Complexity of Presburger Arithmetic

Alexander N. Rybalov
Omsk State University
Omsk, Russia

January 11, 2007
Presburger Arithmetic (PA) is the first-order theory of the model \(\langle \mathbb{N}, + \rangle \). It is known that PA is:

- consistent
- complete
- decidable
Worst-Case Complexity of PA

Theorem (Fischer, Rabin). There is no algorithm for deciding of Presburger arithmetic with worst-case complexity less than $2^{2^{cn}}$ with some universal constant $c > 0$.

Diagonalization

The Halting Problem (HP): Does Turing machine M halt on $\delta(M)$?

Suppose there is a machine H deciding HP:

$$H(\delta(M)) = \begin{cases} 1, & M(\delta(M)) \downarrow, \\ 0, & M(\delta(M)) \uparrow. \end{cases}$$

Then there is a machine G:

$$G(\delta(M)) = \begin{cases} \text{loops}, & M(\delta(M)) \downarrow, \\ 0, & M(\delta(M)) \uparrow. \end{cases}$$

Contradiction: $G(\delta(G)) \downarrow \iff G(\delta(G)) \uparrow$
Diagonalization

A Restricted Halting Problem (RHP): Does Turing machine M halt on $\delta(M)$ in time less than $2^{|\delta(M)|}$?

RHP is decidable. Suppose there is a machine H deciding RHP in time less than 2^n:

$$H(\delta(M)) = \begin{cases} 1, & t_M(\delta(M)) < 2^{|\delta(M)|}, \\ 0, & t_M(\delta(M)) \geq 2^{|\delta(M)|}. \end{cases}$$

Then there is a machine G such that:

$$t_G(\delta(M)) > 2^{|\delta(M)|}, \text{ if } t_M(\delta(M)) < 2^{|\delta(M)|},$$

$$t_G(\delta(M)) < 2^{\delta(M)|}, \text{ if } t_M(\delta(M)) \geq 2^{\delta(M)|}.$$

Contradiction:

$$t_G(\delta(G)) < 2^{\delta(G)|} \iff t_G(\delta(G)) \geq 2^{\delta(G)|}$$
Diagonalization for PA

To prove super-exponential complexity of Presburger Arithmetic we can polynomially reduce the following Restricted Halting Problem:

Does machine M halt on w in time $< 2^{2|w|}$?

to the problem:

Is formula $\Phi_{M,w}$ true in Presburger Arithmetic?
Computational Model

Turing machines with one-way tape over alphabet \{0, 1\}.

\[
\begin{array}{c|c|c|c|c|c|c|c|c|}
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
\hline
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

Program of such machine is a list of rules

\[(1, 0) \rightarrow (i_1, s_1, T_1)\]
\[(1, 1) \rightarrow (i_2, s_2, T_2)\]
\[\ldots\]
\[(k - 1, 1) \rightarrow (i_{2(k-1)}, s_{2(k-1)}, T_{2(k-1)})\]

where \(i_j\) is a state from 1, \ldots, \(k - 1\) or \(k\) – the final state, \(s_j \in \{0, 1\}\), \(T_j\) – a shift from \(\{R, L\}\).
Modelling of Machine

All $T = 2^{2^n}$ steps of M on w is completely described by:

binary strings W_1, \ldots, W_T of length T, where W_i is content of the first T cells of the tape on the i-th step,

strings U_1, \ldots, U_T of length T over alphabet $\{0, \ldots, k\}$, where $U_i = 0^{p_i} s_i 0^{q_i}$ with s_i – state of M and p_i – position of the head on i-th step ($p_j + q_j + 1 = T$).

We join these strings in two $W = W_1 \ldots W_T$ and $U = U_1 \ldots U_T$ of length T^2.
Modelling of Machine

Strings W and U together code T steps of a halting computation of M on w iff

1. $W_1 = w0^{T-|w|}$ — content of tape on the start.

2. $U_1 = 10^{T-1}$ — starting position of the head and starting state of M.

