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Software Development for the Boeing 777 

Ron J. Pehrson, The Boeing Company 

 

For the Boeing Commercial Airplane Group (BCAG), the 777 airplane represented an 
unprecedented software challenge in terms of the size and complexity of the airplane's 
systems. The 2.5 million lines of newly developed software were approximately six times 
more than any previous Boeing commercial airplane development program. Including 
commercial-off-the-shelf (COTS) and optional software, the total size is more than 4 
million lines of code. This software was implemented in 79 different systems produced 
by various suppliers throughout the world. Connecting these systems is a complex 
network of broadcast and point-to-point data buses. Moreover, we committed to provide 
unprecedented product maturity and quality at first delivery.  

This article discusses how the software challenges were successfully met, which resulted 
in the on-schedule delivery of the first 777 to United Airlines four and one-half years 
after the program's kickoff. As with all successful projects, first and most important, the 
skill, dedication, and efforts of all the people involved were the key to its success. 
However, many large software projects have skilled and dedicated workers, yet they are 
plagued with missing functionality and schedule slides. Rather than address all the 
aspects of a successful project, this article discusses techniques used to address two areas 
that typically create major challenges for large embedded software development efforts: 
requirements specification and management of the software development process.  

Requirements Specification  

The specification of airplane systems requirements to the suppliers of the systems is done 
through specification control drawings (SCD). A major component of that specification is 
the interface control document (ICD). To assure that the systems will combine to perform 
as intended, extensive effort was put into the development, control, and validation of an 
airplane-level ICD and detailed SCDs for each of the airplane systems.  

Specification Control Drawings  

SCDs were developed for each of the systems on the 777. They ranged in size from 
approximately 100 pages for the simplest systems to over 10,000 pages for the most 
complex. The SCD is the primary means for Boeing system designers to communicate 
the requirements to the supplier of the system. It formed the basis of an ongoing dialog 
between system designer and developer and between the designers of the various 
systems. Changes to the SCD were subject to rigorous change board review and approval. 
The reviews assured that all aspects of a change were addressed, and the effects of the 
change were reflected in all the affected systems. These reviews also controlled the 
amount of change, assuring that only necessary changes were made to the systems. 
Control of changes was increasingly important as development progressed and the effects 



of changes could increasingly jeopardize the schedule. This led the BCAG to apply 
increasingly stringent criteria on acceptability of changes. The importance of controlling 
change cannot be overemphasized.  

By going into great detail in many areas of the specification, the SCD captured not only 
the understanding of how the individual systems must operate but also insured that the 
integrated functionality of the system would perform as intended. It also facilitated the 
system-level analyses that allowed validation of the airplane functionality described later.  

ICD Database  

As the airplane architecture and functionality of the various systems were evolving, the 
definitions of the interfaces of each system were placed in a large relational database. The 
database describes over 40,000 digital data items and 3,000 analog signals. Crucial to the 
successful use of this database was a tool developed to scan for discrepancies in data 
definition between the provider and user of the interface data.  

As the functionality of the systems continued to evolve, a series of interface block points 
was established and resolution of discrepancies continued to be a major focus. The block 
points were established to satisfy the incremental development of overall systems 
functionality. The block points represented a coherent definition of system interfaces that 
supported a pre-defined set of systems functionality. The definition of these sets included 
specific capabilities in terms of airplane functions as well as the level of maturity of the 
system and its ability to tolerate failure conditions. The definition of the block points 
allowed integration of the systems to proceed in parallel with continued development of 
functionality within the systems. This not only achieved an accelerated system 
integration, but also identified integration problems at a time when they could be 
addressed as the systems development proceeded.  

Reports from this database formed the basis of the interface specifications for the 
individual system ICDs. Rigorous configuration control was applied to each block point. 
Change boards were conducted for changes both at the major function level and at the 
airplane level to assure the changes were necessary and that all consequences of the 
changes were considered throughout the airplane.  

In the first two months, analysis of the database uncovered over 50,000 discrepancies. An 
intensive, high priority effort reduced the discrepancies to 3,000 within two months. Use 
of the ICD database and associated tools allowed us to deal with the increased interface 
complexity of our system, yet have unparalleled success in integrating the systems in the 
laboratory and on the airplane.  

System Functional Analysis  

It is important to have well-defined and carefully controlled requirements, but it is 
equally important to minimize changes to those requirements as the systems are 
implemented. On a large, complex system such as the 777, it is common to find 



specification problems late in the program when the systems are brought together in the 
integration facility or even in flight test. To prevent these problems, a disciplined series 
of functional analyses was performed throughout the development of the system 
specifications. In all cases, both nominal and failure conditions were considered. This 
effort was led by a dedicated system integration organization that coordinated and 
organized the process. In all cases, there were regular management reviews of 
compliance and completion of the process.  

The first phase of analysis was performed early in the airplane program during the 
development of the SCDs and ICD. Using regulatory requirements and high level 
functional definitions of the airplane, the functionality of each system was reviewed. The 
reviews covered both nominal and off-nominal operating conditions. Allocation and 
definition of requirements were performed. The output of this process was reflected in the 
SCDs and ICD.  

The next phase of analysis focused on the interfaces between the systems. This analysis 
was performed on selected systems, based on complexity, criticality, and customer 
visibility of the system. For each selected system, the inputs and outputs were reviewed. 
The goal was to verify that all users of data were using it correctly. This activity was 
performed after the first phase of analysis, but at a very early stage in the development of 
the systems by the suppliers.  

The last phase of analysis was at the airplane functionality level. These analyses were 
performed as the development of the systems was well underway, but prior to final 
system integration. This activity validated correct performance of the airplane systems as 
a whole. For each significant airplane-level function that required multiple systems, we 
verified that the function was properly performed and that failure conditions were 
properly handled.  

These were all manual analyses performed early enough in the program to minimize 
impact on development of the individual systems and in time to significantly reduce the 
problems found as systems were delivered and integrated. The result of the three phases 
of analysis was that problems in the specification of the airplane systems were identified 
and corrected at the earliest possible point, thus mitigating the impact of corrections on 
the overall program schedule.  

Managing the Software Development Process  

Even with the best specifications, completion of large, complex embedded software 
systems on schedule has proved elusive. Systems are frequently declared as 90 percent 
complete only to find they are less than half done. Major delays in product deliveries are 
often only "discovered" when it is too late to recover from the situation.  

With an aggressive flighttest program, the most ambitious in Boeing commercial airplane 
history, and 79 systems to integrate, it was essential that we had visibility on the real 
status of the software development on all our systems. With requirements complete for 



nearly all our systems and software development well underway, an airplanewide 
software metrics program was instituted. The metrics included development plans and 
progress and utilization of computational resources.  

Development Metrics  

The development metrics tracked progress against the plans for design, code, test 
procedure creation, and test completion. They included the predicted total software size 
(in lines of source code) and total number of tests. The metrics charts showed key 
milestones in the airplane program. These milestones represented interim points to 
measure our progress against the ultimate completion of the program. Associated with 
these milestones were success criteria based on completion of design, code, and test of 
the software products.  

Figure 1 shows the total airplane roll-up of these metrics. The metrics also measured 
utilization of computational resources (throughput and memory); however, this 
discussion will focus on the design, code, and test metrics.                                                
Figure 1: Total Metrics Roll Up for the 777 

 



Datelines legend for Figure 1:  
A-02/01/94 Target-PFOD C B-04/09/94 Actual-Roll out C-06/12/94 Actual-First Flight 
D-10/04/94 Target-ETOPS FF  

The process of using these metrics was as follows:  

· Each supplier was requested to prepare plans for their design, code, and test activities. 
These plans showed expected totals and the planned completion status for each of the 
biweekly reporting periods until the task is complete. Even at this early stage in the 
metrics process, we received our first benefits as we discovered that some suppliers' 
initial plans did not support the program milestones. This proved invaluable and in a few 
cases was the only major corrective action we needed to take to assure the supplier 
supported the program.  

· Following the initial plan submittal, there were biweekly updates that showed the actual 
status of the development in terms of completed design, code, and tests. Any changes in 
the estimated total size of the effort were also provided and the plans modified to 
correctly reflect the new total. Plans could also be changed at any time; however, 
previously reported plans and actual status could not be adjusted. The metrics 
information was shared with the developers of the systems. This led to important 
discussions on how we were going to succeed at an early enough point in the program 
that we could actually do something about it.  

· Indications of a healthy program are fairly obvious a plan that supports program 
milestones and status that consistently tracks the plan. Programs that needed special 
attention often were several weeks behind the plan line, had numerous replans, or had 
plans that required unprecedented productivity to be successful. We quickly established 
reasonable productivity figures that could easily test the feasibility of suppliers' plans 
based simply on head count, work to go, and time to go. The metrics provided an 
excellent vehicle for discussions about how the program was going to deal with their 
current status and get back on a schedule that supported the overall airplane program.  

The above process was as important as the measures themselves in assuring our success. 
However, there were certain characteristics of the metrics program that were key to 
supporting this process and making it all work. They were as follows:  

· Uniformity.  
· Frequent updates.  
· Clear definition.  
· Objective measures.  
· Replans, as needed, are allowed and even encouraged.  
· Past plans and actuals are held constant.  

The uniform nature of the metrics enabled comparison across systems and supported 
communication of objective status to all levels of program management. This was 
particularly important with the large number of organizations involved in the software 



development. We were also able to combine status information from several different 
systems provided by a single supplier. This provided unique opportunities to discuss how 
the supplier was supporting our overall program and to focus needed resources to solve 
schedule problems.  

Considerable effort was made to clearly define measures. This led to a 21-page set of 
instructions to our suppliers on how to prepare metrics data. The data items measured 
were objective and easily observed. The combination of these meant there was little 
confusion about what the metrics meant and real conclusions could be drawn from the 
data. Moreover, without this we could not have achieved the desired uniformity.  

