C C4 and f is equal to 1 on most of Cx.

1) Let ¢4 = > f(S)VS where the sum is only on modest graphs S, and Vg =
> ceo(s) Ua- By lemma 4.2 we can choose our bounds so that [|f — g1l < €.

2)Let C; be the union of all Cg such that Xg, (S) > [E(S;)/€2, for some
i, i.e. the number of copies of S; appearing is much more than the expected.
The measure of C; is no more than €. Define g5 to be equal identically to 1
on Cy, and equal to g; otherwise. So ||f — g2|]> < €1 + /€.

3)Recalling that F(S;) is bounded we have that the number of graphs in

{SICs #0,Cs ¢ C1}

is bounded i.e., we have a bound on the number of subsets C's on which ¢,
is not identically 1. Say we have M such sets. Let Cy be the union of all Cg
not in C; such that u(Cy) < e3/M. So pu(Cz) < €.

15



Remark: The reason we treat this part of our space separately is because we
need a lower bound on the measure of Cs in the proof of lemma 4.14 below.
Let C be the union of all remaining sets C's, those not in C; U C,.

Remark 4.3 Note that if S is such that Cs C C then S must be balanced
and with average degree the same as all the modest graphs. Furthermore the
size of S is bounded from above, and E(S) is bounded from above and below.

For any Cs C C and for any graph H € Cy define

g93(H) = E(g|Cs),

i.e. we replace g, by its conditional expectation in C's. Define g3 to be equal
to 1 on all graphs not in C. We will show that for any C's C C, g3 is close to
g because ¢, is almost constant on Cg in the sense that for any constant 0,

Pr({lg:(T) — E(g2|Cs)| > 0}T € Cg) — 0. (6)

This will be proven in lemma 4.14 in the following subsection. Recalling
there are only M sets C's in C we get that by choosing 6 small enough by
proper choice of €1, €9, €3 we have

lgs = fII> < €s/2-

We now replace g3 by g4 which is defined as follows:

4)For any S let g4 on the graphs in Cg be identically 0 or 1 according to
which approximates f better.

We now wish to compare two approximations of f : g3 which is constant on
each C's, and g4 which is the best approximation that is both constant on
each C's and Boolean. Let h be the best possible L? approximation of f that
is constant on C's. a simple calculation shows that

hles = Pr(f(R) =1|R € Cs).
The following inequality follows by summing over each C's separately:
1f = gally < 211 = hll3 < 201 = gsll3 = ea (7)

g4 is the characteristic function of a family B that is a candidate to be the
family guaranteed by the theorem. Yet we do not know that B is monotone
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and that ||B]| is small.

5) We now define g5, a monotone boolean function which is constant on
each Cs. We will define it such that if R C S then gs|c, < gslcs. Call a
graph S decisive if

Pr(f(T) = 1T € Cs) & (Ven, 1 — v/er).

Let C3 be the union of all sets C's for S which is not decisive. From (7) we
have that /1(C3) < \/€s. Let C4 be C \ Cs5. For any S define g5 on Cg to be
equal to 1 iff S has a subgraph R such that C'r C C4, with g4 equal to 1
on Cg. Since the union C; U Cy U C3 is of small measure, the alterations on
Cs that belong to these parts of our space do not affect our approximation
much. We will show in lemma 4.8 below that if R C S, and Cr and Cyg
belong to C4 then

E(fICr) > 1 - V& = E(f|Cs) > 1 - 2@

and hence on the sets C's C C4 we do not alter our approximation at all,
therefore choosing sufficiently small e, we have

lgs — fII5 < e

g5 is the characteristic function of a symmetric monotone family B with
minimal graphs which are balanced and of bounded size, and

u(BAA) < e.

This completes the proof of the main theorem. Furthermore by repeating
this process, possibly with a different choice of ¢;, i = 1,...4 we can define
C4 such that for Cr C Cy E(f|CRr) > 1 — €. Since we have a bound on E(R)
and |R| for all such graphs R, any one of them is a candidate to be the graph
guaranteed by theorem 1.2. Let r be a specific copy of such a graph R , and
let B, be the space of all graphs having r as a subgraph. Let C,. = B, N C.
From symmetry

E(f|Cy) = E(f|Cr)

and from positive correlation of increasing events
E(f|B,) > E(f|C,).

In other words, conditioning on the appearance of r the expectation of f is
at least 1 — e. This concludes the proof of theorem 1.2.

|
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4.2 Proof of the main Lemmas

We will need the following observation during the proof:
Remark: If there exists a graph H of bounded size such that E(H) is a
constant, then there exists a constant ¢ such that for any other graph G of
bounded size and any fixed m, if n is large enough then

E(G) <log(n)™ = E(G) < c.

This is true since the fact that £(H) is constant implies that p = cn ?UD/IH],

We now proceed to prove lemma 4.2:
Proof: Recalling the remark following lemma 2.3 we know that most of
the weight of f2 is concentrated on graphs H with no more than a certain
constant number of edges. We now wish to further characterize the graphs
H such that 3", f2(S) is significant. A simple calculation shows that for
any Boolean function f and any graph S

F2(S) < (4p)¥. (8)

Summing this on the orbit of S we get

> fA(S) < cE(H). (9)

S~H

So if H has small expectation its orbit does not contribute much to the weight
of f2. The following lemma shows this is true even if H has a subgraph of
small expectation, i.e. if a graph H is such that one does not expect to see
a copy of it in G(n,p) then the weight of f2 on its orbit is negligible.

Lemma 4.4 Let H be a graph. Then for every subgraph H'

S FAS) < e max{E(H))/E(R)}.
)

RCH'
Seoe(H
(Where the expectation of the empty graph is taken to be 1.)