3. If $U(i) = 0$ and $i + T < T^2$ then $W(i + T) = W(i)$ — that means cells, which are not scanned by the head on current step, are not changed on the next step.
Modelling of Machine

4. If $U(i) = q$, $i + T < T^2$, $0 < q < k$, $W(i) = 0$ and the program of M has a rule $(q, 0) \rightarrow (p, R, 1)$. Then $W(i + T) = 1$. Similarly for other rules and tape-symbol combinations.

5. If $U(i) \neq 0$, $T < i < T^2$ then exactly one of $U(i - T)$, $U(i - T - 1)$, $U(i - T + 1)$ does not equal to 0. Also if $U(i) \neq 0$ then $U(i \pm 1) = U(i \pm 2) = 0$.

6. There exists some i, $1 \leq i \leq T^2$ such that $U(i) = k$ — final state. And if $i + T < T^2$ then $U(i + T) = k$ and $W(i + T) = W(i)$.
Expression by a Formula

W is coded by one integer $x \leq 2^T$. U is a string of alphabet $\{1, \ldots, k\}$, so at first we express every $1, \ldots, k$ by binary words of equal length $p = \lceil \log(k) \rceil$ integers, and later represent U as p integers $x_1, \ldots, x_p \leq 2^T$. So

$$\Phi_{M,w} = \exists x \exists x_1 \ldots \exists x_p (E_1 \land \ldots \land E_6).$$

Here formulas E_i express the conditions 1-6.
Expression by a Formula

To express formulas E_i in PA it is enough to have predicates ($f(n) = 2^{2^n}$):

- $I_n(b) \iff b < f(n)^2$.

- $J_n(b) \iff b = f(n)$.

- $S_n(x, y)$ codes all binary strings of length $f(n)^2$ in the following way: for all $b \in \{0, 1\}^*$, $|b| = f(n)^2$ there exists an integer a such that $S_n(a, i)$ is true iff $b(i) = 1$.

- $H_w(x)$ is true for a iff the first $f(n)$ symbols of the string, coded by a (via predicate S_n), has the form $w0^p$, $p = f(n) - |w|$.
Expression by a Formula

The predicates I_n and J_n are used to control the ranges of indexes of cells, H_w - for starting configuration, S_n - for transition conditions. For example, E_3 is

$$\neg S_n(x_1, y) \land \ldots \land \neg S_n(x_p, y) \land I_n(y + z) \rightarrow$$

$$\rightarrow (S_n(x, y + z) \leftrightarrow S_n(x, y)).$$

Other E_i are constructed in the similar way.
Formula for S_n

To code a binary word w of length 2^{2n+1} we use the integer $x \leq 2^{2^{2n+1}}$ with binary expression w. The predicate $S_n(x, y)$ just says that $x \leq 2^{2^{2n+1}}$, $y \leq 2^{2n+1}$ and i-th bit of x is 1. We can express it by the following formula:

$$\exists z (2^y \leq z < 2^{y+1} \land z \leq x \land 2^{y+1}|x - z).$$

We need now compact ($O(n)$) formulas for: divisibility ($x|y$), power ($x = 2^y$), and order ($x \leq y$) for very big numbers $x, y \leq 2^{2^{2n+1}}$. This will implies, in particular, expressibility of I_n and J_n.
Order and Divisibility

Formula for order:

\[x \leq y \iff \exists z (y = x + z). \]

If we can express multiplication relation \(x = yz \) then we get a formula for divisibility:

\[y | x \iff \exists z (x = yz). \]
Multiplication for "Small" Numbers

Lemma. For any \(n \) there exists formula \(M_n(x, y, z) \) such that

\[
M_n(x, y, z) \iff x < 2^{2^n} \land xy = z
\]

and \(|M_n| = O(n) \).