Two aspects of the metrics plans were critical: replanning when needed was encouraged, 
and past data was never changed. The essence of a plan is it shows how to get from here 
to there. Once you have significantly deviated from a plan it no longer serves that 
purpose. Throughout the metrics process we used deviation from the plan as an indicator 
of problems. Since replanning was encouraged, the only reason to not be close to your 
plan is you don't have a plan. We found that projects that were several weeks behind their 
plan did indeed need help.  

This approach to software project metrics repeatedly "saved our bacon." Starting with 
initial plans, they indicated where program milestones were not being supported. 
Continuous monitoring through testing identified schedule problems early in the 
development process. The metrics were invaluable in showing us where program risk 
points were soon enough to take corrective action.  

What About Ada?  

Prior to the start of the 777 program, BCAG determined that Ada would be the standard 
programming language for airborne systems. This decision was based on the intrinsic 
value of having a standard language and the fact that Ada was designed to facilitate 
sound software engineering. It was also hoped that we could leverage off the considerable 
efforts spent on Ada in the development of defense systems.  

What we have learned so far about the use of Ada on the 777 is a mixed message. Ada 
was used on 60 percent of the systems and represented 70 percent of the lines of code 
developed on the 777. We found no correlation between the language used and the 
number of problems found on the system. We found instances where Ada was used 
effectively, and the developers felt it substantially reduced software integration problems. 
In other cases, development was hampered by problems with compilers and other support 
tools. Many suppliers chose to use a restricted subset of Ada, which led to fewer 
problems but lesser benefit.  

In situations where the imposition of Ada would have created more risk than benefit, 
other languages such as C or Assembly were allowed. By taking a pragmatic position on 
this standard, we removed risk and helped the program succeed. It is likely that much of 
the benefit of Ada will be seen later in maintenance of the software, but that will be 



difficult to quantify. The richness and complexity of the language helped knowledgeable 
users with mature tools achieve modest productivity gains. However, the complexity of 
the language caused headaches for other users who had to work through compiler 
problems.  

We continue to evaluate our development standards. I expect we will retain Ada as the 
standard language. A standard language allows the use of tools to aid in the development 
of software that would be difficult or impossible to implement in a multilanguage 
environment. As the systems get larger and more complex and the developers and tools 
they use mature, the value of Ada should increase.  

Conclusions  

Many aspects of the 777 program were done right to support successful completion of the 
software systems. Rigorous requirements development process and vigilant management 
of software development were two keys to that success. This required specific processes 
and tools as well as the commitment of the program to follow through on their execution. 
The results were requirements that were stable and complete at an earlier stage in the 
program and supplier software development processes that had sufficient oversight to 
allow corrective action and on time completion of the product.  
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Testing Boeing's 777:  
 

Aerospace giant leaves nothing to 
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Boeing's 777, the 
plane with the 
luckiest number 
in the air, was 
designed and 
tested by people 
with a profound 
aversion to 
trusting in luck, 
chance or 
anything other 
than confirmed 
and repeatable 
test results.  

From the earliest stages of design, Boeing was 
determined to make its new 777 twinjet transport the 
most "customer driven" aircraft the company had ever 
launched. To that end, Boeing interviewed customers 
around the world, asking them to describe their ideal 
plane. The overwhelming consensus was that 
customers wanted a new airliner to be 100% service-
ready from the first day of delivery. 

"Manufacturers have been trying to deliver service-
ready aircraft from the time the industry began," said 
Art Fanning, Implementation Manager of Boeing’s 
Integrated Aircraft Services Laboratory. "So we took 
that answer as kind of an indictment of the way the 
industry had been doing things. Boeing decided we 
were going to have to do things differently if we 
wanted to get a different result." 

The way Boeing and other aircraft manufacturers 
(commercial and military) had been doing things was 
to use the first airplane of a new generation, or 
"airplane one," as the primary integration vehicle. 
The first time that all the different systems that 
make up a modern airliner actually came together 
was on the vehicle designated for test flights. And the 



first time engineers had the opportunity to study the 
total "system of systems" operating under real world 
conditions was when that vehicle took to the air 
during its first test flight. 

"In building the first of anything," said Fanning, "you 
have an opportunity to complete the design. Even if 
the design is right, you may not have thought through 
all the interactions. You discover things like an 
interface with two connections on one side and three 
on the other. In the past, we knew what bits and 
pieces needed to be fixed, we just didn’t have time 
to correct them before the first scheduled delivery. 
So we decided we had to see how everything worked 
together in the lab before we got to the production 
line." 

Since there was no test lab in existence big enough 
and sophisticated enough to test all the systems of a 
modern airliner like the 777 in an integrated and 
realistic manner, Boeing decided to build one. The 
result of that decision is the IASL or Integrated 
Aircraft Systems Laboratory, probably the most 
advanced, comprehensive and integrated test lab in 
the aircraft industry. 

Overview of the IASL-- a very sizable investment in 
supplying service-ready aircraft 

The major advance achieved by the IASL is not just 
that it moves integrated testing further up-stream in 
the production process, but that it conducts 
laboratory tests with an unprecedented degree of 
realism. As Bob Dawes, Test Manager of the Systems 
Integration Laboratory, put it, "We don’t just 
simulate the real world. This is the real world." 

Built on the Duwamish Waterway in South Seattle, the 
IASL covers more than half a million square feet, 
employs more than 1,100 people, and houses 70 
functional test systems for the 777. Sixty four of 
these systems for stand-alone tests. The other six 
conduct tests requiring "airplane level" integration. 
The highpoints of the complex are: 



the Systems Integration Lab (SIL) where the 
electrical, electronic and avionics systems of the 777 
undergo integrated testing; 

the Electrical Power Systems Lab (EPSL) where 
engineers test the 777’s crucial power generation 
systems; 

the Flight Controls Test Rig or Iron Bird, used to 
validate the flight control system and 
electrical/hydraulic support systems; 

and the fully operational flight decks used to simulate 
how the plane will handle under all flight conditions. 

Boeing invested $30 million simply in preparing the 
site for the IASL. Constructing the building cost 
another $109 million. These expenses pale beside the 
value of the test equipment housed inside the 
complex--estimated at around a quarter of a billion 
dollars. "Add to that the value of things we test, the 
hardware and pieces of the airplane manufactured by 
Boeing or supplied by vendors," said Fanning, "and you 
have a pretty sizable investment in supplying service-
ready aircraft, which indicates how strongly we feel 
about that goal." 

Completed in October of 1992, the IASL had all its 
major test systems up and running by mid-1993. Thus 
almost a year and a half before "airplane one" rolled 
down the runway for the first test flight of the 777, 
IASL personnel had integrated final versions of the 
aircraft’s myriad systems and were test flying 
"airplane zero" in the lab. 

"Similar testing had been done on a smaller scale," 
said Fanning, "by us or other companies. But at this 
point in time, I don't think there’s anything else that 
approaches the magnitude or capabilities or the 
degree of integration that the IASL complex has." 

Stand-alone Laboratories 

The stand-alone labs in the IASL provide individual 
engineering disciplines with the ability to conduct 



validation testing on multiple elements of their 
systems. Among the many individual disciplines 
represented are avionics, mechanical/hydraulic 
systems and environmental controls. 

The 777 Environmental Control Systems organization 
is a good example of stand-alone lab capability. 
Current validation testing includes the cabin air 
conditioning and temperature control system; the air 
supply control system; the air foil and cowl thermal 
anti-ice systems; and the duct leak and overheat 
protection system. To make the testing as realistic as 
possible, 777 environmental control engineers 
incorporate all of the interfacing signals from other 
nearby systems, either through simulation or by using 
actual system hardware. 

Environmental Testing in the Components Test Lab 

Thermal and vibration stress-cycling are not a major 
part of the IASL’s mission because the lab works 
primarily with aircraft systems or black boxes, which 
are manufactured and stress-tested by outside 
suppliers before delivery to Boeing. However, there is 
one lab in the complex which concentrates on stress 
testing. The Components Test Lab screens electrical 
connectors, wires, circuit breakers, relays and other 
components for the 777’s electrical systems. The lab 
is equipped with 17 environmental test chambers. It 
tests the response of components to extremes of 
temperature (-700 to 2000C), humidity (25 to 95%) and 
altitude (up to 110,000 feet). There is also a salt 
spray chamber for corrosion testing; an oven with a 
maximum temperature of 6500C; and two thermal 
shock chambers, one with a range from 2600C to 
2000C, the other for hot-cold thermal testing from -
730 C to +1000C. Some of the environmental chambers 
are equipped for functional testing on aircraft 
systems although the main emphasis of the lab is on 
testing components. Once a component has been 
qualified as a Boeing standard, it joins a list from 
which designers of electrical systems for the 777 and 
other Boeing aircraft can draw as needed. 

The Systems Integration Lab-- a full airplane flown 



by pilots from the experimental flight test program 

Although traditional environmental testing sense is 
limited at the IASL, the effort to reproduce the real-
world operating environment of aircraft systems is 
the central goal of most labs in the complex. The 
technological highpoint of the IASL is probably the 
Systems Integration Lab. It is here that engineering 
test pilots fly airplane zero, which consists of 
virtually all of the electrical, electronic and avionics 
equipment used in a 777. The SIL tests 900 production 
wire bundles out of the 1,200 bundles used in an 
actual aircraft. The wiring connects to over 100 black 
boxes or Line Replaceable Units (LRUs). All that’s 
missing are rows of seats and the outer skin of the 
plane. 

"The lab is essentially a full airplane," said Bob 
Dawes, Test Manager of the SIL. "The people who fly 
it are pilots from our experimental flight test 
program. Lab personnel support the pilots and 
surround the real aircraft boxes with test system 
after test system used to simulate aerodynamic 
behavior and record data." 