This lemma is of course interesting to us in the case where E(H') is small. If
H has a subgraph with small expectation, it has one that is minimal with re-
spect to inclusion, and we can use the lemma with respect to that subgraph.
Proof: Let R be a specific copy of H'. Consider the probability space
{0,1}P\ where E \ R is the set of edges of the complete graph not in R.
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We view this as the space of random graphs on n vertices where one copy of
H', is fixed (chosen with probability 1), and all other edges are chosen with
usual probability p. We define the set of functions {Ug} as before, and have
a Fourier expansion for any real function on this space.

Define a function g on this space by ¢(G) = f(G U R). Note that g is sym-
metric in the sense that it is invariant under automorphisms of the complete
graph that keep R fixed. Using induction on |R| We will show that

9(G) = > f(RUuG)Ur(R). (10)

For any G in this new space define (:)(G) to be the new orbit of G , under
the action of the automorphisms of the complete graph that keep R fixed.
Since ¢ is Boolean

9(G)| < 1/\/16(G)).
Using (10) we have for any graph G such that its edge set is disjoint from R

Frua) VM| < (1/\/|é<G>| + X |f®Y G)/W"\) (1)

R'CR

<c (1/\/|é(G)| + > (\/ERI|\/|®(R’UG)|)_1> . (12)

R'CR
Note that for R’ C R,

[O(R'UG)| = c|O(R)| - |0(G)]. (13)

The value of ¢ in this preceding inequality may depend on the graphs involved,
however in our case we will be using this inequality for a finite number of
graphs, hence it holds with a fixed ¢. Observe that when v(R') N v(G) =
v(R) Nv(G), the two sides of (13) are comparable, i.e.

O(R' U G)| < d[O(R)|-6(G)].

Let G be such that GUR = H. Multiplying both sides of (12) by /|0 (H)|p/®
and using (13) gives

S s <c (Wm s W(me)

SeO(H) R'CR
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which gives the desired result.
What is left to show is the validity of formula (10):
Assume first that R = e, R is a single edge. In this case

UG =" F(T U e)Ua(T)plTlgN 1171,

eg¢T

The right hand side of (10) is
1(G) = Valpf(Gue) =3 F(M) (Ua(M) = V/a/pUaue (M) ) p =M.

Now, for M such that e & M the corresponding summand is zero. Setting
M = T Ue and using the fact that Ugy.(M) = —(\/¢/p)Uc(M \ €) gives the
desired result.

For |R| > 1 pick e € R and define ¢(G) = h(G' Ue), where h is a function on
{0, 1}2A\0\) . We already know that

3(G) = @) = (Va/p)h(Gue)
and the result follows by using the induction hypothesis on h.

|

Assume that H is such that W =3 p oy F2(R) is bounded away from zero
by some constant. We already know that H is of bounded size, and with
expectation bounded from 0. We will further characterize H, by examining
a few cases, and thus prove the following claim:

Claim 4.5 Under the above conditions H must be balanced, and of bounded
expectation.

Proof: First we define a set of functions {f.} such as those defined by
Talagrand in [28], which are a generalization of similar functions defined in
[18]. The idea behind these functions is that they measure I., the influence
of the edge e on f:

For every edge e let f. be the function defined by:

[ q(f(H)— f(HDe)) if f(H) =1
fe(H>_{p(f(H)—f(H@e)) if f(H) =0
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It is not hard to verify that

s« [ f(H) ifec H
fe(H>—{o if e H

By lemma 2.3 gpI =Y ||f.]|3- A simple calculation gives

I£ell3 = 1/201fells

and hence

gpl > CZ/IfeI- (14)

Recall that H was defined as a non-empty subgraph of H on which the
function D was minimal, and also W = 3", o) f*(R). Let © = O(H).

For any R € O, f(R) = |®‘

at the following expansion of f:
F=) JEVa=) 1/|H|Y [(H)Ven
H H e

Using the orthogonality of the functions Uy we have that for any two func-

tions f, g
[ra=%F3

and in particular using symmetry and the definition of f,.

[ g fva= S P

We will now proceed to analyze f by looking

S0,

=/HD Y [ f V=00 16 2 [ e 05)

(This technique of calculating the Fourier coefficients is similar to that used
in [7].)
Let

N Y
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Then (15) is equal to

(/1)) %Z ([ v+ [1vm=0).

Using corollary 3.3 and the fact that |f.| < 1, we get that this is bounded by

r(1/1y g7 (2 + o) BT/ D)) = ot /DI (16
So .
D(H) < clpD)* /W™ (1)

We now assume that for a given H, W =3 f2 > 7 > 0 for some constant 7
and wish to prove that H is balanced and E(H) is bounded. We will divide
this into 3 cases:

Case 1) H consists of a single edge.

In this case (17) implies that p = ¢/n*. For such values of p G(n, p) is almost
surely a disjoint union of edges, and both the lemma and the main theorems
hold. The graph property in question may be approximated by the property
of having at least k edges for some k =~ (pI)?, and the only graphs H of
bounded size for which E(H) is not o(1) are graphs that are a matching, so
that E(H) is also bounded from above.

Case 2) H = H.
In this case (17) shows that E(H) is bounded by a constant, and lemma 4.4
shows H must be balanced since it has no subgraphs of small expectation.

Case 3) The case where H is properly contained in H but is not a single
edge. As before H must be balanced and of expectation that is approxi-
mately constant. We will assume also that H is strictly balanced. If it is
only balanced but not strictly balanced, replace H by a strictly balanced
subgraph of it (Since this subgraph has the same average degree its expecta-
tion is a power of the expectation of H, and hence also bounded from above
and below.)

Choose a specific copy of H, call it S, and define a function ¢ on ZéN“SD

g9(R) = f(RUS)
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in other words g is the same as f, but its domain is all graphs with set of
edges disjoint from that of S. By analyzing ¢ we will show that H \ H is
balanced, and hence H is balanced.

Remark 4.6 In order to prove that H \ H is balanced , and conclude that
H is balanced we must interpret correctly the meaning of average degree of a
graph, orbit of a graph, expectation, etc. for a graph in our new space. For
any graph in our new space the edge set is well defined, we define the vertex
set to be only those vertices not in v(S), and the new orbit is defined by all
automorphisms of the complete graph leaving S fixed.

