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Abstract

Given a monotone graph property P � consider �p�P �� the proba�

bility that a random graph with edge probability p will have P � The
function d�p�P ��dp is the key to understanding the threshold behavior

of the property P � We show that if d�p�P ��dp is small �corresponding

to a non�sharp threshold�� then there is a list of graphs of bounded

size such that P can be approximated by the property of having one of

the graphs as a subgraph� One striking consequences of this result is

that a coarse threshold for a random graph property can only happen

when the value of the critical edge probability is a rational power of

n�
As an application of the main theorem we settle the question of the

existence of a sharp threshold for the satis�ability of a random k�CNF
formula�

An appendix by Jean Bourgain was added after the �rst version
of this paper was written� In this appendix some of the conjectures

raised in this paper are proven� along with more general results�
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� Introduction � De�nitions

Consider G�n� p� the probability space of random graphs on n vertices with
edge probability p� We will be considering subsets of this space de�ned by
monotone graph properties� A monotone graph property P is a property of
graphs such that
a� P is invariant under graph automorphisims�
b� If graph H has property P than so does any graph G having H as a sub�
graph�
A monotone symmetric family of graphs is a family de�ned by such a prop�
erty�
One of the �rst observations made about random graphs by Erd�os and R�enyi
in their seminal work on random graph theory ��	
 was the existence of
threshold phenomena� the fact that for many interesting properties P � the
probability of P appearing in G�n� p� exhibits a sharp increase at a certain
critical value of the parameter p� Bollob�as and Thomason proved the exis�
tence of threshold functions for all monotone set properties ���
�� and in ��


it is shown that this behavior is quite general� and that all monotone graph
properties exhibit threshold behavior� i�e� the probability of their appear�
ance increases from values very close to � to values close to � in a very small
interval� More precise analysis of the size of the threshold interval is done in
��
�
This threshold behavior which occurs in various settings which arise in com�
binatorics and computer science� is an instance of the phenomenon of phase
transitions which is the subject of much interest in statistical physics� One of
the main questions that arise in studying phase transitions is� how �sharp�
is the transition� For example� one of the motivations for this paper arose
from the question of the sharpness of the phase transition for the property of
satis�ability of a random k�CNF Boolean formula� Nati Linial� who intro�
duced me to this problem� suggested that although much concrete analysis
was being performed on this problem the best approach would be to �nd gen�
eral conditions for sharpness of the phase transition� answering the question
posed in ��

 as to the relation between the length of the threshold interval
and the value of the critical probability�
In this paper we indeed introduce a simple condition and prove it is su��
cient� Stated roughly� in the setting of random graphs� the main theorem
states that if a property has a coarse threshold then it can be approximated
by the property of having certain given graphs as a subgraph� This condition

	



can be applied in a more general setting such as that of the k�sat problem�
where� indeed� it can be used to demonstrate the sharpness of the threshold�

Let us now de�ne precisely the question with which we wish to deal�
Consider An� a family of graphs on n vertices� de�ned by a monotone graph
property Pn� Let us de�ne what we mean by a sharp threshold vs� a coarse
one� for a series of such properties�
Recall that G�n� p� is actually a product space of

�
n
�

�
copies of the 	 point

space endowed with the product measure� and �p�A�� the measure of A� is
the probability that a random graph with edge probability p will belong to
A� and is a monotone function of p� Fix � � � and for a property P � and
the family A de�ned by it let p� be such that �p��A� � �� and p� be de�
�ned by �p��A� � � � �� De�ne the threshold length � to be p� � p�� There
exists pc � �p�� p�
 the critical p such that �pc�A� � ��	� Now for a series
of properties P �n� we will say that the properties have a sharp threshold if
lim ��n��pc�n� � � where pc�n� is the critical p for P �n�� If the ratio ��pc is
bounded away from zero we will say that properties have a coarse threshold�
�Bollob�as and Thomason ��
 showed that this ratio is bounded from above��
From ��

 a coarse threshold for a graph property can only happen for small
enough p� i�e� p bounded from above by a negative power of n� The question
of understanding coarse thresholds for non�symmetric properties at values of
p that are bounded from � is also interesting� see ���
�
Example� Connectivity has a sharp threshold since the critical p is approxi�
mately log�n��n where as � � ��n� On the other hand the property of having
a triangle in the graph has a coarse threshold since both the critical p and
the length of the threshold interval are of magnitude ��n�
The �rst naive conjecture that one might raise is that a coarse threshold
happens only for such properties� i�e� having a certain graph as a subgraph�
The following example shows� however� that this conjecture must be slightly
modi�ed�
Consider the property �G is a graph on n vertices with a triangle as a sub�
graph� and at least log�n� edges�� A moment�s re�ection shows that this
property is probabilisticly equivalent to the previous one� and di�ers from it
by a set of graphs with total probability which is negligible� What we suggest
in this paper is that the naive conjecture is correct except for such arti�cial
examples�

Before presenting the main theorems here are a few de�nitions and nota�
tions�
A balanced graph is a graph with average degree no smaller than that of any

�



of its subgraphs� A strictly balanced graph is one where the average degree
is strictly larger than that of any proper subgraph� For example any cycle is
a strictly balanced graph� where as two disjoint copies of a cycle make up a
balanced but not strictly balanced graph�
For a family of graphs A we will call a graph H minimal if H belongs to
A but no subgraph of H does� Let kAk denote the number of edges of the
largest minimal graph in A� when A is non empty� and de�ne kAk � � when
A is the empty family� Throughout this paper c will denote a constant� not
necessarily the same one each time it appears� When dealing with graphs� n
will denote the number of vertices and N �

�
n
�

�
� the number of edges in the

complete graph� We will be interested in p � p�n� such that p tends to zero
as n tends to in�nity� Let q � �� p�
For a graph H� jHj will denote the number of edges in H � and v�H� the
number of vertices� E�H� will denote the expected number of copies of H in

G�n� p�� E�H� � pjHj
�

n
v�H�

� v�H��
jAut�H�j

� For graphs H�S we will denote the fact

that they are isomorphic by H � S� For a graph H� let ��H�� the orbit of
H� be the set of all subgraphs of the complete graph on n vertices which are
isomorphic to H� So E�H� � j��H�jpjHj� We de�ne also another function of
H which is more convenient to work with� D�H� � nv�H�pjHj� Note that for
H of bounded size D�H� � E�H� � cD�H��

Obviously for a property to have a coarse threshold there must be points
within the critical interval for which the derivative of the function �p�A� with
respect to p is small� More precisely�
Remark� if fAig is a series of properties with a coarse threshold� i�e�
��An��pc�An� � C for all n then for each n there exists p� � p��n� such
that p� is in the critical interval for An and p� � d�

dp
jp�p� � ��C�

We will attack this aspect of the problem� denoting the slope at a point p
by I �for reasons to be explained� give a condition on the family A such that
p � I is bounded from above�
We now come to our main theorem�

Theorem ��� There exists a function k��� c�� such that for all c � �� any
n and any monotone symmetric family of graphs A on n vertices� such that
p � I � c� for every � � � there exists a monotone symmetric family B such
that kBk � k��� c� and �p�A�B� � �� Furthermore the minimal graphs in B
are all balanced�

What the theorem essentially means is that a family with a coarse threshold






can be approximated by a family whose minimal graphs are all small� �Notice
that any monotone family is characterized by its minimal graphs��

The following theorem seems at �rst sight to be slightly less informative
than the previous one� it is� however� more suitable for applications� i�e�
proving certain properties have a coarse threshold�

Theorem ��� Let � � � � �� There exist functions B��� c�� b���� c�� b���� c�
such that for all c � �� any n and any monotone symmetric family of graphs
A on n vertices such that p � I � c and � � �p�A� � � � �� for every � � �
there exists a graph G with the following properties�

� G is balanced

� b� � E�G� � b�

� jGj � B

� Let Pr�AjG� denote the probability that a random graph belongs to A
conditioned on the appearance of �G� a speci�c copy of G� Then

Pr�AjG� � �� �

Note that conditioning on the appearance of� say� a triangle in G�n� p�
is not the same as conditioning on the appearance of three speci�c edges
�i� j�� �j� k�� �k� i� that are the edges of a speci�c triangle�

These two theorems can also be stated analogously for hypergraphs� and
also in a slightly more general setting which is relevant in the case of the
k�sat problem�

Consider a k�CNF formula on n boolean variables� i�e� a conjunction of
clauses each of which is a disjunction of k of the variables and their nega�
tions� A random formula with parameter c consists of cn such clauses chosen
uniformly from all 	k

�
n
k

�
clauses� Let

Pk�c� � Pr�a random formula with cn clauses is satis�able��

In section � we will prove the following� which was not known for k � 	�

Theorem ��� For every �xed k � 	 there exists a function c�n� such that
for every � � �

Pk�c� �� � ��

Pk�c � �� � ��
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The next theorem gives a characterization of the possible values of the critical
edge probability for graph properties with a coarse threshold�

Theorem ��� For any c � � and any � � 	 � ��	 there exist positive real
numbers b�� b�� L such that for any monotone graph property A� if pI � c and
	 � �p�A� � �� 	 then b�n