Up to 43 Harris Nighthawk computers are available to 
do real-time processing for the SIL and other 
integration labs. The Nighthawks provide the 
environment around the SIL airplane. They simulate 
air speed, altitude, temperature, the runway 
environment, the navigational environment, etc. In 
one test, the Nighthawks were used to simulate the 
operational environment that aircraft systems would 
face if the 777 were taking off in a fierce crosswind 
with one failed engine. Other tests were conducted to 
see how the aircraft would respond to the 
environment of Bolivia’s La Paz airport which is some 
13,300 feet above sea level. While the Nighthawks 
simulated the high-altitude environment, test pilots 
powered up the SIL airplane and went through a 
complete test flight. Other simulations involved 
flights over the North Pole to test navigation systems 
and non-normal, non-routine events such as 
catastrophic engine failures. Systems performance 
and interaction are recorded by a data acquisition 



system capable of capturing up to 57,000 parameters 
at up to 24 million bits per second. 

"From an engineering standpoint," said Dawes, "the 
lab tests aircraft boxes in the environment they really 
work in. It’s bus-loading with all the boxes talking as 
they do on a real airplane. We’re not just seeing how 
systems perform individually. We’re seeing how they 
communicate in the real world. Military programs also 
have labs called SILs. But even in the military, they 
don’t approach the fidelity and extensive 
reproduction of the airplane that we have." 

A typical test flight on airplane zero 

A typical test in the SIL begins with the generation of 
a test plan that sets forth the test requirements such 
as high or low altitude, hot or cold day, polar or 
trans-oceanic flight. On the day of test, all 
participants gather for a pre-flight conference. They 
go through the steps of the test line by line. The test 
pilots often look at things from a different 
perspective than the test engineers and request 
modifications in the plan. At the conclusion of the 
conference, the flight crew climbs up to the flight 
deck. Depending on the test requirements, they may 
find the aircraft totally cold and power it up through 
a complete pre-flight check list. The test plan may 
call for the introduction of failures, in which case the 
pilots react with corresponding non-routine 
procedures. 

A great deal of realism goes into these test flights. 
Lab personnel enact the role of the ground crew and 
feed power to the plane the way a ground crew would 
on the airport ramp . The pilots call for disconnection 
over their headsets and the ground crew disconnects. 
After the crew powers up the Auxiliary Power Unit, 
computers simulate turbine and airflows. Actual 777 
electronics generate all signals to the pilots. If the 
test calls for a "hung start" or failure to start engines, 
pilots have to respond with appropriate measures. 

When the airplane is powered up, the pilots test taxi 
and steering controls. They use the aircraft’s internal 



and external communications systems. They taxi to 
the imaginary runway, take off and fly the profile of 
the day, which may call for an eight-to-ten hour flight 
over the Northpole, or may involve up to 50 take-offs 
and landings in the space of an hour. The simulation 
may involve various kinds of landings-- skipped 
landings, bounced landings, or other tests to check 
landing logic and verify that the aircraft knows when 
it is in the air and when it is on the ground. At the 
conclusion of the profile, the crew taxis in, parks the 
aircraft, goes through the complete power-down 
procedure, then disembarks and walks down the hall 
to a conference room for post-flight debriefing. 
During the debriefing, which may last up to two 
hours, the pilots comment on controls and anomalies. 
These comments add another perspective to the 
volumes of data stored by the data acquisition system 
which monitors the SIL aircraft continuously during 
the course of the test. 

Torturing the aircraft 

The activities of the SIL have evolved as the 777 has 
moved through the development cycle. The 
chronological sequence of tests conducted in the SIL 
shows the many milestones involved in moving a 
modern aircraft from the design stage to first-flight 
readiness. 

Wiring checkout (4/93- 9 /93); Testing the first 
production set of cables, the lab found over 100 
problems, which were corrected in subsequent 
production runs. 

Power-up Testing or Initial Integration (10/93 - 
11/93); Using the same procedures and check-lists 
that a ground crew would use on a regular flight, lab 
personnel powered-up actual aircraft systems in the 
lab until they achieved a full-airplane power-up. 

Functional Test Validations (11/93 - 12/93); During 
the manufacturing functional test phase, suppliers of 
various systems for the 777 came into the lab, hooked 
up their Automatic Test Equipment, and tested the 
systems in the SIL just as they would test an airplane 



on the factory floor. These activities not only verified 
that the systems in the SIL functioned properly, they 
also helped factory technicians debug their test 
processes and equipment. 

Developmental and Initial Systems Validation ( 1/94 - 
3/94 ); These activities led to early identification and 
correction of over 650 airplane problems. 

Systems Validation, the Gauntlet (4/94 - 6/94); 
During the period leading up to the first test flights of 
the 777, the SIL put aircraft zero through the 
"gauntlet." Activities included "torturing the aircraft," 
faulting pieces of equipment so systems would 
reconfigure automatically, going through non-routine 
procedures, getting a good end-to-end check of all 
systems. 

Validation of Aircraft Maturity and Service 
Operations (6/94 - Present); Since the first flights, 
the SIL has been working on system upgrades, 
software verification, safety testing, maintenance 
manual validation, and training of customer-service 
personnel. 

By working three shifts and seven day weeks, the SIL 
has logged some 3,800 ground-test hours, 1,400 
flight-test hours, and 17,600 test conditions. The lab 
has also developed over 700 test plans and 
familiarized more than 40 pilots with 777 systems. 

The Electrical Power Systems Lab -- integrating 
systems from multiple vendors 

The electrical power generation and distribution 
system of the 777 has many levels of redundancy 
designed to ensure safe operation of the aircraft 
under any foreseeable condition. Equipment comes 
from a variety of vendors who supply the aircraft’s six 
in-flight-operable electrical generators, as well as 
electrical control systems, power supply units, 
batteries, battery chargers and electrical load 
distribution panels. Each of these systems is fully 
checked out by its supplier, but the first time all of it 
comes together for a real-world workout is in the 



Electrical Power Systems Lab (EPSL). 

The EPSL provides the laboratory test environment for 
verification, validation and certification testing of the 
aircraft electrical power generation and distribution 
system. Much of the testing done in the EPSL is 
required for FAA certification. Typical FAA tests 
involve power transfers, voltage regulation, 
protective functions and system indications for 
normal and abnormal conditions. 

To ensure that the lab test environment represents 
the aircraft, production aircraft generators are driven 
by 800 hp electrical motor drives which duplicate 
engine speeds and acceleration rates. The generators 
are connected via production quality feeders to the 
actual electrical control and distribution equipment. 
Loads for testing the electrical power system are 
provided by 24 alternating current load banks rated 
at 75 kva each, 16 direct current load banks rated at 
100 amps each, and various aircraft fans and motor 
loads. 

To support certification testing, the main emphasis of 
the lab is on monitoring system performance. To that 
end, the lab uses a high-speed digital data acquisition 
system from DSP Technology. The DSPT system is 
capable of monitoring 128 channels of data. It 
provides a variety of data traces, including voltage 
and current parameters for measuring operating 
characteristics, and breaker and switch positions for 
timing information. System messages are recorded 
using various ARINC 629 monitoring tools and/or the 
aircraft’s avionics equipment. Although Boeing has 
built electrical test rigs for each new generation of 
aircraft, the 777 test rig is the first to use a digital 
data acquisition system as its primary data acquisition 
tool. 

Testing Under Abnormal Conditions 

A significant advantage of realistically integrating the 
aircraft’s electrical power system in a laboratory 
environment is that tests can be performed under 
very abnormal conditions such as open circuits or 



short circuits. The lab monitors system responses such 
as fault-clearing times, current spikes and voltage 
sags. Data and error messages are studied to verify 
that the system operated correctly, that the fault was 
isolated properly, and that the failure mode has been 
properly identified and documented. 

"Since we purchase equipment from multiple 
suppliers, we think it makes a lot of sense to put 
everything together in our lab," said Carl Tenning, 
Design Supervisor of the EPSL. "The military probably 
has a similar facility and generator manufacturers 
have similar capabilities. But no other airframe 
manufacturer does integration testing on production 
hardware with our degree of fidelity, except on the 
airplane itself." 

Conclusion 

Although testing for FAA certification is an important 
part of the work of the Electrical Power Systems Lab, 
the vast majority of tests conducted at the IASL are 
not mandated by governmental agencies. "They’re 
deemed necessary by Boeing to satisfy ourselves and 
our customers," said Art Fanning. Out of 130 different 
kinds of tests performed at the IASL, about a dozen 
involve certification. Boeing conducts the other tests 
because the company sees three principal benefits 
from integrated, on-ground testing before trial flights 
begin. 

The first benefit of building the first of a new 
generation of aircraft in the lab is that the design is 
completed earlier. In a "system of systems" as 
complex as a new airplane, there are bound to be 
places where the design is not complete. Frequently, 
this occurs where systems meet each other. While 
building "airplane zero," lab personnel can identify 
these areas early on, properly complete the design 
and feed the information forward in time to meet the 
production schedule for the first airplanes. The 
second benefit is that once airplane zero is built, it 
can be used to confirm that the design functions as 
intended in normal operations. If it doesn’t, there is 
more opportunity to correct the design and 



incorporate those changes in the first production 
airplanes. Finally, once the systems function properly 
in normal operations, test engineers can introduce 
abnormalities. They can induce a problem in one box 
and study the interactions throughout the aircraft, 
making sure that one fault does not initiate a series 
of other failures. 

"The real purpose of the IASL is to see the systems 
working together in the lab before they need to come 
together on the first airplane," said Art Fanning. "If 
there are problems, this gives us the opportunity to 
correct them much earlier. The result is that our 
flight tests are much more productive because we 
don’t use valuable test flight time fixing mundane 
things that should have been corrected elsewhere. 
And our first airplanes incorporate the design changes 
needed to make the aircraft service-ready on the day 
of delivery." 
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Streamlined Plane Making
Boeing , Airbus Look to Car Companies'
Methods to Speed Up Jetliner Production

By DANIEL MICHAELS and J. LYNN LUNSFORD 
Staff Reporters of THE WALL STREET JOURNAL
April 1, 2005; Page B1

Bitter rivals Airbus and Boeing Co. don't agree on 
much, but these days their production gurus chant a 
common mantra: Let's copy Toyota, the company 
that reinvented car making.