As we have seen in (10)

J(R) =Y f(RUS)Us(S). (18)

s'cs

Since the weight of f2 on any orbit of size |©(G)| is no more than a constant
(IIfll2 < 1) we have that |f(G)| < ¢/+/10]. (And in the case of H we have
equality).

Recalling that E(S") = [0(S")|pl*"], and Ug (S) = (—+/q/p)"*" this gives

[f(RUSYUs(S) < ¢/ \/E(S).

The fact that S is strictly balanced and of expectation bounded by a constant
means that F(S") >> E(S) for all proper subgraphs S’ of S.

So putting R = H \ S in (18) we have that the dominant summand is the
one corresponding to S’ = S, thus

GCH N\ S)| ~ |F(E)I/(vP)*. (19)

Let W =36 ¢*(G) where © is the orbit of H \ S in our new space. Note
that . . }
O(H\ H)||O(H)| = ¢|O(H)].

(19) now gives

W =d|OH\H)|f*(H)/p" = c/(|0H)|(p") = ¢/E(H)
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i.e. W is approximately constant.

The following computation shows that ¢pI(g) is no more than polylogarith-
mic:

We will now use Russo’s lemma via the interpretation that pl is the expected
number of “pivotal” edges, to lend a term from percolation theory:

For a given monotone family of graphs A and a given graph G € A (which
is a subgraph of the complete graph on n vertices) a pivotal edge is an edge
e € G such that G\ e does not belong to A. If G is a random graph, the
number of pivotal edges is a random variable C', and E(C) = pI. Let X
be a random variable that counts the number of copies of H in G(n,p). By
abuse of notation let S also be the event “S appears in G(n,p)”. (Recall S
is a specific copy of H.) We have

E(C|S)= Y E(C|Xy=i)Pr(Xy=ilS)

= " B(CIX; = ) Pr(X; = ) Pr(S|X;, = i)/ Pr(S)

=Y E(C|Xj =i)Pr(X; =1i)-i/E(H).

This expression can not differ by more than a polylogarithmic factor from the
expression for the unconditioned expectation of C' because of the following
lemma.

Lemma 4.7 Let H be a strictly balanced graph, and p such that E(H) < C.
Then for every k the probability of having more than log(n) copies of H in
G(n,p) is asymptoticaly less than n=".

Proof:

Let B be a large integer to be determined, and divide the event of having
log(n) copies of H into two subevents:

1)The number of copies of H that intersect other copies is at most B.
2)More than B copies intersect other copies.

Denoting log(n) — B = R the Probability of (1) is bounded by a constant
times CT/R!, asymptotically less than n */2 for any fixed B. This follows
from the usual way of computing the moments of the random variable Xp,
see for example [5].

The event (2) can be described by the existence of a subgraph from a list
of subgraphs whose length is a function of B, [(B). Any graph in this list
can be described by a union of at least B but no more than 2B copies of H.
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It follows from the fact that H is strictly balanced that for sufficiently large
B the expected number of copies of any graph in this list is smaller than
n~ D for all n large enough. So for sufficiently large B the probability of
(2) is asymptotically less than n % /2.

|

We now can proceed to analyze H \ H in the same manner we analyzed
H: The weight of §* on the orbit of H \ H is a constant and ¢pI(g) is no
more than a power of log(n), so we once again can divide into three cases, as
before. Even though pI is now logarithmic rather than constant our analysis
is the same because of the remark that opens this section: once we know
that E(f[ ) is constant any graph with expectation bounded by a power of
log(n) must also have bounded expectation. So we once again divide into 3
cases. In cases 1 or 2 we are done, and in case 3 we iterate the computation
again. Since the size of H was bounded a priori, this process will terminate
after a finite number of steps. This shows that H can be built by Taking H,
adding a graph which is the minimal strictly balanced subgraph of H \ H
and so on. This must result with a balanced graph, since in each step we add
a balanced graph from our new spaces. We also saw that F(H) is bounded.
This completes the proof of claim 4.5.

O
To summarize, if 3. ,_, f2(R) is not to small, H must be modest:
1)|H| is bounded by lemma 2.3.
2)E(H) is bounded from below by (9).
3)H is balanced and with expectation bounded from above by claim 4.5.
Hence we have completed the proof of lemma 4.2.

a

The following lemma, deals with the approximation of the monotone function
f in the proof of the main theorems. It implies that the approximation itself
is “approximately monotone”.

Lemma 4.8 Let R C T be graphs, and Cg,Cr,Cy be defined as in the proof
of the main theorems. Suppose Cr C C4, and Cp C Cy. Then

E(f|Cr) > E(f|Cr) — o(1).
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Proof: Recall that all the four quantities E(R), E(T), u(Cg), u(Cr) were,
by definition of C4, and by remark 4.3 bounded from above and from below
by some constants (that depended on ¢) and that R and T must be balanced,
with a bounded size and average degree ¢ equal to that of the modest graphs.
Let r C t be specific copies of R and T. (Perhaps this is not the most
successful notation, but as opposed to, say, R and T it is one that can be
noticed by the optically challenged who might not be able to distinguish C'z
from C7). Define B, to be the space of all graphs that have r as a subgraph.
We will consider all subspaces with the induced conditional probability. Let

Cr = Br ﬂCRa

and define C; analogously. Note that Cp is the disjoint union of O(R) sets
isomorphic to C,.. By symmetry we have:

E(f|Cr) = E(f|C)

and
E(f|Cr) = E(f|CY).

We will define a mapping ¢ : C; — (. such that ¢ is 1:1 and measure
preserving with respect to the conditional measure on C; and its image.
More precisely, if juq, pto are respectively the conditional measures on C; and
o(C;) then for any G € Cy pui(G) = pa(o(G)). Furthermore ¢ will be such
that
flo(@)=1= f(G) =1
and hence
E(f|Cy) = E(flo(Cy)).