� � p � b�n
� with � rational� � � �k�l� k and l

positive integers and l � L �

In other words� coarse thresholds only happen near rational powers of n�
Theorems ��� and ��
 each separately imply� for example� the well known
fact that connectivity has a sharp threshold� Theorem ��
 shows this since
the critical probability for connectivity is p � log�n��n� Theorem ��� implies
this since it is possible to show that at the critical probability it is not possible
to approximate connectivity by the property of having a subgraph from a list
of graphs of bounded size�

We conjecture that our characterization of coarse thresholds holds in a
more general setting� where symmetry plays no role� for any monotone set
A 	 f�� �gn de�ne

kAk � max
nX

�i j � is a minimal element in A
o
�

Conjecture ��� There exists a function k��� c� such that for all c � �� for
any A that is a monotone subset of the probability space f�� �gn endowed
with the product measure �p� if p � I � c� then for every � � � there exists a
monotone set B 	 f�� �gn such that kBk � k and �p�A�B� � ��

This conjecture seems to be related to conjecture 	�
� that will be presented
in the following section� although we are not able to show that one of them
implies the other�

� Fourier analysis � sketch of the proof

We will now de�ne an orthonormal basis � with respect to �� for the space of
real functions on G�n� p�� The use of these functions and their nice properties
in a similar setting is introduced by Talagrand in �	�
� These functions will
be indexed by all subgraphs of the complete graph on n vertices� Let E
denote the set of all edges of the complete graph� De�ne U� to be identically
equal to �� for any edge e � E let Ue be de�ned as follows�
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Ue�H� �

� �pq�p if e � Hp
p�q if e 
� H

For any other graph R de�ne

UR �
Y
e�R

Ue�

It is not hard to check that these functions indeed are orthonormal with
respect to the inner product de�ned by �� For any real function f on G�n� p�
de�ne �f�H� as hf� UHi� This gives us the Fourier expansion of f �

f �
X
H

�f�H�UH �

For p � ��	 this is the usual Fourier�Walsh expansion of a real function on
ZN
� � For any value of p we de�ne as usual the L� norm of f � and Parseval�s

identity holds�

kfk�� �
X

�f ��

A crucial property of �f that we will use is that if f is symmetric� so is �f � i�e�
if f�H� depends only on the isomorphism type of H� the same is true of �f �
For a given edge e de�ne Ie�f� � the in�uence of e on f to be the measure of
the set of graphs H such that f�H� 
� f�H � e� where H � e is the graph
obtained from H by deleting e if e is an edge of H� or adding it if it is not�
Put I �

P
e�E Ie� Let A be monotone� and f � 
�A��

The following three lemmas connect I with �f and with d��A��dp�

Lemma ��� �Russo� Margulis	 d��A��dp � ��p
R
A
h�a�d�p

where h�a� is jfa�ja� 
� A� dist�a� a�� � �gj� �Here dist�a� a�� is the Hamming
distance��

For proofs of this lemma see �	�
� �	�
� An equivalent statement in di�erent
notation is�

Lemma ��� d��A��dp � I�

�Notice that I is a function of p��
Remark� These two lemmas imply an easy converse of theorem ��� � if kAk
is small than so is the quantity p � I�
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Lemma ��� q �p�Ie �
P

Hje�H
�f ��H�� Consequently q �p�I �

P
H

�f ��H�jHj�
One consequence of this last lemma� that we shall use� is as follows�X

H�jHj�L

�f ��H� � qpI�L

For proof of this lemma see �	�
�
These lemmas seem to suggest that it may be useful to attack our problem

via studying the Fourier transform of the characteristic function of a family
of graphs�To further gain faith in this approach let us take a look at the
Fourier transform of a given family de�ned by a property that has� as we
have seen� a coarse threshold�
Let f be the characteristic function of A� the family of all graphs having
a copy of C� �a triangle� as a subgraph� Choose p such that the expected
number of triangles in G�n� p�� E � E�C�� � log�	�� Standard computations
show that �p�A� � ��	� It is a nice exercise in basic random graph theory to

show that �f exhibits the following asymptotic behavior as n tends to in�nity�

�f ���� �
�


X
S�C�

�f ��S� � �



E

X
S���C�

�f ��S� � �



E��	 

�

�

�X
S�k�C�

�f ��S� � �



Ek�k 

where k � C� is the graph consisting of k disjoint triangles� Recalling that
Parseval�s identity gives X

�f ��S� � ��	

and summing these �gures gives that asymptotically all the L� weight of �f
is concentrated on these graphs� The Fourier transform is �announcing��
�f is a function that deals with triangles �

�



We now give a short sketch of the proof of the theorem � Given a family
A� and its characteristic function f such that p � I is small we will look at
approximations of f � g�� g�� g�� First we will truncate �f i�e� set �g��S� � � for
jSj large and �g��S� � �f�S� otherwise� Since pI is small lemma 	�� implies
that this will still leave us with a close L� approximation of f � Next we will
show� and this will take the most e�ort� that most of the L� norm of f � i�e�
most of the weight of �f � is concentrated on a small number of nicely behaved
graphs� balanced graphs such that the expected number of copies of them
in a random graph with edge probability p is bounded� So now we de�ne
�g� to be the same as �g� but leave its support only on such �nice� graphs�
Next we show that such a function as g� �Counts� appearances of these nice
graphs� in the sense that its value on a graph H can� with a high probability�
be approximated very closely just by knowing the number of subgraphs of H
isomorphic to each of our nice graphs� Finally� g� is not necessarily Boolean�
but the fact that it is close to the original f in the L� norm shows that f can
also be approximated by a Boolean function g� that �Counts� appearances
of the nice graphs� e�g� g� might be of the form � g��H� � � i� H has as a
subgraph a triangle or at least two copies of C	�

Recalling conjecture ��� perhaps this is the place to raise the following
conjecture about the Fourier coe�cients of any monotone Boolean function
on the discrete cube!
Consider the probability space f�� �gn endowed with the product measure
�p� It is trivial to generalize the de�nitions of this section to this setting and

to de�ne �f for any f � f�� �gn � R�

Conjecture ��� Let f � f�� �gn � f�� �g be the characteristic function of
A� a monotone subset of f�� �gn� Let p � pc�A�� For 	 � � let

"� � fSj �f ��S� � 	pjSjg�

Let pc � � 	 � � and n�
� Then if pc � d��A��dpjp�pc � c thenX
S�
�

�f ��S� � o���

This conjecture is proven in the appendix�
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� Some Lemmas on Random Graphs

In this section we wish mainly to study certain functions on the probability
space G�n� p�� These functions play a key role in our proof� since we will
expand f � the characteristic function of the family of graphs we consider� as
a linear combination of these functions� For any graph S we de�ne

V � VS �
X

H���S�

UH �

We wish to give an expression that approximates the value of VS in simple
terms� For a given graph R let XR be the random variable counting the
number of copies of R in a random graph� Let X� be de�ned to be identically
�� Although given a certain R� some copies of R appear as subcopies of other
subgraphs of S� the value of VS on a graph is determined by the value of XR

for all R that are subgraphs of S� The following lemma gives a convenient
expression for V in terms of the XR�s�

Lemma ��� For any �xed graph S

VS � �
p

��qp�jSjE�S�

�X
R�S

����jRj
XR

E�R�

�
�

Proof� Let H be a �xed copy of S� and for every H � � H let YH� be an
indicator random variable taking the value � i� all edges of H � appear in the
random graph� UH is determined by the maximal H � such that YH� � ��

UH � ��
p
q�p�jHj��p�q��jHj�jH�j�

This can be expressed as follows�

UH � ��
p
q�p�jHj

�X
H��H

��p�q��jHj�jH�j�
X

H��H���H

�����jH
��j�jH�j�YH��

�
� ���

In calculating VS we sum ��� on all H � ��S�� Using XH �
P

YH � we get�

VS � �
p
q�p�jHj

X
H���H

����jH
��j
X

H��H��

�p�q�jHj�jH�j j��H�j�j��H ���jXH��

Using jHj � jH �j � �jHj � jH ��j� � �jH ��j � jH �j� this gives

VS � �
p
q�p�jSj

�X
R�S

XR���� � p�q��jRj
j��S�j
j��R�j�p�q�

jSj�jRj

�
�

��



�

Remark� The interested reader may take a look once again at the family of
graphs having a triangle as a subgraph� The values of the Fourier coe�cients
as given in section 	 together with lemma ��� give a good understanding of
the exact structure of the Fourier transform of the characteristic function of
the family�
We now take a closer look at the sum de�ning VS� Let e be an edge of the
complete graph on n vertices� For any graph H we de�ne

V � VH�e �
X

R���H��e�R

UR�

Note that
VS � ��jSj

X
e

VS�e�

We wish to study the behavior of such functions� in particular to give a bound
B such that for V � VH�e� Pr�jV j � �B� decays like ���	� Note that the
expected value of V is �� since it is orthogonal to the identity�
Let $H be a non�empty subgraph of H such that D� $H� is minimal� i�e�

�R � H� D� $H� � D�R��

Note that $H must be an induced subgraph�

Lemma ��� Prob
�
jV j � �

pj��H�j��D� $H���	�
�
� c��	�n��

Proof� The lemma will follow from a bound on the 
th moment of V �

E�V 	� � E

�
�
�
� X

R���H��e�R

UR

	
A

		
A � cE

�X
S

j��S�jn��
X
L

Y
R�L

jURj
�
�

�	�
Where on the right hand side the �rst sum is over all isomorphism types of
graphs S such that S is a union of 
 copies of H having an edge e in their
intersection� The second sum is on L�s that are quadruples of copies of H
with an edge e common to all 
 of them� such that their union is S�
Let us compute the contribution of a given S to the sum� Assume S is the

��



union of 
 copies of H� Let ce be the number of times an edge e of S is
covered by these copies�

E�
Y

UR� � E�
Y

U ce
e � �

Y
E�U ce

e � �
Y�

p��
p
q�p�ce � q�

p
p�q�ce

�
�

We have used the fact that for di�erent edges e 
� e� the values of Ue and
Ue� are independent random variables� Now if ce � � for some edge e then
E�
Q
UR� � �� Otherwise the dominant summand corresponding to e is

p��pq�p�ce and

E�
Y

UR� � pjSj�
p
p�	jHj�� ���

Note that the number of summands in the double sum
P

S

P
L is no more

than some constant depending on H� Substituting E�S� � j��S�jpjSj and
��� in �	� we have

E�V 	� � c � p��jHjmaxSE�S��n� �
�

where the maximum is only taken over graphs S that can be covered by 

copies of H with an edge in common� each edge being covered at least twice�
Recall that E�G� � D�G�� Therefore we can replace E by D in �
� and have

E�V 	� � c � p��jHjmaxSD�S��n� ���

Claim� The S for which D�S� is maximal among the graphs in question
consists of the union of 	 copies of H� whose intersection is exactly $H�
Using this S in ��� will give

E�V 	� � c � n�v�H����D� $H��

Recall that j��H�j � cnv�H�� and the desired result follows from Markov�s
inequality �
Proof of claim� In searching for the best S we are trying to optimize the
function D � nv�S�pjSj on S that is double�covered by 
 copies of H with a
non empty intersection� Instead let us optimize a function $D which allows
edges and vertices to be covered only once and is identical with D when S is
double covered� Given a graph R and a covering of it by copies of H having
an edge in common de�ne for any edge or vertex x� %�x� to be � if x is
covered by more than one copy of H� and �&	 if x is covered only once� Now
let $e�R� �

P
%�e�� $v�R� �

P
%�v�� and $D�R� � n�v�r�p�e�R�� It is obvious

�	



that the maximum of $D is at least as large as the maximum of D� and that
if this maximum is equal to the value obtained by D on the S de�ned above
we are done� Let us build a graph F which is a union of 
 copies of H with a
speci�c edge e belonging to their intersection� Adding the copies of H one by
one and keeping track of how much each additional copy contributes to the
value of $D we have that the �rst 	 copies contribute

p
D�H� and the next 	

no more than
q
D�H��D� $H�� The conclusion is D�S� � $D�F � as desired�

�

Corollary ��� Let


 � 

n
jVe�Hj �

p
j��H�j�D� $H���	

o
�

Then Z
jVe�Hj � 
 � c�

p
j��H�j�D� $H���	��n��

Before proceeding to the proof of the main theorem there is one more simple
lemma we will need about the number of appearances of a given graph as a
subgraph of a random graph�

Lemma ��� Let R be a �xed graph� and XR be a random variable equal to
the number of copies �not necessarily induced copies� of R that appear in a
random graph G�n� p�� Assume p � o���� Then

Var�XR� � E�R��
X
H�R

��E�H�

where the sum is over all nonempty subgraphs of R�

Proof� Var�XR� is given by the formulaX
E�XY �� E�X�E�Y �

where the sum is over all pairs �X� Y � that are indicator random variables
indicating whether a speci�c copy of R appeared in the random graph�
If X and Y are independent the corresponding summand is �� otherwise
E�X�E�Y � � o�E�XY ��� Partitioning the sum

P
E�XY � according to the

isomorphism type of the intersection of the two copies of R indicated by X
and Y gives the desired result�

�

��



� The Proof

��� Proof of the Main Theorems

In this subsection we present the proofs of theorems ��� and ��
 using some
lemmas whose proof we put o� to the following subsection� As usual let A be
a monotone symmetric family of graphs� and f be its characteristic function�
We now wish to extract information on f by analyzing �f � Let H be a graph�
Choosing certain bounds L� c�� c� call a graph H modest if
��jHj � L�
	�c� � E�H� � c� �
��H is balanced�

Remark ��� Note that once given the parameters L� c�� c� that de�ne mod�
esty� for su�ciently large n and small p this determines the average degree
of the modest graphs �if any indeed exist�� Let this degree be �� This enables
us to de�ne modesty by new parameters L� c�� and c�� such that all balanced
graphs with no more than L edges and average degree � are also modest� fur�
thermore c�� and c

�
� are simple functions of c�� c� and L� It will be convenient

to always assume such a choice� so we may assume later that if H is modest
all subgraphs of H of the same average degree are also modest�
Moreover� note that for all subgraphs R 	 H� E�R� is bounded from below�
�Graphs with small expectation have large average degree��
Note also that the average degree of a �nite union of modest graphs must
have average degree larger or equal to that of the modest graphs�

Lemma ��� Let A be a monotone symmetric family of graphs on n vertices�
and f be its characteristic function� Assume pI � c� Then for every � � �
there exist constants L� c�� c� such that for su�ciently large nX

S is not modest

�f ��S� � ��

This Lemma immediately implies theorem ��
�
Proof� Let f be such that pI � c � and let " be the set of graphs S with
jSj � L and with c� � E�S� � c�� Lemma 
�	 implies thatX

S ��


�f ��S�

�




is small� If
P �f � � 	 �i�e� Pr�f � �� � 	�� we may conclude that " is non�

empty� i�e� there exist graphs S with less than L edges with c� � E�S� � c�
which implies that p must be in the range asserted by the theorem� �Note
that since Pr�f � �� is bounded away from � we cannot approximate f by
the function that is identically equal to �� corresponding to the case where
" has only the empty graph as a member in it��

�

We now present the proof of theorems ��� and ��	�
Proof� Let S�� S�� � � � � Sl be a list of all the modest graphs� For any graph
S let CS be the set of all graphs T on n vertices such that the union of all
copies of the Si�s that appear as a subgraph of T is isomorphic to S� We will
subdivide the space of subgraphs of the complete graph on n vertices into
these disjoint sets and approximate f separately on each� While doing this
we will de�ne certain parts of our space in which rare events occur�
��C� is the union of CS for S which are large�
	�C� is the union of CS for which ��CS� is small�
��C� is the union of CS for which Pr�f � �� is not close to � or ��
Let C	 be the union of the remaining sets� We will now de�ne a sequence
of approximations of f � according to small constants ��� ��� � � � �
� Our �nal
approximation of f will be equal to � on a graph R i� R has a subgraph S
such that CS 	 C	 and f is equal to � on most of CR�

�� Let g� �
P �f�S�VS where the sum is only on modest graphs S� and VS �P

G���S� UG� By lemma 
�	 we can choose our bounds so that kf�g�k� � ���

	�Let C� be the union of all CS such that XSi�S� � lE�Si����� for some
i� i�e� the number of copies of Si appearing is much more than the expected�
The measure of C� is no more than ��� De�ne g� to be equal identically to �
on C�� and equal to g� otherwise� So kf � g�k� � �� �

p
���

��Recalling that E�Si� is bounded we have that the number of graphs in

fSjCS 
� �� CS 
	 C�g

is bounded i�e�� we have a bound on the number of subsets CS on which g�
is not identically �� Say we have M such sets� Let C� be the union of all CS

not in C� such that ��CS� � ���M � So ��C�� � ���

��



Remark� The reason we treat this part of our space separately is because we
need a lower bound on the measure of CG in the proof of lemma 
��
 below�
Let C be the union of all remaining sets CS� those not in C� � C��
Remark ��� Note that if S is such that CS 	 C then S must be balanced
and with average degree the same as all the modest graphs� Furthermore the
size of S is bounded from above� and E�S� is bounded from above and below�

For any CS 	 C and for any graph H � CS de�ne

g��H� � E�g�jCS��

i�e� we replace g� by its conditional expectation in CS� De�ne g� to be equal
to � on all graphs not in C� We will show that for any CS 	 C� g� is close to
g� because g� is almost constant on CS in the sense that for any constant ��

Pr�fjg��T �� E�g�jCs�j � �gjT � CS� � �� ���

This will be proven in lemma 
��
 in the following subsection� Recalling
there are only M sets CS in C we get that by choosing � small enough by
proper choice of ��� ��� �� we have

kg� � fk�� � �	�	�

We now replace g� by g	 which is de�ned as follows�


�For any S let g	 on the graphs in CS be identically � or � according to
which approximates f better�
We now wish to compare two approximations of f � g� which is constant on
each CS� and g	 which is the best approximation that is both constant on
each CS and Boolean� Let h be the best possible L� approximation of f that
is constant on CS� a simple calculation shows that

hjCS � Pr�f�R� � �jR � CS��

The following inequality follows by summing over each CS separately�

kf � g	k�� � 	kf � hk�� � 	kf � g�k�� � �	� ���

g	 is the characteristic function of a family B that is a candidate to be the
family guaranteed by the theorem� Yet we do not know that B is monotone

��



and that kBk is small�

�� We now de�ne g
� a monotone boolean function which is constant on
each CS� We will de�ne it such that if R 	 S then g
jCR � g
jCS � Call a
graph S decisive if

Pr�f�T � � �jT � CS� 
� �
p
�	� ��p

�	��

Let C� be the union of all sets CS for S which is not decisive� From ��� we
have that ��C�� � p

�	� Let C	 be C n C�� For any S de�ne g
 on CS to be
equal to � i� S has a subgraph R such that CR 	 C	� with g	 equal to �
on CR� Since the union C� � C� � C� is of small measure� the alterations on
CS that belong to these parts of our space do not a�ect our approximation
much� We will show in lemma 
�� below that if R 	 S� and CR and CS

belong to C	 then

E�f jCR� � ��p
�	 � E�f jCS� � �� 	

p
�	

and hence on the sets CS 	 C	 we do not alter our approximation at all�
therefore choosing su�ciently small �	 we have

kg
 � fk�� � ��

g
 is the characteristic function of a symmetric monotone family B with
minimal graphs which are balanced and of bounded size� and

��B�A� � ��

This completes the proof of the main theorem� Furthermore by repeating
this process� possibly with a di�erent choice of �i� i � �� � � � 
 we can de�ne
C	 such that for CR 	 C	 E�f jCR� � �� �� Since we have a bound on E�R�
and jRj for all such graphs R� any one of them is a candidate to be the graph
guaranteed by theorem ��	� Let r be a speci�c copy of such a graph R � and
let Br be the space of all graphs having r as a subgraph� Let Cr � Br �CR�
From symmetry

E�f jCr� � E�f jCR�

and from positive correlation of increasing events

E�f jBr� � E�f jCr��

In other words� conditioning on the appearance of r the expectation of f is
at least �� �� This concludes the proof of theorem ��	�

�

��



��� Proof of the main Lemmas

We will need the following observation during the proof�
Remark� If there exists a graph H of bounded size such that E�H� is a
constant� then there exists a constant c such that for any other graph G of
bounded size and any �xed m� if n is large enough then

E�G� � log�n�m � E�G� � c�

This is true since the fact that E�H� is constant implies that p � cn�v�H��jHj�
We now proceed to prove lemma 
�	�

Proof� Recalling the remark following lemma 	�� we know that most of
the weight of �f � is concentrated on graphs H with no more than a certain
constant number of edges� We now wish to further characterize the graphs
H such that

P
S�H

�f ��S� is signi�cant� A simple calculation shows that for
any Boolean function f and any graph S

�f ��S� � �
p�jSj� ���

Summing this on the orbit of S we getX
S�H

�f ��S� � cE�H�� �#�

So if H has small expectation its orbit does not contribute much to the weight
of �f �� The following lemma shows this is true even if H has a subgraph of
small expectation� i�e� if a graph H is such that one does not expect to see
a copy of it in G�n� p� then the weight of �f � on its orbit is negligible�

Lemma ��� Let H be a graph� Then for every subgraph H �

X
S���H�

�f ��S� � c � max
R	H�

fE�H ���E�R�g�

�Where the expectation of the empty graph is taken to be ���

This lemma is of course interesting to us in the case where E�H �� is small� If
H has a subgraph with small expectation� it has one that is minimal with re�
spect to inclusion� and we can use the lemma with respect to that subgraph�
Proof� Let R be a speci�c copy of H �� Consider the probability space
f�� �gEnR� where E n R is the set of edges of the complete graph not in R�

��



We view this as the space of random graphs on n vertices where one copy of
H �� is �xed �chosen with probability ��� and all other edges are chosen with
usual probability p� We de�ne the set of functions fUSg as before� and have
a Fourier expansion for any real function on this space�
De�ne a function g on this space by g�G� � f�G � R�� Note that g is sym�
metric in the sense that it is invariant under automorphisms of the complete
graph that keep R �xed� Using induction on jRj We will show that

�g�G� �
X
R��R

�f�R� �G�UR��R�� ����

For any G in this new space de�ne $��G� to be the new orbit of G � under
the action of the automorphisms of the complete graph that keep R �xed�
Since g is Boolean

j�g�G�j � ��

q
j$��G�j�

Using ���� we have for any graph G such that its edge set is disjoint from R
� 


 �f�R �G��

p
pjRj



 � c

�
��

q
j$��G�j�

X
R�	R




 �f�R� �G��
p
pjR

�j




�

����

� c

�
��

q
j$��G�j�

X
R�	R

�p
pjR

�j
p
j��R� �G�j

���
�
� ��	�

Note that for R� � R�

j��R� �G�j � cj��R��j � j$��G�j� ����

The value of c in this preceding inequality may depend on the graphs involved�
however in our case we will be using this inequality for a �nite number of
graphs� hence it holds with a �xed c� Observe that when v�R�� � v�G� �
v�R� � v�G�� the two sides of ���� are comparable� i�e�

j��R� �G�j � c�j��R��j � j$��G�j�
Let G be such that G�R � H� Multiplying both sides of ��	� by

p
j��H�jpjRj

and using ���� givess X
S���H�

�f ��S� � c

�p
E�R� �

X
R�	R

p
E�R��E�R��

�

�#



which gives the desired result�
What is left to show is the validity of formula �����
Assume �rst that R � e� R is a single edge� In this case

�g�G� �
X
e��T

f�T � e�UG�T �pjT jqN���jT j�

The right hand side of ���� is

�f�G��
p
q�p �f�G � e� �

X
M

f�M�
�
UG�M��

p
q�pUG
e�M�

�
pjM jqN�jM j�

Now� for M such that e 
� M the corresponding summand is zero� Setting
M � T � e and using the fact that UG
e�M� � ��

p
q�p�UG�M n e� gives the

desired result�
For jRj � � pick e � R and de�ne g�G� � h�G� e�� where h is a function on
f�� �gEn�Rne�� We already know that

�g�G� � �h�G�� �
p
q�p��h�G � e�

and the result follows by using the induction hypothesis on h�

�

Assume that H is such that W �
P

R���H�
�f ��R� is bounded away from zero

by some constant� We already know that H is of bounded size� and with
expectation bounded from �� We will further characterize H� by examining
a few cases� and thus prove the following claim�

Claim ��� Under the above conditions H must be balanced� and of bounded
expectation�

Proof� First we de�ne a set of functions ffeg such as those de�ned by
Talagrand in �	�
� which are a generalization of similar functions de�ned in
���
� The idea behind these functions is that they measure Ie� the in�uence
of the edge e on f �
For every edge e let fe be the function de�ned by�

fe�H� �

�
q�f�H�� f�H � e�� if f�H� � �
p�f�H�� f�H � e�� if f�H� � �

	�



It is not hard to verify that

�fe�H� �

�
�f�H� if e � H
� if e 
� H

By lemma 	�� qpI �
P kfek��� A simple calculation gives

kfek�� � ��	kfek�
and hence

qpI � c
X
e

Z
jfej� ��
�

Recall that $H was de�ned as a non�empty subgraph of H on which the
function D was minimal� and also W �

P
R���H�

�f ��R�� Let � � ��H��

For any R � �� �f�R� �
q

W
j�j

� We will now proceed to analyze �f by looking

at the following expansion of f �

f �
X
H

�f�H�VH �
X
H

��jHj
X
e

�f�H�Ve�H�

Using the orthogonality of the functions UH we have that for any two func�
tions f� g Z

f � g �
X

�f � �g

and in particular using symmetry and the de�nition of feZ
fe � �f�H�Ve�H �

X
R���e�R

�f ��H�

so�

W � ���jHj�
X
e

Z
fe �f�H�Ve�H � ���jHj�

s
W

j�j
X
e

Z
feVe�H� ����

�This technique of calculating the Fourier coe�cients is similar to that used
in ��
��
Let


 � 

n
Ve�H �

p
j��H�j�D� $H���	

o
�

	�



Then ���� is equal to

���jHj�
s

W

j�j
X
e

�Z
feVe�H
 �

Z
feVe�H��� 
�

�
�

Using corollary ��� and the fact that jfej � �� we get that this is bounded by

c����jHj�
s

W

j�j
�

�c� � pI�
p
j��H�j�D� $H���	

�
� cpI

p
W�D� $H���	 ����

So
D� $H� � c�pI�	�W �� ����

We now assume that for a given H� W �
P �f � � 	 � � for some constant 	

and wish to prove that H is balanced and E�H� is bounded� We will divide
this into � cases�
Case �� $H consists of a single edge�
In this case ���� implies that p � c�n�� For such values of p G�n� p� is almost
surely a disjoint union of edges� and both the lemma and the main theorems
hold� The graph property in question may be approximated by the property
of having at least k edges for some k � �pI��� and the only graphs H of
bounded size for which E�H� is not o��� are graphs that are a matching� so
that E�H� is also bounded from above�

Case 	� $H � H�
In this case ���� shows that E�H� is bounded by a constant� and lemma 
�

shows H must be balanced since it has no subgraphs of small expectation�

Case �� The case where $H is properly contained in H but is not a single
edge� As before $H must be balanced and of expectation that is approxi�
mately constant� We will assume also that $H is strictly balanced� If it is
only balanced but not strictly balanced� replace $H by a strictly balanced
subgraph of it �Since this subgraph has the same average degree its expecta�
tion is a power of the expectation of $H� and hence also bounded from above
and below��

Choose a speci�c copy of $H� call it S� and de�ne a function g on Z
�NnjSj�
� �

g�R� � f�R � S�

		



in other words g is the same as f � but its domain is all graphs with set of
edges disjoint from that of S� By analyzing g we will show that H n $H is
balanced� and hence H is balanced�

Remark ��
 In order to prove that H n $H is balanced � and conclude that
H is balanced we must interpret correctly the meaning of average degree of a
graph� orbit of a graph� expectation� etc� for a graph in our new space� For
any graph in our new space the edge set is well de�ned� we de�ne the vertex
set to be only those vertices not in v�S�� and the new orbit is de�ned by all
automorphisms of the complete graph leaving S �xed�

As we have seen in ����

�g�R� �
X
S��S

�f�R � S ��US��S�� ����

Since the weight of �f � on any orbit of size j��G�j is no more than a constant
�kfk� � �� we have that j �f�G�j � c�

pj�j� �And in the case of H we have
equality��
Recalling that E�S �� � j��S ��jpjS�j� and US��S� � ��pq�p�jS

�j this gives

j �f�R � S ��US��S�j � c�
p
E�S ���

The fact that S is strictly balanced and of expectation bounded by a constant
means that E�S �� �� E�S� for all proper subgraphs S � of S�
So putting R � H n S in ���� we have that the dominant summand is the
one corresponding to S � � S� thus

j�g�H n S�j � j �f�H�j��
p
p�jSj� ��#�

Let W �
P

G��� �g��G� where $� is the orbit of H n S in our new space� Note
that

j$��H n $H�jj�� $H�j � c�j��H�j�

��#� now gives

W � c�j$��H n $H�j �f ��H��pjSj � c��j�� $H�j�pjSj� � c�E� $H�

	�



i�e� W is approximately constant�
The following computation shows that qpI�g� is no more than polylogarith�
mic�
We will now use Russo�s lemma via the interpretation that pI is the expected
number of �pivotal� edges� to lend a term from percolation theory�
For a given monotone family of graphs A and a given graph G � A �which
is a subgraph of the complete graph on n vertices� a pivotal edge is an edge
e � G such that G n e does not belong to A� If G is a random graph� the
number of pivotal edges is a random variable C� and E�C� � pI� Let X �H

be a random variable that counts the number of copies of $H in G�n� p�� By
abuse of notation let S also be the event �S appears in G�n� p��� �Recall S
is a speci�c copy of $H�� We have

E�CjS� �
X

E�CjX �H � i�Pr�X �H � ijS�

�
X

E�CjX �H � i�Pr�X �H � i�Pr�SjX �H � i��Pr�S�

�
X

E�CjX �H � i�Pr�X �H � i� � i�E� $H��

This expression can not di�er by more than a polylogarithmic factor from the
expression for the unconditioned expectation of C because of the following
lemma�

Lemma ��� Let H be a strictly balanced graph� and p such that E�H� � C�
Then for every k the probability of having more than log�n� copies of H in
G�n� p� is asymptoticaly less than n�k�

Proof�
Let B be a large integer to be determined� and divide the event of having
log�n� copies of H into two subevents�
��The number of copies of H that intersect other copies is at most B�
	�More than B copies intersect other copies�
Denoting log�n� � B � R the Probability of ��� is bounded by a constant
times CR�R � asymptotically less than n�k�	 for any �xed B� This follows
from the usual way of computing the moments of the random variable XH �
see for example ��
�
The event �	� can be described by the existence of a subgraph from a list
of subgraphs whose length is a function of B� l�B�� Any graph in this list
can be described by a union of at least B but no more than 	B copies of H�

	




It follows from the fact that H is strictly balanced that for su�ciently large
B the expected number of copies of any graph in this list is smaller than
n��k���� for all n large enough� So for su�ciently large B the probability of
�	� is asymptotically less than n�k�	�

�

We now can proceed to analyze H n $H in the same manner we analyzed
H� The weight of �g� on the orbit of H n $H is a constant and qpI�g� is no
more than a power of log�n�� so we once again can divide into three cases� as
before� Even though pI is now logarithmic rather than constant our analysis
is the same because of the remark that opens this section� once we know
that E� $H� is constant any graph with expectation bounded by a power of
log�n� must also have bounded expectation� So we once again divide into �
cases� In cases � or 	 we are done� and in case � we iterate the computation
again� Since the size of H was bounded a priori� this process will terminate
after a �nite number of steps� This shows that H can be built by Taking $H�
adding a graph which is the minimal strictly balanced subgraph of H n $H
and so on� This must result with a balanced graph� since in each step we add
a balanced graph from our new spaces� We also saw that E�H� is bounded�
This completes the proof of claim 
���

�

To summarize� if
P

R�H
�f ��R� is not to small� H must be modest�

��jHj is bounded by lemma 	���
	�E�H� is bounded from below by �#��
��H is balanced and with expectation bounded from above by claim 
���
Hence we have completed the proof of lemma 
�	�

�

The following lemma deals with the approximation of the monotone function
f in the proof of the main theorems� It implies that the approximation itself
is �approximately monotone��

Lemma ��� Let R 	 T be graphs� and CR� CT � C	 be de�ned as in the proof
of the main theorems� Suppose CR 	 C	� and CT 	 C	� Then

E�f jCT � � E�f jCR�� o����

	�



Proof� Recall that all the four quantities E�R�� E�T �� ��CR�� ��CT � were�
by de�nition of C	� and by remark 
�� bounded from above and from below
by some constants �that depended on �� and that R and T must be balanced�
with a bounded size and average degree � equal to that of the modest graphs�
Let r 	 t be speci�c copies of R and T � �Perhaps this is not the most
successful notation� but as opposed to� say� �R and �T it is one that can be
noticed by the optically challenged who might not be able to distinguish C �T

from CT �� De�ne Br to be the space of all graphs that have r as a subgraph�
We will consider all subspaces with the induced conditional probability� Let

Cr � Br � CR�

and de�ne Ct analogously� Note that CR is the disjoint union of ��R� sets
isomorphic to Cr� By symmetry we have�

E�f jCR� � E�f jCr�

and
E�f jCT � � E�f jCt��

We will de�ne a mapping � � Ct � Cr such that � is ��� and measure
preserving with respect to the conditional measure on Ct and its image�
More precisely� if ��� �� are respectively the conditional measures on Ct and
��Ct� then for any G � Ct ���G� � �����G��� Furthermore � will be such
that

f���G�� � � � f�G� � �

and hence
E�f jCt� � E�f j��Ct���

Therefore it will su�ce to show that

E�f j��Ct�� � E�f jCr�� o���� �	��

The de�nition of � is very simple� For G � Ct De�ne ��G� as the graph
obtained from G by deleting the edges in t n r� Obviously ��G� � Cr� The
question is which graphs in Cr are not in the image of �� Let W� � ��Ct�
and W� � Cr nW�� The graphs in W� can be classi�ed into two types�
�� Graphs that have an edge in t n r� �It can be shown that the conditional
measure of the set of such graphs is negligible��
	�Graphs G such that G � t 
� Ct�

	�



Roughly� the reason for a graph G to belong to W� is that there exist a
subgraph s in G such that s � t is a union of modest graphs� where as s � r
is not�

Example ��
 Take r to be a complete graph on 
 vertices� x�� � � � � x	� and
t the graph obtained from r by adding on a path x�� x
� x�� x	� Both r and t
are balanced� Now� if a graph in Cr has a path x
� x�� x�� x� it will belong to
W�� Another possibility would be a graph with a path x�� x�� x�� x	� It may
be useful to keep these examples in mind for understanding the notion of an
extension� to be de�ned shortly�

For a graph G � Cr de�ne

��G� � Pr�
�G� � W�� �	��

where 
 is a permutation of the vertices leaving the vertices of r �xed� chosen
uniformly at random from such permutations� Let

a �
��W��

��Cr�
�

Let �r be the conditional measure on Cr � So

a �

Z
Cr

� d�r�

On the other hand�

�� a � ����Ct�����Cr� � ��Ct���pjT j�jRj��Cr��

�
��CT �

j��T �j
j��R�j
��CR�

pR

pT
�
��CT �E�R�

��CR�E�T �
�

Recalling the properties of R and T this shows a is bounded away from ��
Using this and the fact that f is constant on isomorphism classes we have