The giant jet makers and their suppliers are going 
back to school to learn about efficient production 
from companies that churn out vehicles that are just 
a fraction of a plane's size and complexity. Cutting 
production costs and speeding assembly is a vital 
step in the Airbus-Boeing duel to stay competitive. 
Each is scrambling to hold down prices and increase 
sales to airlines, even as carriers' profits continue to 
wallow in the worst aviation crisis ever.

The new efficiency focus faces limits, though, in 
part because airlines demand far more customization 
than car buyers do. Safety regulations are also much 
more numerous and onerous for jetliners than cars. 
But the plane makers have recently grasped a big 
truth long ago pioneered by Toyota Motor Corp.: 
Working hard to keep things simple saves tons of 
money.

So airplane people are now designing parts with an 
eye to how fast they can be assembled. Both Boeing 
and Airbus have slashed their parts inventories, 
copied the way car makers organize factories and 
trimmed production times. Airlines, long treated like 
royalty, are getting less choice in the options 
available to them, from plane colors to cockpit 
layouts. Boeing has also managed to apply to 
gargantuan planes a technique long ago adopted by 
Henry Ford: assembly lines.

Not long ago, the idea of aping a mass-market car 
manufacturer seemed preposterous to aerospace 
people. Compared with a jetliner, cars are low-tech, 
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cheap and puny. Car makers churned out millions of 
light vehicles last year, each priced in the tens of 
thousands of dollars. Annual output at Boeing and 
Airbus together was just 605 planes, some priced at 
almost $200 million. Car models change every few 
years, while jetliner models change over decades.

FOUR MILLION PARTS
In the past, Airbus and Boeing 
designed every piece of their 
planes. Now they still design whole 
jetliners, but leave engineering and 

production of many important components to 
subcontractors. 

"We always thought airplanes were different because they had 
four million parts," says Alan Mulally, head of Boeing's 
commercial aircraft division, compared with the 10,000 or so 
parts in a car. "Well, airplanes aren't different. This is 
manufacturing."

The plane makers are getting a hand from suppliers that cut 
their teeth making parts for car companies, such as Goodrich 

Corp. and Britain's GKN PLC, a recent entry in the aerospace 
industry after decades spent making complex auto parts. GKN, in fact, has moved key automotive staff over 
to aviation projects.

Airbus is now squeezing suppliers in a bid to cut more than $1.29 billion from its cost base by 2006, says its 
chief operating officer, Gustav Humbert. The technique, he says, is "continuous improvement" -- an 
approach first promoted at Toyota.

Airbus aims by 2006 to build a single-aisle plane from scratch in just six months, half the time taken in 
2003, and wide-body planes in 12 months, a 20% reduction. Working faster means Airbus can produce more 
planes at its existing factories, and it expects to free up more than $1.3 billion in cash by shortening the time 
it keeps its parts in stock -- another economy pioneered by car makers.

As Boeing prepares to build its proposed fuel-efficient 787 Dreamliner jet, project manager Mike Bair wants 
to make the plane so modular that the last stage of assembly takes just three days. Its predecessor model, the 
767, took up to a month to assemble. Because individuality sends costs soaring, he is also emulating car 
companies by offering a standard set of features on the 787. Customers can no longer dictate cockpit layouts 
and have limited choice on items such as electronics and interiors. Boeing, which once offered more than a 
dozen shades of white paint, now offers just two.

Not so long ago, every jetliner was custom-built. Airbus, which began its business in the 1970s, several 
decades after Boeing, from the start inched toward the auto-making model by building airplanes in sections, 
such as wings and cockpits. Final assembly became essentially a high-tech version of snapping together a 
plastic model airplane.

But in the past few years, Airbus and Boeing have pushed the process much further and started outsourcing 
entire components, just as car makers outsource systems like transmissions. Rather than give a contractor 
blueprints to fabricate a part, they have begun offering only general requirements and asked suppliers to 
propose designs -- another key to the Toyota system.

Hamilton Sundstrand, a division of United Technologies Corp., is designing and producing the critical cabin 
air-conditioning and temperature-control system for both the double-decker Airbus A380 and the 787. Jamco 
Corp. of Japan is designing and producing key structural elements made of advanced composite materials for 
the A380.

On shop floors, the plane makers have also learned from car makers. At an Airbus factory in Wales, where it 
builds wings, production teams used to walk far to the stockroom for bags of bolts and rivets, and frequently 
left them scattered about -- a wasteful and unsafe practice -- because they lacked nearby storage. Airbus, in 
fact, checked out production procedures at car maker DaimlerChrysler AG, which has a stake in the plane 
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maker's parent company, European Aeronautic Defence & Space Co.

Using work-analysis methods developed by the auto industry, project teams studied which fasteners were 
needed where, and when, and then organized racks on the shop floor. Now, carefully labeled bins contain 
tidy sets of supplies needed for specific tasks. The change has sped up work and saved over $100,000 in 
rivets and bolts at the Welsh factory alone, Airbus says. Boeing has made similar changes at its Seattle-area 
plants.

GKN has adopted a similar auto-industry innovation and eliminated many warehouses at the English plant 
where it builds parts for Canada's Bombardier Inc., a maker of regional jets. Now, suppliers ship directly to 
the shop floor and restock as necessary. This "frees up tons of capital" from inventories, says Rob Soen, the 
European head of procurement for GKN Aerospace and a 23-year veteran of the car industry.

But the jet makers aren't moving wholesale to car-like production methods. Swapping one production 
method for another can require huge investments in new equipment and staff training, and often requires 
shutting down a production hall to make the switch. That's a big reason why aviation manufacturers have 
moved slowly.

Airbus, for example, moves planes through successive stations during assembly but still maintains much of 
the old piecework approach. Production managers say this gives flexibility because a glitch that slows one 
plane won't stall a whole assembly line.

Boeing, though, made one of the most dramatic production changes yet in 2001 when it began putting 
together planes on a huge moving line -- à la Henry Ford and his Model T. The motion "lent a sense of 
urgency to the process that we really didn't have when the planes were sitting still," says Carolyn Corvi, the 
executive who oversaw the change. Ms. Corvi and other top Boeing executives made multiple visits to 
Toyota when they were first beginning to study how to convert the production process to a moving line.

When many workers initially balked at the production line and unions filed complaints, Boeing took extra 
pains to win them over. The change paid off: Boeing halved the time it takes to assemble a single-aisle 737, 
and has started putting its other planes -- including its oldest and largest product, the 747 -- on moving lines.

Write to Daniel Michaels at daniel.michaels@wsj.com and J. Lynn Lunsford at lynn.lunsford@wsj.com
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I
n the May 2001 issue of Computer, two
of us published an article called “COTS-
Based Systems Top 10 List” (pp. 91–93).
The list identified 10 hypotheses that
served as challenges for enhancing our
empirical understanding of commercial

off-the-shelf software. These hypotheses were
primarily related to COTS-based systems
development.

CBSs remain one of three focus areas (the
other two are defect reduction and agile meth-
ods) of both our US Federal Aviation Agency-
sponsored research and our National Science
Foundation-sponsored Center for Empirically

Based Software Engineering (CeBASE) efforts.
As our original article said, COTS software us-
age remains relatively immature as it pro-
gresses through a peak of inflated expecta-
tions, a trough of disillusionment, a slope of
enlightenment, and a plateau of productivity.
Based on presentations at the recent 2nd Inter-
national Conference on COTS-Based Software
Systems (ICCBSS 2003 Proceedings, Springer-
Verlag), risks inherent to COTS use are large—
as are the potential returns. Pursuing custom
solutions remains unattractive primarily be-
cause it takes so much time and effort to de-
velop software products.

We have recently extended the Top 10 list
of challenges in the original Computer article
to encompass the life cycle’s maintenance
phase. During maintenance, COTS products
undergo a technology refresh and renewal cy-
cle. As part of this activity, maintainers decide
whether to upgrade their COTS products or
retain old versions. If they choose to retain old
versions, they’ll eventually reach the point
where the vendor no longer supports those
versions. If they choose to update, they must
synchronize the associated update with their
release cycle and with product updates other
vendors are making. They must also coordi-
nate the update of wrappers and glue code so
that they will work with the new versions.

Because COTS maintenance is relatively im-

Eight Lessons Learned during
COTS-Based Systems 
Maintenance
Donald J. Reifer, Victor R. Basili, Barry W. Boehm, and Betsy Clark
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mature, we present empirical results
gathered to date as lessons learned rather
than as either results or hypotheses. We
hope these results will help those trying
to manage COTS maintenance.

Lesson learned 1
The refresh and renewal process for

CBSs must be defined a priori and
managed so COTS package updates
can be synchronized with each other
and the organization’s release and busi-
ness cycle. If they aren’t, updates might
occur sporadically during the mainte-
nance part of the cycle and the risk of
technology obsolescence might increase
dramatically.

Source. A recent US Air Force Scien-
tific Advisory Board study (SAB-TR-99-
03, April 2000) surveyed 34 COTS-
based systems to look at COTS software
management within weapon systems.

Implications. Currently, few COTS
software lifecycle models address CBS
maintenance processes. Guidance is
needed to define refresh and renewal
process activities.  We must also define
criteria for making decisions regarding
when to incorporate updates within re-
leases, along with those criteria’s asso-
ciated risks and business implications. 

Lesson learned 2
COTS software capability and qual-

ity evaluation must be managed as a
continuing task during the mainte-
nance phase.