Therefore it will suffice to show that
E(flo(Cy)) > E(f|C,) — o(1). (20)

The definition of o is very simple: For G € C; Define ¢(G) as the graph
obtained from G by deleting the edges in t \ r. Obviously o(G) € C,. The
question is which graphs in C, are not in the image of 0. Let Wi = o(C})
and Wy = C, \ Wj. The graphs in W5 can be classified into two types:

1) Graphs that have an edge in ¢ \ r. (It can be shown that the conditional
measure of the set of such graphs is negligible.)

2)Graphs G such that G Ut & C,.
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Roughly, the reason for a graph G to belong to W, is that there exist a
subgraph s in G such that s Ut is a union of modest graphs, where as s U r
is not.

Example 4.9 Toke r to be a complete graph on 4 vertices, x1,...,xs, and
t the graph obtained from r by adding on a path xs3,xs,xe, 4. Both r and t
are balanced. Now, if a graph in C, has a path xs,x7, 18, 16 it will belong to
Wy. Another possibility would be a graph with a path xg,x7, x8,x4. It may
be useful to keep these examples in mind for understanding the notion of an
extension, to be defined shortly.

For a graph G € C, define
a(G) = Pr(n(G) € Wy) (21)

where 7 is a permutation of the vertices leaving the vertices of r fixed, chosen
uniformly at random from such permutations. Let

o = 1(Wy)
(e

Let u, be the conditional measure on C). . So

a :/ a di,.
Cr
On the other hand,

1—a=pu(o(C)/u(Cr) = u(Cy) /(0™ Flu(C,))
_ ul(Cr) [O(R)|p" _ p(Cr)E(R)
O(T)| 1(Cr) P w(Cr)E(T)

Recalling the properties of R and T this shows a is bounded away from 1.
Using this and the fact that f is constant on isomorphism classes we have

fCTf'(l_O‘) dfiy
i—a)

But lemma 4.10 below shows that « is essentially constant (= a) on C,., and
(20) follows.

E(f|W1> =
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Lemma 4.10 Let a = a(G) be as defined in (21), where G is chosen at
random from C, by the measure .. Then

Var(a) = o(1).

Proof: First, we would like to shift to working in B,, a space with a con-
venient product measure, and to this end we will extend the definition of
a(G) to all graphs G € B,. Note that a graph in B, almost surely has no
edges in ¢\ r, and we will disregard the exceptions to this rule in our cal-
culations. For any graph G let V(G) denote the set of vertices of G. Let
k= |V(t)] — |V(r)|. Order the vertices in V(t) \ V(r), v1,...v;. For any
ordered set © = {x1,...x} outside of V(r), let m, be a permutation of the
vertices of the complete graph leaving V(r) fixed such that «(x;) = v; for
t = 1,...,k. For a given graph G € C, define a set of vertices x to be
problematic if

Wx(G) € WQ.

This does not depend on the choice of .

Returning to example 4.9 in that case a set of two vertices is problematic
if they have a path of length 3 between them, or one of them has a path
of length 3 connecting it to r. Note that «(G) is exactly the proportion of
problematic k-sets. For any problematic set © we can find a set of edges and
vertices y in G\ (r U x) that “are a reason” for x being problematic. More
precisely 7,(y) Ut is a union of modest graphs. (In our example these are
the paths of length 3 added between two vertices in ¢.) Call such a set an
extension of x. We now want to define extensions and problematic sets for
any graph in B,. For x, a set of k vertices disjoint from V'(r) in any graph
in B, and a set of vertices and edges y which is disjoint from r and x, we say
that y is an extension of z if

(re(yUx)Ur) € C,,

but,
(ma(yUx)Ut) & Ch.

Remark 4.11 Note that we view y as a set of edges and vertices and not as
a graph, indeed some edges in y may be such that their end vertices are not
m y. We do require, however, that y U x be a graph.
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Now extend the definition of a problematic set of vertices in a graph in B,
to include any set of vertices that has an extension. For any graph G € B,
define «(G) to be the proportion of the problematic sets among all sets of
size k. This definition of o coincides with the previous one on C,.

Now, before shifting to work on B, note that

w(C)/u(B,) = u(Cr)/(PM|O(R)|) = u(Cr)/E(R).

From the definition of C4, and the fact that C, C Cy, u(Cr) is bounded from
below, and E(R) is bounded from above (by bounds that depend on ¢€) and
hence the relative measure of C, in B, is non negligible, so

Var(a|B,) = o(1) = Var(«|C,) = o(1).

Lemma 4.12 asserts that Var(a|B,) = o(1), hence our result follows.

Lemma 4.12
Var(a|B,) = o(1)

Proof: Define X = nja, where n, = n!/(n — k)!. X(G) is the number of
problematic k-sets in G. Let x4, ...x,, be the indicator random variables of
the event of the corresponding sets being problematic. So X =) ;.

If E(X) = o(n*) then E(a) = o(1) and since 0 < a < 1 Var(a) = o(1). Hence
we may assume that E(X) = Q(n*) and strive to prove that Var(X) = o(n?*).

We have
Var(X) = Z Z (B(xx;) — E(x:)E(x;)).

For i # j let x; o x; be the random variable indicating the event that there
exist edge disjoint extensions of the corresponding sets. The BK inequality
([4]) implies

E(z; o xj) < E(x:)E(x;).
(See also [24] for a more general inequality.)
Let z; 0 v = x;x; — x; o x;. We have

var(X) < ZVar(xi) + Z E(x;ox;) = ZE(xl ox;) +o(n™).  (22)

i#] i#]
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We now need some notation regarding graphs in the space B,. Define two
graphs G and G’ to be of the same isomorphism type if there exists a per-
mutation of the vertices not in V(r) that takes G' to G'. Define F(G) as the
expected number of copies isomorphic to G in a random graph in B,.