Induction on \(n \). For \(n = 0 \) we have

\[
M_n(x, y, z) = (x = 0 \land z = 0) \lor (x = 1 \land z = y).
\]

Suppose we have \(M_n \), to get \(M_{n+1} \) note that \(x < 2^{2^{n+1}} \) iff

\[
\exists x_1, x_2, x_3, x_4 < 2^{2^n} x = x_1x_2 + x_3 + x_4
\]

and so

\[
z = xy = x_1(x_2y) + x_3y + x_4y,
\]

hence \(M_{n+1} \) is expressible by \(M_n \).
Multiplication for ”Small” Numbers

The Problem: In this expression M_n can be more than once (that is bad for bound on the formula length), for example

$$M_n(x_1, y_1, z_1) \land M_n(x_2, y_2, z_2)$$

and the size of M_{n+1} increases more than on constant. To avoid this we need to rewrite such formula in an equivalent formula with only one occurrence of M_n:

$$\forall x, y, z((x = x_1 \land y = y_1 \land z = z_1) \lor$$

$$\lor (x = x_2 \land y = y_2 \land z = z_2)) \rightarrow M_n(x, y, z).$$
Multiplication for "Big" Numbers

Lemma. For any \(n \) there is a formula \(\text{Prod}_n(x, y, z) \) such that for any \(a, b, c \leq 2^{2^{2n-1}} \) it holds

\[
\text{Prod}_n(a, b, c) \iff ab = c.
\]

And \(|\text{Prod}_n| = O(n) \).

By the Chinese Remainder Theorem (CRT) if for \(x, y, z < 2^{2^{2n+1}} \) and for all primes \(p < 2^{2n} \)

\[
\text{res}(x, p)\text{res}(y, p) = \text{res}(z, p)
\]

then

\[
\text{res}(x, g)\text{res}(y, g) = \text{res}(z, g), \quad (*)
\]

where

\[
g = \prod_{p<2^{2n}} p > 2^{\pi(2^{2n})} > 2\frac{2^n}{2^n} = 2^{2^{2n-1}}
\]

– by the Prime Number Theorem. So \((*) \) implies that \(xy = z \).
Multiplication for "Big" Numbers

\[res(x, y) = z \Leftrightarrow \exists u(uy + z = x) \land (z < y) \]

can be expressed by compact formulas with \(M_n \) for "small" numbers \(y, z \leq 2^{2^n} \) and any number \(x \).

\[\text{Prime}(x) \Leftrightarrow \forall y \forall z(x = yz) \rightarrow (y = 1 \lor z = 1) \]

can be expressed by compact formulas with \(M_n \) for "small" number \(x \leq 2^{2^n} \).

Now

\[Prod_n(x, y, z) \Leftrightarrow \forall p(p < 2^{2^n} \rightarrow
\rightarrow res(x, p)res(y, p) = res(z, p)) \]

can be expressed by compact formula for "big" numbers \(x, y, z \leq 2^{2^{2^n-1}} \).
Formula for Power

Lemma. For any \(n \) there is a formula \(\text{Pow}_n(x, y, z) \) such that for all \(a, b \leq 2^{2^n} \) and \(c \leq 2^{2^{2n}} \)

\[
\text{Pow}_n(a, b, c) \iff a^b = c
\]

and \(|\text{Pow}_n| = O(n) \).

Induction on \(n \). Again if \(x \leq 2^{2^{n+1}} \) then

\[
x = x_1x_2 + x_3 + x_4
\]

for some \(x_1, x_2, x_3, x_4 \leq 2^{2^n} \) and

\[
y^x = (y^{x_1})^{x_2} \cdot y^{x_3} \cdot y^{x_4}.
\]

So \(\text{Pow}_{n+1} \) can be expressed in terms of \(\text{Pow}_n \) and \(\text{Prod}_n \). And

\[
|\text{Pow}_{n+1}| \leq |\text{Pow}_n| + C
\]

for some constant \(C \).
Formula for H_w

$H_w(x)$ is true for a iff the first $f(n)$ symbols of the string, coded by a (via predicate S_n), has the form $w0^p$, $p = f(n) - |w|$.

Define for binary word u by induction on $|u|$ formulas:

\[
K_0(z) \iff z = 0, \quad K_1(z) \iff z = 1, \\
K_{u0}(z) \iff \exists y(K_u(y) \land z = y + y), \\
K_{u1}(z) \iff \exists y(K_u(y) \land z = y + y + 1).
\]

Clearly $K_w(z) \iff w(i) = z(i)$ for $i < |w|$ and $z(i) = 0$ for $i \geq |w|$. So we can express H_w as

\[
\forall z \forall i (K_w(z) \land i < 2^n \land x(i) = z(i))
\]

and use $S_n(x, y)$ and $J_n(y)$.