Source. Most publications that dis-
cuss CBS processes advocate that com-
panies establish a market watch func-
tion (see lessons-learned papers in
COTS workshops such as ICCBSS 1
and 2 and in research reports by the
National Research Council of Canada,
the Software Engineering Institute, and
the University of Southern California). 

Implications. Most COTS software
studies recommend that firms not only
establish a market watch function to
keep track of where their packages are
heading but also that they continu-

ously assess their options. A market
watch looks at the marketplace as a
whole, monitoring a specific vendor’s
health and viability as well as what
competitors are coming out with.
COTS evaluation gives you a detailed
assessment of package capabilities,
quality issues, and future options. It
typically involves conducting some
form of operational demonstration.

Lesson learned 3
The cost to maintain COTS-based

systems equals or exceeds that of de-
veloping custom software. Mainte-
nance in this context involves updating
CBSs with new releases, modifying
wrappers and glue code, and incorpo-
rating fixes and repairs into the system.

Source. Reifer Consultants recently
studied the cost of COTS software
across 16 systems, some of which em-
ploy over 40 different packages, across
three large firms. Costs average 10 per-
cent of the development cost per year
over a projected 10-year life for the
system. Although releases occur every
year, COTS technology refreshes occur
every two years or across two releases.
Defect rates per release for CBSs are
poorer than for custom-built software,
averaging 10 to 40 percent higher.

Implications. Even though firms can
save time and effort during develop-
ment using CBSs, they should evaluate
the total lifecycle cost of options prior
to making commitments. Such analysis

could identify risks that negate many
of the advantages that CBSs bring to
the table. For example, firms must co-
ordinate glue code updates along with
package improvements. Considering
that a line of glue code costs, on aver-
age, three times that of a line of custom
code to develop and maintain, mainte-
nance effort can get quite expensive. In
situations where CBSs have a long life,
custom solutions might work out to be
cheaper than COTS alternatives. Pro-
ject managers whom RCI interviewed
also said that, unlike custom systems,
COTS-based systems need a continual
stream of funding throughout their life
cycle. Such funding is necessary to keep
up with a dynamic marketplace in
which vendors are continually releas-
ing new versions. Funding was an issue
with several of the projects in this
study because their maintenance bud-
gets often get cut. The managers be-
lieve that this hurts a CBS more than a
custom system because they can delay
maintenance on the latter if they have
to because of budget limitations. 

Lesson learned 4
The most significant variables that

influence the lifecycle cost of COTS-
based systems include the following (in
order of impact):

� Number of COTS packages that
must be synchronized within a release

� Technology refresh and renewal cy-
cle times 

� Maintenance workload (the amount
of effort software engineers expend
to handle the task at hand) for glue
code and wrapper updates 

� Maintenance workload to reconfig-
ure packages

� Market watch and product evalua-
tion workload during maintenance

� Maintenance workload to update
databases

� Maintenance workload to migrate
to new standards

� COTS maintenance license costs

Source. The RCI study mentioned
earlier was a source here also. The
study identified these parameters using

The cost to maintain
COTS-based systems

equals or exceeds
that of developing
custom software.
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a survey that asked those responsible
for maintenance for insight. The num-
ber of packages requiring synchroniza-
tion was twice as sensitive as the need
to migrate to new standards.

Implications. Cost models like USC’s
COCOTS (see http://sunset.usc.edu for
information) should be updated to en-
compass the full CBS life cycle. Cur-
rently, they focus on estimating the costs
associated with evaluating, adapting,
and deploying COTS software packages
during development and maintenance.
In the future, such models should incor-
porate additional variables such as the
last three bullets on our list to permit
those assessing lifecycle costs to estimate
the full cost of the maintenance portion
of the CBS life cycle. 

Lesson learned 5 
Maintenance complexity (and costs)

will increase exponentially as the num-
ber of independent COTS packages in-
tegrated into a system increases.

Source. USC’s COCOTS team has
initial results of a study of 20 projects.

Implications. Projects should under-
stand the maintenance implications of
integrating a large number of COTS
products into a system. In addition to
the effort involved in the initial inte-
gration, they should consider that each
product will evolve in its own way, ac-
cording to different timetables, at the
vendors’ discretion. They will have to
expend considerable effort to handle
these products’ continuing evolution
(for example, understanding the im-
pact of an upgrade on the rest of the
system or making changes to glue code. 

Lesson learned 6
Software engineers must spend sig-

nificant time and effort up front to ana-
lyze the impact of version updates (even
when the decision is made not to incor-
porate the updates).

Source. Initial results of the CO-
COTS team’s 20-project study suggest
that analysis efforts during mainte-

nance directed toward updates  can tax
the organization severely. This is par-
ticularly true for safety-critical systems.

Implications. Maintenance modeling
must assume that CBSs incur fixed and
variable costs. Fixed costs are those as-
sociated with market watch and contin-
ued product evaluation. Variable costs
are a function of the work performed to
incorporate updates, fixes, changes, and
optimizations into the impending re-
lease. The workload performed by the
fixed staff must be optimized (bal-
anced) as part of this process.

Lesson learned 7
Flexible CBS software licensing

practices lead to improved perfor-
mance, reliability, and expandability.

Source. RCI performed surveys in
2000 and 2001 on best acquisition
practices for the US Army (see www.
reifer.com for a paper on innovative li-
censing).

Implications. The studies identi-
fied partnering instead of conflict
management as the preferred ap-
proach to licensing. Shared goals lead
to products with improved “goodness
of fit” and “functionality” for the
buyer. Leveraging relationships to
achieve shared goals is highly desir-
able. Innovative contracting under
such arrangements lead to deep vol-
ume discounts and priority service

and bug fixes. Traditional approaches
to licensing, where contracts instead
of relationships govern, lead to dis-
trust and poor results. 

Lesson learned 8
Wrappers can be effectively used to

protect a CBS from unintended nega-
tive impacts of version upgrades.

Source. Several projects were inter-
viewed for the COCOTS database.
One project successfully used wrappers
for information hiding so that different
versions of COTS products (or differ-
ent products) could be swapped with-
out affecting the rest of the system.

Implication. CBS architectures should
accommodate COTS changes through-
out the system life cycle.

T o make better decisions relative to
CBSs, we need empirical knowledge.
To gain this knowledge, we must

more fully understand the lifecycle
processes people use when harnessing
COTS packages. The initial findings re-
ported here are but the first step in our
attempts to capture this empirical
knowledge. We plan to continue col-
lecting data and investigating the phe-
nomenology of COTS-based systems.
This work complements the more gen-
eral results available at our CeBASE
Web site (http://cebase.org/cbs) and the
SEI Web site (www.sei.cmu.edu/cbs).
We welcome your comments, input,
and contributions.

Donald J. Reifer is a visiting associate with the Center
for Software Engineering at the University of Southern California
and president of Reifer Consultants Inc. Contact him at
dreifer@earthlink.net.

Victor R. Basili is a professor in the Computer Science
Department at the University of Maryland and director of the
Fraunhofer Center–Maryland. Contact him at basili@cs.umd.edu.

Barry W. Boehm is director of the Center for Software
Engineering at the University of Southern California. Contact him
at boehm@sunset.usc.edu.

Betsy Clark is president of Software Metrics and works
with USC on several CBS projects. Contact her at betsy@soft-
ware-metrics.com.

Traditional approaches
to licensing, where
contracts instead of

relationships govern,
lead to distrust

and poor results. 
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or most software applications, the
use of commercial off-the-shelf
products has become an economic
necessity. Gone are the days when
upsized industry and government

information technology organizations
had the luxury of trying to develop—and,
at greater expense, maintain—their own
database, network, and user-interface
management infrastructure. Viable COTS
products are climbing up the protocol
stack, from infrastructure into applica-
tions solutions in such areas as office and
management support, electronic com-
merce, finance, logistics, manufacturing,
law, and medicine. For small and large
commercial companies, time-to-market
pressures also exert a strong pressure
toward COTS-based solutions. 

COTS PLUSSES AND MINUSES
However, most organizations have

also found that COTS gains are accom-
panied by frustrating COTS pains. Table
1 summarizes a great deal of experience
on the relative advantages and disad-
vantages of COTS solutions.1 One of the
best COTS integration gain-and-pain
case studies2 summarizes the experiences

of David Garlan’s group at CMU.
Garlan’s group tried to integrate four
COTS products into the Aesop software
architecting environment—the OBST
object management system, the Mach
RPC Interface Generator, the SoftBench
tool integration framework, and the
InterViews user interface manager—only
to find a number of architectural mis-
matches among the products’ underlying
assumptions. For example, three of the
four products are event based, but each
has different event semantics, and each
assumes it is the sole owner of the event
queue. Resolving such model clashes
escalated the original two-person, six-

month project into a five-person, two-
year project: a factor of four increase in
schedule and a factor of five increase in
effort.

Such experiences, and the more gen-
eral technical and business issues shown
in Table 1, indicate that COTS integra-
tion differs significantly from traditional
software development and requires sig-
nificantly different approaches to its
management. At the USC Center for
Software Engineering COTS Integration
Affiliates’ Workshop, we identified four
key COTS integration issues: functional-
ity and performance, interoperability,
product evolution, and vendor behavior.

FUNCTIONALITY AND PERFORMANCE 
You have no control over a COTS

product’s functionality or performance.
If you modify the source code, it’s not
really COTS—and its future becomes
your responsibility. Even as black boxes,
big COTS products have formidable
complexity; Windows 95, for example,
has roughly 25,000 entry points. 

Let the buyer beware
COTS-based projects cannot make

blanket assumptions about system
requirements or embrace traditional
process models. One mistake developers
can make is to use the waterfall model on
a COTS integration project. With the
waterfall model, you specify require-
ments and these determine the system’s
capabilities. With COTS products, it’s the
other way around: The capabilities deter-
mine the “requirements,” or delivered-
system features. If your users have a
“requirement” for a blinking cursor and
the best COTS product doesn’t provide
it, you’re out of luck.