Let the average degree of the modest graphs be ¢. For any set of edges
and vertices define the average degree to be the ratio between the number of
edges in the set and the number of vertices. So, for an extension y of a set
x the average degree is the ratio between the number of edges in y and the
number of vertices of y (those not in 2 and not in V'(r)). (recall that y is not
necessarily a proper graph in the sense that not all edges in y are between
vertices that belong to y.) Recall that tUm,(y) is the union of modest graphs,
and hence has average degree at least 6. Hence the average degree of y must
also be at least 0.

We will say an extension y is nice if

1) Tt is a minimal extension.

2) Its average degree is 0.

3) For any z C y such that z Ut is a graph the average degree of z is no
larger than 0.

The reason for defining this notion is that our calculations our much simpler
when considering such extensions. Whenever z; ¢ x; = 1 there are minimal
extensions causing this. Furthermore, for a given set z, the probability of
having a minimal extension with average degree of it or any subextension
larger than ¢, is o(1). Hence we may concentrate on the events caused by
nice extensions: Let z; x x; be the indicator random variable of the event
indicated by x; ¢ x;, but only in the case where there exist nice extensions
causing this event. We have

ZE(!L‘Z ox; — x; % w5) = o(n®*).

and hence it suffices to show
E (Z T x xj> = o(n"). (23)

For an extension y let Cl(y) denote the graph whose edges are the edges in
y. We will need the following property of nice extensions:

Claim 4.13 Let x be a set of vertices and y a nice extension. Any subgraph
of Cl(y) \ v has average degree smaller than 6.
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(Note that the claim deals with actual graphs and not extensions, i.e. all
edges come with their end vertices.)

Proof: Let y be a nice extension of x, and assume for simplicity of notation
that x =V (t) \ V(r). Note that from minimality of y there exists a modest
graph S such that Cl(y) C S C yUt. This S is the disjoint union of three
sets:

a) SNr.

b) Sn(t\r)

c¢) All the rest, namely y \ ¢.

Note that parts (b) and (c) are not necessarily proper graphs, i.e. they may
have edges with only one vertex belonging to them.

Part (c¢) does not have average degree larger than 6, because y is nice. Part
(b) can not have average degree larger than 6, or else its union with r would
also have large average degree, but this union is a subgraph of ¢ which has
no such subgraphs. Hence part (a) can not have average degree smaller than
0. As a subgraph of r it can not have large average degree either, and hence
has average degree exactly 6. Now, if 2 C (Cl(y) \ r) has average degree 6
then 2z U (S Nr) is modest (it is a subgraph of S which is modest, and has
the correct average degree.) Hence r U z is a union of modest graphs, which
is a contradiction: since y is an extension, there exists a graph in C, with z
as a subgraph, but in C). the union of all modest graphs is r.

|

Let y be a nice extension of a set . The graph in B, consisting of the
vertices of x and the edges and vertices of y can take on a finite number of
isomorphism types Gy, ...,G,. For all these graphs we have

E(G;) = O(n"). (24)

This follows from the fact that there is a copy of G;, say ¢ whose union with
t is a union of modest graphs. We have E(gUt) < ¢. ( A finite union of
modest graphs has bounded expectation.) But E(gUt) > cE(t)E(g)/n* and
E(t) is bounded from below.

We now can prove (23):

When summing E() w; x x;) we use the fact that if an extension of type
R; intersects an extension of type R; and their intersection is of type H

they form an event such that the expected number of isomorphic events is
E(R,))E(R;)/E(H). But from the fact that R; is nice it follows from claim
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4.13 that the average degree of H is smaller than 6 , or in other words,
E(H) — oo , and 3 3 3
E(R)E(R;)/E(H) = o(n*").

Since we have a finite number of such contributions this gives the desired
bound.

|

The last brick missing in the proof of the theorems is the following lemma.
In the previous section we defined g5, an approximation of f, and C as the
union of all sets C'¢ with the following properties:
1)|G| was bounded from above.
2)E(G) was bounded from above and below.
3)u(Cgq) was not too small.
We promised to show that ¢, is almost determined by the number of appear-
ances of the graphs S;, in the sense that if C's C C then for any constant
6>0

Pr({]g2(T) — E(g2|Cs)| > 6}T € Cs) — 0 (25)

Recalling the Fourier expansion of g, it is sufficient to show this for the
functions f(S)Vs, where S is modest, or using (8):

Lemma 4.14 Let G be such that Cg C C. Let S be modest, and V = Vg,
then:

V6 >0 Pr{|V(T) — E(V|Cs)| > /b *Vs}|T € Cg) — 0.

Proof: Note that all the modest graphs have the same average degree: the
only one that guarantees a bounded (from above and below) expectation.
Furthermore E(S)/E(R) is bounded for any R that is a subgraph of a modest
graph S. Recalling lemma 3.1 we wish to show that for R C S % is almost
constant on each C'g. So let us calculate the conditioned variance of Xg in a
given C's. If R is modest then Xy is constant. So we may concentrate on R
which is a subgraph of one of the S; , but not modest itself, i.e. E(R) is large.
Recall that lemma 3.4 gave the following expression for the non-conditioned
variance of Xpg:

Var(Xg) =< E(R()_1/E(H))

where the sum is over all non-empty subgraphs of R . If none of the modest
graphs are subgraphs of R this is o( E(R)?), since for every subgraph H,
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E(H) is also large. So the standard deviation of Xz in this case is o( E(R)).
Obviously conditioning on an event whose probability is bounded away from
zero (being in Cg) can not change this. Let us consider then, the variance
of Xr when some S; is a subgraph of R. Cg was defined by the fact that
the union of the modest graphs appearing was isomorphic to G. Let ¢ be
a specific copy of G. Let B, be the space consisting of all graphs that have
g as a subgraph with the probability measure induced by the conditional
probability in G(n,p). As in remark 4.6 we define graphs, orbits, expected
number of copies of a graph, etc. in our new space in the natural way. Let
Cy = C¢ N By From symmetry we get that the expectation and variance of
Xpr conditioned on being in Cg is the same as conditioning on being in C,.
Focusing our attention on Cy every copy of R must have g as a subgraph.
Therefore Xr now depends on the appearance of copies of certain graphs
Ty, T,..., T, such that T; U g ~ R. So we may now define X so that
Xpr = X7 (in the space C,) , but Xr counts the appearance of copies of the
T;’s . Since g is the union of all modest graphs in any graph in C;, we may
assume T; has no modest subgraphs in B,, and E(H) — oo for all H C T;.
Now, a simple calculation shows that

w(Ca N By)/1(By) = 1(Ce)/ E(G)

and from the definition of C, F(G) is bounded from above and p(Cg)from
below, hence if Var(X7) = o( E(Xr)?) conditioned on being in B, the same
must be true on C.

Remark: The reason for calculating in the space B, and not directly in C| is
that the conditional measure in the first space is much simpler than that of
the later.

We now repeat the calculation done in lemma 3.4, in the same manner as
done in the proof of lemma 4.12 with the sum

Y E(XY)-E(X)E(Y)
and the expectations as defined in the space B,. We get that
Var(Xr) < cE(X7)? /Mingcer, E(H).

From our remark concerning F(H) we conclude that this is o( E(T)?), so the
standard deviation of X is indeed o( E(R)).
The above considerations show that Xr/E(R) is almost a constant on any
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set Cg , (its standard deviation is o(1)), and hence by lemma ( 3.1)
f(S)Vs = cVi/+1/|©(S)] is indeed almost constant on our subsets. Moreover
for S's such that -, o f2(H) =c

. siirn E(R
F(5)Vs = Vo el TO(S)] ~ /eTBE)(3 " (~1)(5 '>%>

where F is the conditioned expectation of Xp. This completes the proof of
the lemma and the theorem.

5 The k-sat problem.

The following problem has attracted much attention from physicists and
computer scientists, see [20] for a survey on this topic: Let z1,x5,..., 2, be
Boolean variables and consider a CNF formula, made of clauses of size k of
the variables and their negations, i.e. a conjunction of clauses each of which
is a disjunction of k of the variables and their negations. A random formula,
with parameter M is generated in the following way: Pick M of the possible
2k (Z) clauses with uniform probability, and let the formula be the disjunction
of the chosen clauses. A property of interest of the formula such obtained
is whether it is satisfiable, i.e. whether there is an assignment of values to
T1,...,T, such that the formula takes on the value “true”. Denote the prob-
ability of such event by f(M). It is obvious that f is a monotone decreasing
function of M. It is known that for any given k there are constants ¢y, co
such that f(cin) — 1, f(can) — 0. (see [10].)

Computer simulations suggest that f exhibits a threshold behavior, i.e. that
the following is true: There exists a constant ¢ such that for any ¢ > 0,
f((e=€)n) =1, f((c+€)n) — 0.

This was shown to be true for & = 2 with the constant ¢ = 1, see [10], [17],
but for £ > 3 was not known. For k = 3 a series of upper and lower bounds
have seemed to be slowly converging to the value suggested by simulations
(c=4.2...) see [19], [11], [9], [8], [16], [22], [21].

We now show that the existence of a threshold for any given k£ can be demon-
strated by the proof of theorem 1.1. I would like to thank Svante Janson for
pointing out the following subtlety to me: What I actually show is not the
existence of a constant ¢ but of a function ¢(n) such that the phase transition
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happens within an € neighborhood of ¢(n), i.e. it is still feasible that though
there is a swift transition of f the critical value does not converge to any
given value.

First let us consider the dual problem, of the formula being a DNF for-
mula: i.e. a disjunction of k-conjunctions, and the property we shall study
is whether or not the formula is a tautology, i.e. does every assignment of
values to the Boolean variables yield the value “true” for the formula. This
is a monotone increasing property.

Secondly let us consider a model for producing a random formula which
relates to the previous model in the same way G(n,p) relates to G(n, M):
choose each of the possible clauses independently with probability p, and
let the formula be the disjunction of the chosen clauses. For p ~ M/N |
where N = 2F (Z) this is equivalent to the previous model in the following
sense: the question of existence of a “critical” constant ¢ as described above
is equivalent to the following question: By abuse of notation define f(p) as
the analog of f(M) , does there exist a constant ¢ such that for every e > 0
, f((c=e)n/N) =1, f((c+€e)n/N) — 07

Returning to the definitions in the introduction what we are asking is: “Does
the property of satisfiability have a sharp threshold?” We claim that the an-
swer is affirmative.

To show this we must first point out the analogy between the case of graphs
and the case of DNF formulas. We viewed graphs as a collection of pairs
(7,7) with 7,7 taken from a set of vertices. Our DNF formulas are a slight
generalization of hypergraphs: they can be thought of as a collection of k-
tuples chosen from a set of variables, with one of 2* possible labels on each
edge, specifying which variables appear with a negation.

The group of graph automorphisims acting on the subgraphs of K, can be
viewed as S, acting on ([;]), and we only considered properties invariant
under the action of this group. In the case of formulas we will consider prop-
erties (i.e. families of formulas) invariant under the action of the wreath
product of S, with & copies of Z,. The property of being a tautology, (or
satisfiability) is such a property.

A crucial aspect of the analogy is the following: given a bound on the num-
ber of edges (clauses) of a graph (formula), there are only a finite number of
isomorphism types.

Following the proof of theorems 1.1 and 1.2 shows that the analogy holds all
the way through, and gives for the probability space of all DNF k—formulas:
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Theorem 5.1 Consider DNF formulas with clauses of given size k. There
exists a function M(k,e€,c) such that for every ¢ > 0 and every monotone
symmetric family of such formulas, A, such that p-I < ¢, for every e > 0 there
exists a symmetric monotone family B such that || B|| < M and n(AAB) < e.