E�f jW�� �

R
Cr
f � ��� �� d�r

��� a�

But lemma 
��� below shows that � is essentially constant �� a� on Cr� and
�	�� follows�
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�

Lemma ���� Let � � ��G� be as de�ned in �	��� where G is chosen at
random from Cr by the measure �r� Then

Var��� � o����

Proof� First� we would like to shift to working in Br� a space with a con�
venient product measure� and to this end we will extend the de�nition of
��G� to all graphs G � Br� Note that a graph in Br almost surely has no
edges in t n r� and we will disregard the exceptions to this rule in our cal�
culations� For any graph G let V �G� denote the set of vertices of G� Let
k � jV �t�j � jV �r�j� Order the vertices in V �t� n V �r�� v�� � � � vk� For any
ordered set x � fx�� � � � xkg outside of V �r�� let 
x be a permutation of the
vertices of the complete graph leaving V �r� �xed such that 
�xi� � vi for
i � �� � � � � k� For a given graph G � Cr de�ne a set of vertices x to be
problematic if


x�G� � W��

This does not depend on the choice of 
�
Returning to example 
�# in that case a set of two vertices is problematic
if they have a path of length � between them� or one of them has a path
of length � connecting it to r� Note that ��G� is exactly the proportion of
problematic k�sets� For any problematic set x we can �nd a set of edges and
vertices y in G n �r � x� that �are a reason� for x being problematic� More
precisely 
x�y� � t is a union of modest graphs� �In our example these are
the paths of length � added between two vertices in t�� Call such a set an
extension of x� We now want to de�ne extensions and problematic sets for
any graph in Br� For x� a set of k vertices disjoint from V �r� in any graph
in Br and a set of vertices and edges y which is disjoint from r and x� we say
that y is an extension of x if

�
x�y � x� � r� � Cr�

but�
�
x�y � x� � t� 
� Ct�

Remark ���� Note that we view y as a set of edges and vertices and not as
a graph� indeed some edges in y may be such that their end vertices are not
in y� We do require� however� that y � x be a graph�
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Now extend the de�nition of a problematic set of vertices in a graph in Br

to include any set of vertices that has an extension� For any graph G � Br

de�ne ��G� to be the proportion of the problematic sets among all sets of
size k� This de�nition of � coincides with the previous one on Cr�
Now� before shifting to work on Br note that

��Cr����Br� � ��CR���pjRjj��R�j� � ��CR��E�R��

From the de�nition of C	� and the fact that Cr 	 C	� ��CR� is bounded from
below� and E�R� is bounded from above �by bounds that depend on �� and
hence the relative measure of Cr in Br is non negligible� so

Var��jBr� � o��� � Var��jCr� � o����

Lemma 
��	 asserts that Var��jBr� � o���� hence our result follows�

�

Lemma ����
Var��jBr� � o���

Proof� De�ne X � nk�� where nk � n ��n � k� � X�G� is the number of
problematic k�sets in G� Let x�� � � � xnk be the indicator random variables of
the event of the corresponding sets being problematic� So X �

P
xi�

If E�X� � o�nk� then E��� � o��� and since � � � � � Var��� � o���� Hence
we may assume that E�X� � "�nk� and strive to prove that Var�X� � o�n�k��
We have

Var�X� �
X
i

X
j

�E�xixj�� E�xi�E�xj�� �

For i 
� j let xi � xj be the random variable indicating the event that there
exist edge disjoint extensions of the corresponding sets� The BK inequality
��

� implies

E�xi � xj� � E�xi�E�xj��

�See also �	

 for a more general inequality��
Let xi � xj � xixj � xi � xj� We have

var�X� �
X

Var�xi� �
X
i��j

E�xi � xj� �
X
i��j

E�xi � xj� � o�n�k�� �		�

	#



We now need some notation regarding graphs in the space Br� De�ne two
graphs G and G� to be of the same isomorphism type if there exists a per�
mutation of the vertices not in V �r� that takes G to G�� De�ne $E�G� as the
expected number of copies isomorphic to G in a random graph in Br�

Let the average degree of the modest graphs be �� For any set of edges
and vertices de�ne the average degree to be the ratio between the number of
edges in the set and the number of vertices� So� for an extension y of a set
x the average degree is the ratio between the number of edges in y and the
number of vertices of y �those not in x and not in V �r��� �recall that y is not
necessarily a proper graph in the sense that not all edges in y are between
vertices that belong to y�� Recall that t�
x�y� is the union of modest graphs�
and hence has average degree at least �� Hence the average degree of y must
also be at least ��
We will say an extension y is nice if
�� It is a minimal extension�
	� Its average degree is ��
�� For any z 	 y such that z � t is a graph the average degree of z is no
larger than ��
The reason for de�ning this notion is that our calculations our much simpler
when considering such extensions� Whenever xi � xj � � there are minimal
extensions causing this� Furthermore� for a given set x� the probability of
having a minimal extension with average degree of it or any subextension
larger than �� is o���� Hence we may concentrate on the events caused by
nice extensions� Let xi � xj be the indicator random variable of the event
indicated by xi � xj� but only in the case where there exist nice extensions
causing this event� We haveX

E�xi � xj � xi � xj� � o�n�k��

and hence it su�ces to show

E
�X

xi � xj
�

� o�n�k�� �	��

For an extension y let Cl�y� denote the graph whose edges are the edges in
y� We will need the following property of nice extensions�

Claim ���� Let x be a set of vertices and y a nice extension� Any subgraph
of Cl�y� n r has average degree smaller than ��

��



�Note that the claim deals with actual graphs and not extensions� i�e� all
edges come with their end vertices��
Proof� Let y be a nice extension of x� and assume for simplicity of notation
that x � V �t� n V �r�� Note that from minimality of y there exists a modest
graph S such that Cl�y� � S � y � t� This S is the disjoint union of three
sets�
a� S � r�
b� S � �t n r�
c� All the rest� namely y n t�
Note that parts �b� and �c� are not necessarily proper graphs� i�e� they may
have edges with only one vertex belonging to them�
Part �c� does not have average degree larger than �� because y is nice� Part
�b� can not have average degree larger than �� or else its union with r would
also have large average degree� but this union is a subgraph of t which has
no such subgraphs� Hence part �a� can not have average degree smaller than
�� As a subgraph of r it can not have large average degree either� and hence
has average degree exactly �� Now� if z 	 �Cl�y� n r� has average degree �
then z � �S � r� is modest �it is a subgraph of S which is modest� and has
the correct average degree�� Hence r � z is a union of modest graphs� which
is a contradiction� since y is an extension� there exists a graph in Cr with z
as a subgraph� but in Cr the union of all modest graphs is r�

�

Let y be a nice extension of a set x� The graph in Br consisting of the
vertices of x and the edges and vertices of y can take on a �nite number of
isomorphism types G�� � � � � Gd� For all these graphs we have

$E�Gi� � O�nk�� �	
�

This follows from the fact that there is a copy of Gi� say g whose union with
t is a union of modest graphs� We have E�g � t� � c� � A �nite union of
modest graphs has bounded expectation�� But E�g� t� � cE�t� $E�g��nk and
E�t� is bounded from below�
We now can prove �	���
When summing E�

P
xi � xj� we use the fact that if an extension of type

Ri intersects an extension of type Rj and their intersection is of type H
they form an event such that the expected number of isomorphic events is
$E�Ri� $E�Rj�� $E�H�� But from the fact that Ri is nice it follows from claim

��




��� that the average degree of H is smaller than � � or in other words�
$E�H� �
 � and

$E�Ri� $E�Rj�� $E�H� � o�n�k��

Since we have a �nite number of such contributions this gives the desired
bound�

�

The last brick missing in the proof of the theorems is the following lemma�
In the previous section we de�ned g�� an approximation of f � and C as the
union of all sets CG with the following properties�
��jGj was bounded from above�
	�E�G� was bounded from above and below�
����CG� was not too small�
We promised to show that g� is almost determined by the number of appear�
ances of the graphs Si� in the sense that if CS 	 C then for any constant
� � �

Pr�fjg��T �� E�g�jCS�j � �gjT � CS� � � �	��

Recalling the Fourier expansion of g� it is su�cient to show this for the
functions �f�S�VS� where S is modest� or using ����

Lemma ���� Let G be such that CG 	 C� Let S be modest� and V � VS�
then�

�� � � Pr�fjV �T �� E�V jCG�j � p
p��jSj��gjT � CG� � ��

Proof� Note that all the modest graphs have the same average degree� the
only one that guarantees a bounded �from above and below� expectation�
Furthermore E�S��E�R� is bounded for any R that is a subgraph of a modest
graph S� Recalling lemma ��� we wish to show that for R � S XR

E�R�
is almost

constant on each CG� So let us calculate the conditioned variance of XR in a
given CG� If R is modest then XR is constant� So we may concentrate on R
which is a subgraph of one of the Si � but not modest itself� i�e� E�R� is large�
Recall that lemma ��
 gave the following expression for the non�conditioned
variance of XR�

Var�XR� � E�R���
X

��E�H��

where the sum is over all non�empty subgraphs of R � If none of the modest
graphs are subgraphs of R this is o�E�R���� since for every subgraph H�
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E�H� is also large� So the standard deviation of XR in this case is o�E�R���
Obviously conditioning on an event whose probability is bounded away from
zero �being in CG� can not change this� Let us consider then� the variance
of XR when some Si is a subgraph of R� CG was de�ned by the fact that
the union of the modest graphs appearing was isomorphic to G� Let g be
a speci�c copy of G� Let Bg be the space consisting of all graphs that have
g as a subgraph with the probability measure induced by the conditional
probability in G�n� p�� As in remark 
�� we de�ne graphs� orbits� expected
number of copies of a graph� etc� in our new space in the natural way� Let
Cg � CG � Bg From symmetry we get that the expectation and variance of
XR conditioned on being in CG is the same as conditioning on being in Cg�
Focusing our attention on Cg every copy of R must have g as a subgraph�
Therefore XR now depends on the appearance of copies of certain graphs
T�� T�� � � � � Tk� such that Ti � g � R� So we may now de�ne XT so that
XR � XT �in the space Cg� � but XT counts the appearance of copies of the
Ti�s � Since g is the union of all modest graphs in any graph in Cg we may
assume Ti has no modest subgraphs in Bg� and E�H� �
 for all H 	 Ti�

Now� a simple calculation shows that

��CG � Bg����Bg� � ��CG��E�G�

and from the de�nition of C� E�G� is bounded from above and ��CG�from
below� hence if Var�XT � � o�E�XT ��� conditioned on being in Bg the same
must be true on Cg�
Remark� The reason for calculating in the space Bg and not directly in Cg is
that the conditional measure in the �rst space is much simpler than that of
the later�
We now repeat the calculation done in lemma ��
� in the same manner as
done in the proof of lemma 
��	 with the sumX

E�XY �� E�X�E�Y �

and the expectations as de�ned in the space Bg� We get that

Var�XT � � cE�XT ���MinH	TiE�H��

From our remark concerning E�H� we conclude that this is o�E�T ���� so the
standard deviation of XR is indeed o�E�R���
The above considerations show that XR�E�R� is almost a constant on any
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set CG � �its standard deviation is o����� and hence by lemma � ����
�f�S�VS � cVs�

pj��S�j is indeed almost constant on our subsets� Moreover

for S�s such that
P

H���S�
�f ��H� � c

�f�S�VS � Vs
p
c�j��S�j �

p
c�E�S��

X
�����jSj�jRj�

$E�R�

E�R�
�

where $E is the conditioned expectation of XR� This completes the proof of
the lemma and the theorem�

�

� The k�sat problem�

The following problem has attracted much attention from physicists and
computer scientists� see �	�
 for a survey on this topic� Let x�� x�� � � � � xn be
Boolean variables and consider a CNF formula� made of clauses of size k of
the variables and their negations� i�e� a conjunction of clauses each of which
is a disjunction of k of the variables and their negations� A random formula�
with parameter M is generated in the following way� Pick M of the possible
	k
�
n
k

�
clauses with uniform probability� and let the formula be the disjunction

of the chosen clauses� A property of interest of the formula such obtained
is whether it is satis�able� i�e� whether there is an assignment of values to
x�� � � � � xn such that the formula takes on the value �true�� Denote the prob�
ability of such event by f�M�� It is obvious that f is a monotone decreasing
function of M � It is known that for any given k there are constants c�� c�
such that f�c�n� � �� f�c�n� � �� �see ���
��
Computer simulations suggest that f exhibits a threshold behavior� i�e� that
the following is true� There exists a constant c such that for any � � ��
f��c� ��n� � �� f��c� ��n� � ��
This was shown to be true for k � 	 with the constant c � �� see ���
� ���
�
but for k � � was not known� For k � � a series of upper and lower bounds
have seemed to be slowly converging to the value suggested by simulations
�c � 
�	���� see ��#
� ���
� �#
� ��
� ���
� �		
� �	�
�
We now show that the existence of a threshold for any given k can be demon�
strated by the proof of theorem ���� I would like to thank Svante Janson for
pointing out the following subtlety to me� What I actually show is not the
existence of a constant c but of a function c�n� such that the phase transition
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happens within an � neighborhood of c�n�� i�e� it is still feasible that though
there is a swift transition of f the critical value does not converge to any
given value�
First let us consider the dual problem� of the formula being a DNF for�
mula� i�e� a disjunction of k�conjunctions� and the property we shall study
is whether or not the formula is a tautology� i�e� does every assignment of
values to the Boolean variables yield the value �true� for the formula� This
is a monotone increasing property�
Secondly let us consider a model for producing a random formula which
relates to the previous model in the same way G�n� p� relates to G�n�M��
choose each of the possible clauses independently with probability p� and
let the formula be the disjunction of the chosen clauses� For p � M�N �
where N � 	k

�
n
k

�
this is equivalent to the previous model in the following

sense� the question of existence of a �critical� constant c as described above
is equivalent to the following question� By abuse of notation de�ne f�p� as
the analog of f�M� � does there exist a constant c such that for every � � �
� f��c� ��n�N� � �� f��c� ��n�N� � ��
Returning to the de�nitions in the introduction what we are asking is� �Does
the property of satis�ability have a sharp threshold�� We claim that the an�
swer is a�rmative�
To show this we must �rst point out the analogy between the case of graphs
and the case of DNF formulas� We viewed graphs as a collection of pairs
�i� j� with i� j taken from a set of vertices� Our DNF formulas are a slight
generalization of hypergraphs� they can be thought of as a collection of k�
tuples chosen from a set of variables� with one of 	k possible labels on each
edge� specifying which variables appear with a negation�
The group of graph automorphisims acting on the subgraphs of Kn can be
viewed as Sn acting on

�
�n�
�

�
� and we only considered properties invariant

under the action of this group� In the case of formulas we will consider prop�
erties �i�e� families of formulas� invariant under the action of the wreath
product of Sn with k copies of Z�� The property of being a tautology� �or
satis�ability� is such a property�
A crucial aspect of the analogy is the following� given a bound on the num�
ber of edges �clauses� of a graph �formula�� there are only a �nite number of
isomorphism types�
Following the proof of theorems ��� and ��	 shows that the analogy holds all
the way through� and gives for the probability space of all DNF k�formulas�

��



Theorem ��� Consider DNF formulas with clauses of given size k� There
exists a function M�k� �� c� such that for every c � � and every monotone
symmetric family of such formulas� A� such that p�I � c� for every � � � there
exists a symmetric monotone family B such that kBk �M and ��A�B� � ��

Here kBk is the number of clauses in the largest minimal formula in B� Let
jGj be the number of clauses in G� Now de�ne in the obvious manner for
a formula G� E�G� to be the expected number of sub formulas isomorphic
to G in a random formula� The average degree of a formula G is the ratio
between the number of variables and the number of clauses in G� De�ne a
balanced formula to be one with average degree no less than that of any sub
formula� The proof of theorem ��	 gives�

Theorem ��� There exist functions B��� c�� b���� c�� b���� c� such that for
all c � �� any n and any monotone symmetric family T of k�DNF formulas
with n variables such that p � I � c� for every � � � there exists a formula F
with the following properties�

� F is balanced

� b� � E�F � � b�

� jF j � B

� Let Pr�T jF � denote the probability that a random formula belongs to
T conditioned on the appearance of �F � a speci�c copy of F � Then

Pr�T jF � � �� �

So if a property A of formulas has a coarse threshold� then for a certain value
of p in the critical interval� for every � � � there exists a �nice� formula F
such that the probability of having A conditioned on the appearance of �F � a
speci�c copy of F is at least �� ��
We will show shortly that for the property of being a tautology one can not
produce such a �magic� formula� As a corollary we get theorem ����

Corollary ��� In the space of all DNF k�formulas the property of being a
tautology has a sharp threshold�
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Proof�
Let p in the critical interval be such that p � I � c� and assume w�l�g �p�T � �
��	� ���T � is bounded from � and � by the de�nition of the critical interval��
Let T be the property of being a tautology� What we will show is that there
does not exist a short formula �F as described in theorem ��	�
Assume �F is such a formula� Obviously if �F has a sub formula �R that itself is
a tautology then Pr�T jF � � � � �� �� however� an unpublished result of M�
Tarsi �see �	
� states that if such a formula R� uses r variables it must have at
least r�� clauses� The expected number of formulas of such an isomorphism
type in a random formula is therefore at most nrpr��� Since p � n�N � ��n
this tends to zero� But if F is balanced and E�F � is bounded from below so
is E�R�� hence this is a contradiction�
Let r be the number of variables in the formula �F � De�ne a quasi tautology
on r variables to be a formula which is a disjunction of k�conjunctions of
variables x�� � � � � xr such that it is satis�ed by all but one of the 	r possible
assignments to the variables� Let �M be a maximal quasi tautology on the
r variables �adding any additional clause to it would make it a tautology��
such that �F is a sub formula of �M � From positive correlation of increasing
events it would follow from our assumptions that Pr�T j �M� � � � �� So it is
su�cient to show that for any 	 � � if n is su�ciently large�

Pr�T j �M� � ��	 � 	� �	��

De�ne p�n� to be the critical p such that �p�T �n�� � ��	 � where T �n� is the
family of tautologies on n variables� Note that p�n� is monotone decreasing
as a function of n� so that �p�n��T �n� r�� � ��	�
Let ��	� � � 	 � � be some constant� The following claim implies �	���

Claim ��� consider n�r variables and build a random k�DNF formula with
p � p�n�� Now perform a second stage and add with probability rkp each of the
clauses with less than k variables �corresponding to the clauses in which some
of the r variables of the quasi tautology appeared�� The resulting formula is
a tautology with probability no more than ��	 � 	 �

To simplify matters we will prove a claim that is even stronger�
After the �rst stage the probability of having a tautology was less than �&	�
In the second stage with probability tending to � no clauses of size smaller
than k � � were chosen �recall that p � n��k �� The expected number of
clauses of size k�� that were added can be bounded by a constant c� De�ne
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d � 	c�	 � The probability that more than d clauses were added in the second
stage is less than 	�	 � Therefore claim ��
 is implied by the following�

Claim ��� As before start with a random DNF formula on n � r variables
with k�clauses and p � p�n�� and in the second stage pick at random d
di
erent �k���� clauses� and add them to the formula� The resulting formula
is a tautology with probability � ��	 � 	�	�

We will prove something even stronger� Assume that in the second stage the
clauses added are not of size k � � but of size �� Still� this does not increase
the probability of a tautology to ��	 � 	�	� First we need the following�

Lemma ��
 � Let f�n� � o�
p
n�� Assume the second stage of building the

formula consists of adding f�n� clauses of size k� Then Pr�T � after the
second stage is less than ��	 � 	�	�

Proof� Consider �p�T � as a function of p� We are interested in the slope of
this function in a neighborhood of pc �pc � cn�N�� The lemma will follow
if we show the slope is O�N�

p
n�� since enlarging p by � results with an

expected addition of �N clauses�
Let M be a Hamming ball� the family of all formulas of size larger than Npc�
The following two facts are easy exercises� and the lemma follows from them�
��d�p�M��dpjp�pc �

p
N�pc�

	�This is the maximum possible slope at pc for all monotone families of
formulas�

�

So we know that if in the second stage we add� say� n��	 clauses of size k we
can not increase the probability of a tautology to ��	 � 	 � We wish to show
that this implies that a constant number of clauses of size � will not su�ce
either� Note that if after the �rst stage we do not yet have a tautology� the
probability of success in the second stage is no more than �� ���	�d� In any
such case the following lemma will show that a large number of clauses of
size k will yield a tautology with probability higher than that of d clauses of
size ��

Lemma ��� For A � f�� �gn de�ne A to be �d�m� ���coverable if the prob�
ability for the union of a random choice of d sub cubes of co�dimension m
to cover A is at least �� Let f�n� be any function that tends to in�nity as n
tends to in�nity� For �xed k� d and � and su�ciently large n any A � f�� �gn
that is �d� �� ���coverable is �f�n�� k� ���coverable�

��



Proof� Let A � f�� �gn be �d� �� ���coverable� This means that sequentially
choosing at random d half cubes and building their union covers A with
probability not less than �� Now� instead of picking the last half cube� pick
at random

p
f�d cubes of co�dimension k� We will prove below that this

decreases the probability of ending with a cover of A by no more than ��	d�
A trivial but helpful observation is that �rst choosing the sub cubes and
then the half cubes yields the same result� This enables us to repeat this
consideration d times and conclude that A is �

p
f� k� ��	��coverable� Since �

is �xed and f is large this implies that A is �f� k� ���coverable�
We now prove the above claim� that picking at random

p
f�d cubes of co�

dimension k instead of the last half cube decreases the probability of ending
with a cover of A by no more than ��	d�

Our claim will follow if we show that for any � � ��	d a set which is
��� �� ���coverable is �

p
f�d� k� ���coverable�

For a set A to be ��� �� ���coverable means that it is a subset of the in�
tersection of s half�cubes� where s � 	n�� We may assume without loss of
generality that it is exactly the intersection of s � 	n� half cubes� for a given
g we will bound from below the probability of g sub cubes of co�dimension k
covering A by the probability that at least one of them has A as a subset� The
probability of this is approximately �� ��� �s�	n�k�g� So choosing g � ��k

gives a cover with probability that is a constant� and hence g �
p
f�d yields

a cover with probability close to �� This completes the proof of the lemma
and with it the proof of the theorem�

�

	 Other Applications

The approach used to solve the k�sat problem can be used to prove sharpness
of thresholds in other cases in a similar manner� Here are a few examples�

� The existence of a perfect matching in a ��uniform �or r�
uniform	 hypergraph� consider a random ��uniform�hypergraph on
n � �k vertices with edge probability p� The property of interest is that
of the existence of a disjoint covering of the vertices by k edges� What
is currently known about the value of the critical p for this property is

log�n��n� � pc � n�	���

�#



�See �	�
 and ���
�� The question of showing that pc � n����o���� is con�
sidered to be one of the challenging problems in random �hyper�graph
theory� However we may now deduce the sharpness of the threshold�
By theorem ��	 this property has a sharp threshold since it can not be
approximated by the appearance of a �xed sub hypergraph � The proof
of this is straightforward�
Proof�Assume by contradiction that there exists such a hypergraph
�H� Let m be the number of edges in �H� and assume the probability
of having a matching conditioned on the appearance of �H is substan�
tially larger than the unconditioned probability� which is �&	� The only
contribution �H gives is by using some of its edges for creating a match�
ing� It is not hard to see that adding� say� m	m edges at random must
�help� to achieve a matching even more� But as in the case of the k�sat

we know that if X � o�
q
pc
�
n
�

�
�� then adding X edges can not make

such a di�erence�

�

Remark� A similar proof works for the case of �H�factors�� the prop�
erty of having a covering of the vertices of G�n� p� by disjoint copies of
some �xed graph H� See ��
 for this problem� However in this case�
as pointed out to me by Noga Alon� it is not enough to use the fact
that o�

p
E� edges �where E is the expected number of edges� do not

make a di�erence� Here one should use the fact that even o�E� edges
should not make a di�erence� or else the threshold would be sharp�
This type of proof seems to be easy for some �non�local� properties
such as connectivity or having a perfect matching�

� k�colorability for k � 	� In a paper in preparation ��
 it is shown
by similar techniques that the property of being non�k�colorable for a
�xed k larger than 	 has a sharp threshold� The crux of the proof there
is to show that if G�n� p� is non�k�colorable with probability �&	� this
does not change substantially if the color of a �xed number of vertices
is predictated�

� Properties for which the critical probability is log�n��n� Such
properties have a sharp threshold by theorem ��
� This reproves the
well known facts that connectivity� having a Hamilton cycle and other
such properties have a sharp threshold�


�




 Consequences of the Appendix

Before dealing with the consequences of the appendix I would like to describe
the chronological development of the results in this paper and the appendix�
After the �rst draft of this paper was written Jean Bourgain came up with
the results described in the appendix� At that stage theorem ��� was stated
in a weaker form� with the restriction that p must be close to a rational
power of n� and theorem ��
 was a conjecture� The appendix contains two
main results� one of them� proposition � is analogous to theorem ��� but is
placed in a more general setting where symmetry plays no role� The second
is proposition 	 which states that conjecture 	�
 is true� Conjecture 	�
 itself
was strong enough to imply together with the rest of the paper at that stage
that theorems ��� and ��
 were true�
After this Joel Spencer suggested extensions of the arguments in the �rst
version of the paper to get the present strengthened versions of the theorems�
This in turn led to a simpler approach which consisted of slight alteration of
the original version of the paper� yielding the present version�

Here are some re�ections as to the consequences of the results described
in the appendix�
�What is proven in proposition � is of course more general than theorem ���
since it holds with no assumptions on symmetry� On the other hand in the
setting of graphs it does not imply theorem ���� However in every applica�
tion mentioned in this article �k�sat� k�colorability� etc�� it seems that both
theorems can be used equaly well to prove sharpness� since they both deal
with the possibility of approximating �global� properties by �local� ones� It
seems that this will happen for essentially all applications�
�Proposition 	 gives an immediate proof of theorem ��
� This proof is pre�
sented in the appendix� It also can be used to substantialy simplify the proof
of lemma 
�	 which is a key lemma in this paper�

Results similar to those of this paper may be deduced from the appendix
in certain cases where there is a group action under which the families con�
sidered are invariant� and the number of di�erent isomorphism types of sets
with a bounded size is bounded� An intriguing question is what can be said
about the possible values of pc for properties with a coarse thresholds in the
case of a family of subsets of f�� � � � � ng that is invariant� say� under the ac�
tion of the cyclic group� Cn�
�Finally� it would be interesting to try to prove conjecture ��� using the
techniques of the appendix�


�
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