Another potential danger involves
using evolutionary development with the
assumption that every undesired feature
can be changed to fit your needs. COTS
vendors do change features, but in
response to the overall marketplace, not
to individual users’ needs. It’s also unwise
to assume that advertised COTS capa-
bilities are necessarily real. COTS ven-
dors may have had the best of intentions
when they wrote the marketing litera-
ture, but that won’t help you when the
advertised feature isn’t there.

COTS
Integration: 

Plug and Pray?
Barry Boehm and Chris Abts,

University of Southern California

Barry Boehm, Computer Science Department,
University of Southern California, Los Ange-
les, CA 90089; boehm@sunset.usc.edu

The advantages of
COTS products can be
undermined by poor

support and changing
feature sets. Learn 
the common COTS 

pitfalls and how 
to avoid them.

.
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Use risk-driven process models
Given the vagaries of requirements in

COTS-based software development,
developers should adopt or modify more
dynamic, risk-driven process models,
such as risk-driven spiral-type process
models. Assess risks via prototyping,
benchmarking, reference checking, and
related techniques. Focus each spiral
cycle on resolving the most critical risks.
The Raytheon “Pathfinder” approach—
using top people to resolve top risk items
in advance—is a particularly effective
way to address these and other risks.

You should also perform the equiva-
lent of a “receiving inspection” upon ini-
tial COTS receipt. This practice ensures
that the COTS product really does what
it is expected to do. Keep requirements
negotiable until the system’s architecture
and COTS choices stabilize. This prevents
you from promising features and capa-
bilities that the system cannot support
easily—or at all. Finally, involve all key
stakeholders in critical COTS decisions.
These stakeholders can include users, cus-
tomers, developers, testers, maintainers,
operators, or others as appropriate.

INTEROPERABILITY
Most COTS products are not designed

to interoperate with each other. The
Garlan experience2 provides a good case
study and explanation for why interop-
erability problems can cause COTS inte-
gration cost and schedule overruns.

Roadblocks to interoperation
If you commit prematurely to incom-

patible combinations of COTS products,
you lessen the chance they will operate
with your own software. This situation
can happen in many ways: through
haste, desire to show progress, politics,
short-term emphasis on rapid application
development, or an uncritical enthusiasm
for features or performance.

Trying to integrate too many incom-
patible COTS products can also cause
problems. As Garlan2 shows, four such
products can be too many. In general,
trying to integrate more than a half-
dozen COTS products from different
sources should place this item on your
high-risk assessment list. Nor should you
defer COTS integration till the end of the
development cycle. Doing so puts your
most uncontrollable problem on your
critical path as you approach delivery.

Finally, avoid committing to a tightly
coupled subset of COTS products with
closed, proprietary interfaces. Such prod-
ucts restrict your downstream options;
once you’re committed, it’s hard to back
out.

Ensure smooth interconnections
To make sure your in-house software

works with the COTS products you pur-
chase, use the Life Cycle Architecture
milestone3 as an anchor point for your
development process. In particular, in-
clude demonstrations of COTS interop-

erability and scalability as risks to be
resolved and documented in the feasibil-
ity rationale. Use the AT&T/Lucent
Architecture Review Board (ARB) best
commercial practice4 at the Life Cycle
Architecture milestone. Over a 10-year
period, AT&T documented at least a 10
percent savings from using ARBs.

Finally, strive to achieve open archi-
tectures and COTS substitutability. In the
extremely fast-moving software field, the
ability to adapt rapidly to new best-of-
breed COTS products is critical.

PRODUCT EVOLUTION
You have no control over a COTS

product’s evolution, which responds only
to the overall marketplace. Upgrades are
frequently not upwardly compatible; old
releases become obsolete and unsup-
ported by the vendor. If COTS architec-
tural mismatch doesn’t get you initially,
COTS architectural drift can easily get
you later. Our Affiliates’ experience indi-
cates that complex COTS-intensive sys-
tems often have higher software mainte-
nance costs than do traditional systems—
for example, when the application is rel-
atively stable and the COTS products are
relatively volatile. Good practices, such as
batching COTS upgrades in synchronized
releases, can lower these costs. 

Evolutionary dead ends
“Snapshot” requirements specifications

and corresponding point-solution archi-
tectures make it too difficult to evolve
your software. These are bad practices for
traditional systems; with uncontrollable
COTS evolution, the maintenance head-
aches become even worse. If you under-
staff maintenance personnel or undertrain
them in COTS adaptation, you invite
long-term problems. Integrating COTS
products with your own software, then
maintaining the combined system, is a
challenging task under the best circum-
stances; without proper training, that
challenge becomes significantly greater.

Tightly coupled, independently evolv-
ing COTS products cause an increase in
maintenance overhead. Using just two
such products will make your system’s
maintenance difficult; using more than
two will make the problem much worse.
Finally, it’s wrong to assume that uncon-

Table 1. COTS advantages and disadvantages.

Advantages Disadvantages

Immediately available; earlier payback Licensing, intellectual property procurement delays
Avoids expensive development Up-front license fees
Avoids expensive maintenance Recurring maintenance fees 
Predictable, confirmable license fees Reliability often unknown or inadequate; 
and performance scale difficult to change 
Rich functionality Too-rich functionality compromises usability,

performance.
Broadly used, mature technologies Constraints on functionality, efficiency
Frequent upgrades often anticipate No control over upgrades and maintenance
organization’s needs 
Dedicated support organization Dependence on vendor 
Hardware/software independence Integration not always trivial; incompatibilities 

among vendors
Tracks technology trends Synchronizing multiple-vendor upgrades

.



January 1999 137

commercial generalizes, “Small compa-
nies are too small to help; big companies
are too big to care.”

Perishable promises
Beware of uncritically accepting ven-

dors’ statements about their COTS prod-
ucts’ capabilities and support. Shifting
markets, mergers and buyouts, or
unforeseen technological developments
can convert a vendor’s best intentions
into broken promises. A lack of fallbacks
or contingency plans can also derail your
project. Any project that doesn’t allow
for such contingencies as product substi-
tution or escrow of a failed vendor’s
product is one that courts disaster.

Foster realistic expectations
To ensure that you establish the best

vendor relationships possible, you must
perform extensive evaluation and refer-

trollable COTS product evolution is just
a maintenance problem: It can attack
your development schedules and budgets
as well.

Nurture beneficial mutations
You can offset the costs and risks asso-

ciated with long-term COTS product
evolution by sticking with dominant
open commercial standards. These stan-
dards make COTS product evolution
and substitutability more manageable.

For COTS product selection criteria,
use likely future system and product line
needs (evolution requirements) as well as
current needs. These evolution criteria
can involve portability, scalability, dis-
tributed processing, user interface media,
and various kinds of functionality
growth. Use flexible architectures that
facilitate adaptation to change. Strong
choices include software bus, encapsula-
tion, layering, and message- and event-
based architectures.

Carefully evaluate COTS vendors’
track records with respect to product-
evolution predictability. Widely varying
feature sets, too-frequent updates, and
dramatic shifts in product capabilities
can cause problems in the long term.

Finally, establish a proactive system-
release strategy, synchronizing COTS
upgrades with system releases. Planning
the ongoing integration of evolving
COTS products with your own internally
developed software helps ensure that
both continue to function harmoniously.

VENDOR BEHAVIOR
COTS vendor behavior varies widely

with respect to support, cooperation,
and predictability. Given the three major
sources of COTS integration difficulty
we’ve already cited, an accurate assess-
ment of a COTS vendor’s ability and
willingness to help with these areas is
tremendously important. The workshop
identified a few assessment heuristics
that proved helpful, such as that the
value of a COTS vendor’s support fol-
lows a convex curve with respect to the
vendor’s size and maturity. Specifically,
according to our Affiliates’ experience,
mid-sized companies occupy the highest
arc of the curve and usually provide the
best support because, as a recent radio

ence-checking of a COTS vendor’s adver-
tised capabilities and support track
record. Web searches, interviews with the
vendor’s other clients, and industry pub-
lications can all help determine a given
vendor’s credibility.

Because COTS products are likely to
remain an essential component of your
software for a long time, it can help to
establish strategic partnerships or other
incentives for COTS product vendors to
provide continuing support. These incen-
tives can include financial assistance,
early experimentation with a new COTS
vendor’s capabilities, and sponsored
COTS product extensions or technology
upgrades. Further protect yourself by
negotiating and documenting critical
vendor support agreements. You can
establish a “no surprises” relationship
with vendors by determining, in advance,
exactly what’s expected of both parties.

Sources and Resources
The best source I know for COTS integration information is the CMU Software

Engineering Institute’s Web page on its COTS-Based Systems (CBS) initiative at
http://www.sci.cmu.edu/cbs/cbs_description.html.  The USC-CSE Web page for
the Constructive COTS Integration (COCOTS) cost estimation model has point-
ers to numerous COTS integration information sources. It’s at http://sunset.
usc.edu/COCOTS/cocots.html.

The following five major recent books on software reuse offer valuable per-
spectives on integrating reusable components in general, of which COTS is a 
special case.

I. Jacobson, M. Griss, and P. Jonsson, Software Reuse, Addison Wesley
Longman, Reading, Mass., 1997.

W. Lim, Managing Software Reuse, Prentice Hall, Upper Saddle River, N.J., 1998.
J. Poulin, Measuring Software Reuse, Addison Wesley Longman, Reading,

Mass., 1997.
D. Reifer, Practical Software Reuse, John Wiley & Sons, New York, 1997.
W. Tracz, Confessions of a Used Program Salesman: Institutionalizing Software

Reuse, Addison Wesley Longman, Reading, Mass., 1995.