Here || B|| is the number of clauses in the largest minimal formula in B. Let
|G| be the number of clauses in G. Now define in the obvious manner for
a formula G, E(G) to be the expected number of sub formulas isomorphic
to G in a random formula. The average degree of a formula G is the ratio
between the number of variables and the number of clauses in G. Define a
balanced formula to be one with average degree no less than that of any sub
formula. The proof of theorem 1.2 gives:

Theorem 5.2 There exist functions B(e, c), bi(€,c), bo(e,c) such that for
all ¢ > 0, any n and any monotone symmetric family T of k-DNF formulas
with n variables such that p- I < ¢, for every € > 0 there exists a formula F
with the following properties:

o [ s balanced
o by < E(F) < by
e |[F|<B

e Let Pr(T|F) denote the probability that a random formula belongs to
T conditioned on the appearance of F, a specific copy of F.. Then

Pr(T|F)>1—¢

So if a property A of formulas has a coarse threshold, then for a certain value
of p in the critical interval, for every ¢ > 0 there exists a “nice” formula F
such that the probability of having A conditioned on the appearance of F, a
specific copy of F'is at least 1 — e.

We will show shortly that for the property of being a tautology one can not
produce such a “magic” formula. As a corollary we get theorem 1.3:

Corollary 5.3 In the space of all DNF k—formulas the property of being a
tautology has a sharp threshold.
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Proof:

Let p in the critical interval be such that p-I < ¢, and assume w.l.g p,(T) =
1/2. (u(T) is bounded from 0 and 1 by the definition of the critical interval).
Let T be the property of being a tautology. What we will show is that there
does not exist a short formula F' as described in theorem 5.2.

Assume F is such a formula. Obviously if F has a sub formula R that itself is
a tautology then Pr(T|F) =1 > 1—¢, however, an unpublished result of M.
Tarsi (see [2]) states that if such a formula R, uses r variables it must have at
least 41 clauses. The expected number of formulas of such an isomorphism
type in a random formula is therefore at most n"p" ™. Since p =n/N < 1/n
this tends to zero. But if F' is balanced and F(F") is bounded from below so
is E(R), hence this is a contradiction.

Let r be the number of variables in the formula F. Define a quasi tautology
on r variables to be a formula which is a disjunction of k-conjunctions of
variables xy,...,x, such that it is satisfied by all but one of the 2" possible
assignments to the variables. Let M be a maximal quasi tautology on the
r variables (adding any additional clause to it would make it a tautology),
such that F' is a sub formula of M. From positive correlation of increasing
events it would follow from our assumptions that Pr(T|M) > 1 — . So it is
sufficient to show that for any 7 > 0 if n is sufficiently large,

Pr(T|M) < 1/2+ . (26)

Define p(n) to be the critical p such that p,(7(n)) = 1/2 , where T'(n) is the
family of tautologies on n variables. Note that p(n) is monotone decreasing
as a function of n, so that ju,,)(T(n — 1)) < 1/2.

Let 1/2 — e > 7 > 0 be some constant. The following claim implies (26):

Claim 5.4 consider n—r variables and build a random k-DNF formula with
p = p(n). Now perform a second stage and add with probability r*p each of the
clauses with less than k variables (corresponding to the clauses in which some
of the r variables of the quasi tautology appeared.) The resulting formula is
a tautology with probability no more than 1/2 + 7.

To simplify matters we will prove a claim that is even stronger.

After the first stage the probability of having a tautology was less than 1/2.
In the second stage with probability tending to 1 no clauses of size smaller
than k& — 1 were chosen (recall that p =< n'=* .) The expected number of
clauses of size k — 1 that were added can be bounded by a constant c¢. Define
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d = 2¢/1. The probability that more than d clauses were added in the second
stage is less than 7/2 . Therefore claim 5.4 is implied by the following:

Claim 5.5 As before start with a random DNF formula on n — r variables
with k-clauses and p = p(n), and in the second stage pick at random d
different (k—1)- clauses, and add them to the formula. The resulting formula
is a tautology with probability < 1/2 4 7/2.

We will prove something even stronger: Assume that in the second stage the
clauses added are not of size £ — 1 but of size 1. Still, this does not increase
the probability of a tautology to 1/2 + 7/2. First we need the following:

Lemma 5.6 : Let f(n) = o(\/n). Assume the second stage of building the
formula consists of adding f(n) clauses of size k. Then Pr(T) after the
second stage is less than 1/2 4 7/2.

Proof: Consider j,(7) as a function of p. We are interested in the slope of
this function in a neighborhood of p. (p. = ¢n/N). The lemma will follow
if we show the slope is O(N/y/n), since enlarging p by 6 results with an
expected addition of 0V clauses.

Let M be a Hamming ball, the family of all formulas of size larger than Np.,.
The following two facts are easy exercises, and the lemma follows from them:
D)dp, (M) /dply=p, = V N/pe.

2)This is the maximum possible slope at p. for all monotone families of
formulas.

|

So we know that if in the second stage we add, say, n'/* clauses of size k we

can not increase the probability of a tautology to 1/2 + 7. We wish to show
that this implies that a constant number of clauses of size 1 will not suffice
either. Note that if after the first stage we do not yet have a tautology, the
probability of success in the second stage is no more than 1 — (1/2)%. In any
such case the following lemma will show that a large number of clauses of
size k will yield a tautology with probability higher than that of d clauses of
size 1:

Lemma 5.7 For A C {0,1}" define A to be (d, m,¢€)-coverable if the prob-
ability for the union of a random choice of d sub cubes of co-dimension m
to cover A is at least €. Let f(n) be any function that tends to infinity as n
tends to infinity. For fived k,d and ¢ and sufficiently large n any A C {0,1}"
that is (d, 1, €)-coverable is (f(n), k, €)-coverable.
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Proof: Let A C {0,1}" be (d, 1, ¢)-coverable. This means that sequentially
choosing at random d half cubes and building their union covers A with
probability not less than e. Now, instead of picking the last half cube, pick
at random +/f/d cubes of co-dimension k. We will prove below that this
decreases the probability of ending with a cover of A by no more than €/2d.
A trivial but helpful observation is that first choosing the sub cubes and
then the half cubes yields the same result. This enables us to repeat this
consideration d times and conclude that A is (v/f, k, €/2)-coverable. Since ¢
is fixed and f is large this implies that A is (f, k, €)-coverable.
We now prove the above claim, that picking at random +/f/d cubes of co-
dimension k instead of the last half cube decreases the probability of ending
with a cover of A by no more than €/2d.

Our claim will follow if we show that for any o > €/2d a set which is
(1,1, )-coverable is (v/f/d, k, a)-coverable.
For a set A to be (1,1, a)-coverable means that it is a subset of the in-
tersection of s half-cubes, where s > 2na. We may assume without loss of
generality that it is eractly the intersection of s = 2na half cubes. for a given
g we will bound from below the probability of g sub cubes of co-dimension &
covering A by the probability that at least one of them has A as a subset. The
probability of this is approximately 1 — (1 — (s/2n)*)9. So choosing g ~ o *
gives a cover with probability that is a constant, and hence g = \/f/d yields
a cover with probability close to 1. This completes the proof of the lemma
and with it the proof of the theorem.

6 Other Applications

The approach used to solve the k-sat problem can be used to prove sharpness
of thresholds in other cases in a similar manner. Here are a few examples:

e The existence of a perfect matching in a 3-uniform (or 7-
uniform) hypergraph: consider a random 3-uniform-hypergraph on
n = 3k vertices with edge probability p. The property of interest is that
of the existence of a disjoint covering of the vertices by k£ edges. What
is currently known about the value of the critical p for this property is

log(n)/n? < p. < n=3,
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(See [27] and [15]). The question of showing that p, < n~=(2=°(1) is con-
sidered to be one of the challenging problems in random (hyper)graph
theory. However we may now deduce the sharpness of the threshold:
By theorem 1.2 this property has a sharp threshold since it can not be
approximated by the appearance of a fixed sub hypergraph . The proof
of this is straightforward:

Proof:Assume by contradiction that there exists such a hypergraph
H. Let m be the number of edges in H, and assume the probability
of having a matching conditioned on the appearance of H is substan-
tially larger than the unconditioned probability, which is 1/2. The only
contribution H gives is by using some of its edges for creating a match-
ing. It is not hard to see that adding, say, m2™ edges at random must
“help” to achieve a matching even more. But as in the case of the k-sat

we know that if X = o(y/pc(3)), then adding X edges can not make
such a difference.

|

Remark: A similar proof works for the case of “H-factors”, the prop-
erty of having a covering of the vertices of G(n, p) by disjoint copies of
some fixed graph H. See [3] for this problem. However in this case,
as pointed out to me by Noga Alon, it is not enough to use the fact
that o(v/E) edges (where E is the expected number of edges) do not
make a difference. Here one should use the fact that even o(E) edges
should not make a difference, or else the threshold would be sharp.
This type of proof seems to be easy for some “non-local” properties
such as connectivity or having a perfect matching.

k-colorability for &£ > 2. In a paper in preparation [1] it is shown
by similar techniques that the property of being non-k-colorable for a
fixed k larger than 2 has a sharp threshold. The crux of the proof there
is to show that if G(n,p) is non-k-colorable with probability 1/2, this
does not change substantially if the color of a fixed number of vertices
is predictated.

Properties for which the critical probability is log(n)/n. Such
properties have a sharp threshold by theorem 1.4. This reproves the
well known facts that connectivity, having a Hamilton cycle and other
such properties have a sharp threshold.
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7 Consequences of the Appendix

Before dealing with the consequences of the appendix I would like to describe
the chronological development of the results in this paper and the appendix.
After the first draft of this paper was written Jean Bourgain came up with
the results described in the appendix. At that stage theorem 1.1 was stated
in a weaker form, with the restriction that p must be close to a rational
power of n, and theorem 1.4 was a conjecture. The appendix contains two
main results: one of them, proposition 1 is analogous to theorem 1.1 but is
placed in a more general setting where symmetry plays no role. The second
is proposition 2 which states that conjecture 2.4 is true. Conjecture 2.4 itself
was strong enough to imply together with the rest of the paper at that stage
that theorems 1.1 and 1.4 were true.
After this Joel Spencer suggested extensions of the arguments in the first
version of the paper to get the present strengthened versions of the theorems.
This in turn led to a simpler approach which consisted of slight alteration of
the original version of the paper, yielding the present version.

Here are some reflections as to the consequences of the results described
in the appendix:
«What is proven in proposition 1 is of course more general than theorem 1.1
since it holds with no assumptions on symmetry. On the other hand in the
setting of graphs it does not imply theorem 1.1. However in every applica-
tion mentioned in this article (k-sat, k-colorability, etc.) it seems that both
theorems can be used equaly well to prove sharpness, since they both deal
with the possibility of approximating “global” properties by “local” ones. It
seems that this will happen for essentially all applications.
xProposition 2 gives an immediate proof of theorem 1.4. This proof is pre-
sented in the appendix. It also can be used to substantialy simplify the proof
of lemma 4.2 which is a key lemma in this paper.

Results similar to those of this paper may be deduced from the appendix
in certain cases where there is a group action under which the families con-
sidered are invariant, and the number of different isomorphism types of sets
with a bounded size is bounded. An intriguing question is what can be said
about the possible values of p,. for properties with a coarse thresholds in the
case of a family of subsets of {1,...,n} that is invariant, say, under the ac-
tion of the cyclic group, C,.
xFinally, it would be interesting to try to prove conjecture 1.5 using the
techniques of the appendix.
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