The Lim and Reifer books offer the most COTS-specific insights.
The upcoming 1999 International Conference on Software Engineering (ICSE

’99) in Los Angeles, May 16-22, 1999, includes a COTS Integration industry expe-
rience session that features Lockheed Martin’s Dorothy McKinney and Texas
Instruments’ Marie Silverthorn, with the SEI’s Tricia Oberndorf as discussant.
Among ICSE ’99’s architecture experience case studies is an insightful paper by
David Barstow on how his sports information software’s architecture evolved in
response to the rapid evolution of Netscape and related COTS products.  The
associated Symposium on Software Reuse, May 21-23, will have a specific reuse
focus that includes COTS integration.  See the ICSE ’99 Web site at http://
sunset.usc.edu/icse99/index.html.

.
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BUNDLES TRADING
Integrated products pose a different

kind of problem, namely how to facili-
tate trading products that themselves
include a wide range of products and ser-
vices. Popular online auctions have
opened the possibility of trading with a
large number of suppliers and buyers,
but auctions are normally organized
around a specific product. A buyer
searching for a combination of products
must make, monitor, and manage bids in
an equal number of Web pages dealing
with each item. When several products
are offered as a lot, the problem of
matching buyers and sellers becomes
even more complicated.

A technological solution to bundles
trading is to provide an auction that lets
buyers and sellers trade any number of
goods in any combination. In essence, the
desired auction mechanism must unbun-
dle and rebundle offers and bids presented
by both sellers and buyers. A prototype
of such a mechanism is the Financial
Bundle Trading System, being developed
at the Center for Research in Electronic
Commerce (http://crec.bus.utexas.edu).
Alternatively, third-party intermediaries
may provide an agent-based solution to
trading bundles. Like a travel agent, an
intermediary can assemble a package of
products and services to match a cus-
tomer’s need. Because of integrated prod-
ucts, intermediaries and agent-based
service providers will likely play a greater
role in electronic commerce.

T he trend toward integrated products
and customization is only one of the
elements shaping the nature of a

networked economy. However, this trend

illustrates another dimension of the need
for interoperability.

To facilitate integrated production,
trading, and consumption of digital
products and services, computing and
networking technologies must be inter-
operable with smart products, Web
pages, payment systems, and user inter-
faces based on different computing plat-
forms as well as on different user needs
and preferences. Those developing the
next generations of HTML, agent soft-
ware, mobile networks, and smart-card
applications should also be aware of how
technologies change the characteristics of
both products and consumption behav-
iors.

Equally critical is the need to update
economic analysis and modeling to keep
pace with technological developments
that have created new products and
unconventional markets. We have begun
to regard the Internet-enabled markets as
a distinct economy with a slew of new
challenges for economists. (See Andrew
B. Whinston, Dale O. Stahl, and Soon-
Yong Choi, The Economics of Electronic
Commerce, Macmillan, 1997.)

The inadequacy of a conventional
antitrust approach in dealing with
Microsoft shows how the digital econ-
omy presents different challenges from
the familiar physical markets. Underlying
these challenges is the fact that technolo-
gies and economic behaviors have never
been integrated to the degree we now see
in electronic commerce. These challenges
will only intensify with the next genera-
tion of Web technologies. ❖

Soon-Yong Choi is assistant director of
the Center for Research in Electronic
Commerce in the Graduate School of
Business at the University of Texas,
Austin. Contact him at soon@mail.
utexas.edu.

Andrew B. Whinston is director of the
Center for Research in Electronic Com-
merce and the Hugh Roy Cullen Profes-
sor of Information Systems, Economics,
Computer Science, and Library and
Information Sciences at the University of
Texas, Austin. Contact him at abw@uts.
cc.utexas.edu.

We need to update
economic analysis and 
modeling to keep pace 

with technological 
developments that have

created new products and
unconventional markets.

B y accelerating the speed with which
new software products can reach
their users, while simultaneously

offsetting up-front development costs,
COTS products have become an increas-
ingly attractive option for budget-
conscious software developers. But these
advantages bear a sometimes hidden price
tag. In the short term, differences between
the underlying design of an organization’s
internally developed software and that of
the COTS products it chooses to integrate
with that software can cause unforeseen
problems. In the long term, fluctuating
COTS developer support and the unpre-
dictable evolution of the COTS product
itself can hobble any organization that
incorporates that product into its soft-
ware, crippling the hybrid system or even
rendering it completely unusable.

To guard against such grim situations,
approach any COTS integration project
clear-eyed and wary. By following the
recommendations we’ve given in this
article, you can go a long way toward
maximizing COTS’ advantages and pro-
tecting yourself against its more expen-
sive dangers. ❖

Barry Boehm developed the Constructive
Cost Model (Cocomo), the software
process Spiral Model, and the Theory W
(win-win) approach to software manage-
ment and requirements determination.

Chris Abts is developing the constructive
COTS Integration (COCOTS) cost mo-
del. Contact him at cabst@sunset.usc.edu.
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Software Engineering
Metrics for COTS-
Based Systems

T
he paradigm shift to commercial off-the-shelf
components appears inevitable, necessitat-
ing drastic changes to current software devel-
opment and business practices. Quality and
risk concerns currently limit the application

of COTS-based system design to noncritical applica-
tions. New approaches to quality and risk manage-
ment will be needed to handle the growth of CBSs. 

Our metrics-based approach and software engi-
neering metrics can aid developers and managers in
analyzing the return on investment in quality improve-
ment initiatives for CBSs. These metrics also facilitate
the modeling of cost and quality, although we need
more complex models to capture the intricate rela-
tionships between cost and quality metrics in a CBS.

COTS COMPONENTS
With software development proceeding at Internet

speed, in-house development of all system components
may prove too costly in terms of both time and money.
Large-scale component reuse or COTS component
acquisition can generate savings in development
resources, which can then be applied to quality improve-
ment, including enhancements to reliability, availabil-
ity, and ease of maintenance.

Prudent component deployment can also localize
the effects of changes made to a particular portion of
the application, reducing the ripple effect of system
modifications. This localization can increase system
adaptability by facilitating modifications to system
components or integration code, which are neces-
sary for conforming to changes in requirements or
system design.

COTS component acquisition can reduce time to
market by shifting developer resources from compo-
nent-level development to integration. Increased mod-
ularity also facilitates rapid incremental delivery,
allowing developers to release modules as they inte-
grate them and offer product upgrades as various com-
ponents evolve. 

These advantages bring related disadvantages,
including integration difficulties, performance con-
straints, and incompatibility among products from dif-
ferent vendors. Further, relying on COTS components
increases the system’s vulnerability to risks arising
from third-party development, such as vendor
longevity and intellectual-property procurement.
Component performance and reliability also vary
because component-level testing may be limited to
black-box tests, and inherently biased vendor claims
may be the only source of information.1

Such issues limit COTS component use to noncrit-
ical systems that require low to moderate quality.
Systems that require high quality cannot afford the
risks associated with employing these components.

METRICS FOR COTS-BASED SYSTEMS
In deciding between in-house development and

COTS component acquisition, software engineers
must consider the anticipated effect on system qual-
ity. We can define software quality in several ways:

• satisfaction level—the degree to which a software
product meets a user’s needs and expectations;

• a software product’s value relative to its various
stakeholders and its competition;

The growing reliance on commercial off-the-shelf components for large-
scale projects emphasizes the need for adequate metrics to quantify 
component quality. 
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• the extent to which a software product exhibits
desired properties;

• the degree to which a software product works
correctly in the environment it was designed for,
without deviating from expected behavior; and

• the effectiveness and correctness of the process
employed in developing the software product.2

Quality factors and quality metrics
Norman Schneidewind discusses quality in terms of

quality factors and quality metrics.3 He defines a qual-
ity factor as “an attribute of software that contributes
to its quality, where quality is the degree to which soft-
ware meets customer or user needs or expectations.”
For example, Schneidewind mentions reliability as a
quality factor. Direct measurement of quality factors
is generally not feasible, so we often measure them indi-
rectly—for example, by counting the number of fail-
ures reported for a particular module.

Schneidewind defines a quality metric as “a func-
tion whose inputs are software data and whose out-
put is a single numerical value that can be interpreted
as the degree to which software possesses a given
attribute that may affect its quality.” In contrast with
quality factors, which are user-oriented, quality met-
rics are developer-oriented because developers can use
them to estimate quality at a very early stage in the
software development process. Before using metrics
for design or integration decisions, software engineers
should validate them, establishing a statistical rela-
tionship between metrics and quality factors and
ensuring that the metrics provide a correct estimate
of the attribute visible to the user.

In addition to traditional software metrics, COTS-
based systems require metrics that capture attributes
such as integration complexity and performance.
Combining component-level metrics to obtain system-
level indicators of quality is a challenging issue that is
further complicated by COTS components’ black-box
nature, which masks their internal workings and
restricts system developers to accessing their interfaces. 

To be thorough, we should test the operational pro-
files of both the COTS components with respect to
both their own operational profiles and that of the
overall system. But when inaccessibility of the source
code for some components prevents such compre-
hensive testing, we can use metrics to guide the soft-
ware development process. In addition to metrics data,
certain aspects of the software product impact and
guide software development decisions: 

• the system’s expected functionality and the cus-
tomer’s requirements;

• the makeup of the various organizations involved
in the project and the level of maturity and capa-
bilities of the participating teams;

• the developers’ use of innovative processes
and the methods they adopt as a part of
the software engineering environment to
manage cost and value, including details
of development process models such as the
waterfall or spiral models; and

• features of the preexisting COTS compo-
nents that the system will use.

Risk management
The unpredictable quality of third-party soft-

ware creates a unique set of risks for software
systems using COTS components. The CBS
development process, then, should include risk man-
agement, which identifies high-risk items that can
jeopardize system quality and attempts to resolve
them as early as possible to ensure high quality and
rapid delivery. The two major steps in risk manage-
ment are

• risk assessment: assess the probability and mag-
nitude of loss for each risk item and prioritize
risk items according to their expected loss; and 

• risk control: generate and execute plans to resolve
the risk items.

Developers apply these two steps repeatedly through-
out the software development life cycle.4 

In CBSs, risk management focuses on evaluating
alternative components that meet system require-
ments, either selecting the component that fits best or
choosing in-house development. In either of these
tasks, developers or integrators can decide to relax
the requirements to allow a particular choice, using
risk management to determine the extent of tolerable
relaxation.5

Risk and quality-management metrics
Metrics can guide risk and quality management,

helping to reduce risks encountered during planning
and execution of software development, resource
and effort allocation, scheduling and execution, and
product evaluation.4 Risks can include performance
issues, reliability, adaptability, and return on invest-
ment. Risk reduction can take many forms, such as
using component wrappers or middleware, replac-
ing components, relaxing system requirements, or
even issuing legal disclaimers for certain failure-
prone software features. Metrics let developers iden-
tify and isolate these risks, then take corrective
action.

The key to success is selecting appropriate metrics—
especially metrics that provide measures applicable
over the entire software cycle and that address both
software processes and products. In choosing metrics,
developers should consider several factors:
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• the intended use of the metrics data;
• the metrics’ usefulness and cost-effectiveness;
• the application’s functional characteristics, phys-

ical composition, and size;
• the installation platform;
• the software engineering environment of the

development phase;
• the software engineering environment of the inte-

gration phase; and
• the software development or maintenance life-cycle

stage of both the components and the system.6

Table 1 shows our set of 13 system-level metrics for
CBS software engineering. These metrics help man-
agers select appropriate components from a reposi-
tory of software products and aid in deciding between
using COTS components or developing new compo-
nents. The primary considerations are cost, time to
market, and product quality.

We can divide these metrics into three categories:
management, requirements, and quality. 

Management. These metrics include cost, time to
market, system resource utilization, and software
engineering environment. Developers can use man-

agement metrics for resource planning or other man-
agement tasks or for enterprise resource planning
applications. 

• The cost metric measures the overall expenses
incurred during the course of software develop-
ment. These expenses include the costs of com-
ponent acquisition and integration and quality
improvements to the system. 

• The time-to-market metric measures the time
needed to release the product, from the begin-
ning of development and COTS component
acquisition to delivery. A modified version of this
metric can evaluate the speed of incremental
delivery, measuring the amount of time required
to deliver a certain fraction of the overall appli-
cation functionality. 

• The software engineering environment metric
measures the capability of producing high-quality
software and can be expressed in terms of 
the Software-Acquisition Capability Maturity
Model.7

• System resource utilization determines the per-
centage of target computer resources the system
will consume.

Requirements. Developers use requirements metrics
to measure the CBS’s conformance and stability so
they can monitor specifications, translations, and
volatility, as well as the level of adherence to the
requirements. COTS components are often unstable,
and component-level stability can affect requirements
stability if developers adapt requirements to incor-
porate changes to selected components.

Quality. These metrics include adaptability, com-
plexity of interfaces and integration, integration test
coverage, end-to-end test coverage, reliability, and
customer satisfaction. 

• Adaptability measures a system’s flexibility, eval-
uating its ability to adapt to requirements
changes, whether as a result of system redesign
or to accommodate multiple applications. 

• Complexity of interfaces and integration provides
an estimate of the complexity of interfaces, mid-
dleware, or glue code required for integrating dif-
ferent COTS products. Overly complex interfaces
complicate testing, debugging, and maintenance,
and they degrade the system’s quality.

• Integration test coverage and end-to-end test cov-
erage indicate the fraction of the system’s func-
tionality that has completed those tests, as well
as the effort testing requires.8 Developers can use
known measures to evaluate coverage, such as
statement or path coverage, depending on the
level of access to system source code.

Table 1. System-level metrics for component-based systems.

Category Metric Evaluates or measures  
Management Cost Total software development expendi-

ture, including costs of component 
acquisition, integration, and quality 
improvement 

Time to market Elapsed time between development start
and component acquisition to software 
delivery 

Software engineering Capability and maturity of the environ-
environment ment in which the software product is 

developed 
System resource Use of target computer resources as a
utilization percentage of total capacity 

Requirements Requirements Adherence of integrated product to
conformance defined requirements at various levels 

of software development and integration
Requirements stability Level of changes to established soft- 

ware requirements 

Quality Adaptability Integrated system’s ability to adapt to 
requirements changes 

Complexity of interfaces Component interface and middleware or
and integration integration code complexity 

Integration test Fraction of the system that has under-
coverage gone integration testing satisfactorily 

End-to-end test Fraction of the system’s functionality 
coverage that has undergone end-to-end testing 

satisfactorily  
Fault profiles Cumulative number of detected faults 
Reliability Probability of failure-free system opera-

tion over a specified period of time 
Customer satisfaction Degree to which the software meets 

customer expectations and requirements



• Reliability estimates the probability of fault-free
system operation over a specified period of time.
To obtain this metric, developers use techniques
similar to the techniques they use in traditional
systems, including fault injection into the inte-
gration code. 

• Customer satisfaction evaluates how well the
software meets customer expectations and
requirements. Beta releases can help estimate pre-
dictors of customer satisfaction before final prod-
uct delivery. Sample predictors include schedule
requirements, management maturity, customer
culture, marketplace trends, and the customer’s
proficiency. Such estimates can guide develop-
ment decisions such as release scheduling and can
aid in developing a test plan that accurately
reflects the product’s field use.

CBS metrics differ from traditional metrics in that
they do not depend on the components’ code size,
which is generally not known. If developers require a
size measure, they can use alternate measures such as
the number of use cases—business tasks the applica-
tion performs—that a given component supports. 

CBS metrics also approach time to market differ-
ently. Component acquisition changes the concept of
time to market because developers may not know the
component development time and cannot incorporate
it into time calculations. For CBSs, a simple delivery
rate measure can replace the time-to-market measure.
One proposed measure divides the number of use
cases by the elapsed time in months.9

Because our metrics are interdependent, under-
standing the relationships between them can aid deci-
sion making regarding CBS quality-improvement
investments. The most obvious relationship is between
cost and quality metrics, such as reliability. However,
more subtle relationships exist, such as among time to
market, test coverage, and reliability. Delayed product
release because of testing and debugging can result in
reduced revenues or, in extreme cases, loss of the mar-
ket to a competitor with an earlier release. On the other
hand, premature product release can lead to lower reli-
ability. Understanding the relationships among time to
market, test coverage, and reliability can help in select-
ing a suitable release schedule.

Developers can combine the cost metric and the sys-
tem resource utilization metric to determine whether
the budget allows purchasing additional computer
resources that will enhance the product’s quality.
Another effective strategy involves using the software
engineering environment in conjunction with the qual-
ity metrics to encourage vendors to improve their soft-
ware development process and adhere to standards,
thus increasing the likelihood that users will select
their component. 

COST OF QUALITY
The cost of quality (CoQ) represents the resources

dedicated to improving the quality of the product
being developed. For example, increasing or main-
taining reliability incurs costs that can be considered
the costs of reliability. The overall CoQ is the sum of
such costs plus other costs that we cannot directly
attribute to factors that quality metrics measure.
Quality costs, then, represent “the difference between
the actual cost of a product or service and what the
reduced cost would be if there were no possibility of
substandard service, failure of products, or defects in
their manufacture.”2

We concern ourselves with the cost of software qual-
ity (CoSQ) metric—corresponding to the cost metric
in Table 1—which we divide into two major types: cost
of conformance and cost of nonconformance. 

The cost of conformance derives from the amount
the developer spends on attempts to improve quality.
We can further divide conformance costs into preven-
tion and appraisal costs. Projects incur prevention costs
during activities targeted at preventing defects, such as
training costs, software design reviews, and formal qual-
ity inspections. Likewise, activities that involve mea-
suring, evaluating, or auditing products to assure con-
formance to quality standards and performance incur
appraisal costs. These activities include code inspections,
testing, quality audits, and software measurement activ-
ities such as metrics collection and analysis. 

The cost of nonconformance includes all expenses
the developer incurs when the system does not oper-
ate as specified. Internal failure costs stem from non-
conformance occurring before the product ships to
the customer, such as the costs of rework in pro-
gramming, defect management, reinspection, and
retesting. External failure costs arise from product
failure after delivery to the customer. Examples
include technical support, maintenance, remedial
upgrades, liability damages, and litigation expenses. 

Table 2 shows the various categories of software
quality costs for CBSs.
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Table 2. Software quality cost categories.

Category Typical costs of CBS software quality  
Appraisal costs Integration or end-to-end testing, quality audits, 

component evaluation, metrics collection, and 
analysis 

Prevention costs Training, software design reviews, process studies,
component upgrades 

Internal failure costs Defect management, design and integration rework,
component replacement, requirement relaxation 

External failure costs Technical support, maintenance, defect 
notification, remedial component upgrade or 
replacement
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CoQ and CoSQ models
In any development process, models that depict the

relationship between costs and quality can guide deci-
sions regarding investments in quality improvement.
Discussions of such models in the economics and man-
agement literature generally depict a nonlinear rela-
tionship between CoQ and quality.2 Accurate
cost-quality models can be invaluable to managers and
developers, guiding resource and cost management
and other aspects of the software development
process.

Figure 1a depicts the classic model of optimum
quality costs. In this model, which shows the rela-
tionship between the cost per good unit of product
and the quality of conformance, expressed as a per-
centage of total conformance, prevention and
appraisal costs rise asymptotically as the product
achieves complete conformance. 

Recent technological developments inspired a
revised model that reflects the ability to achieve very
high quality, or “perfection,” at finite costs. Shown in
Figure 1b, this model, proposed by Frank Gryna, has
two key concepts:

• moderate investments in quality improvement
result in a significant decrease in the cost of non-
conformance, and 

• focusing on quality improvement by defect pre-
vention results in an overall decrease in the cost
of testing and related appraisal tasks.

We can analyze these models in terms of our pro-
posed quality metrics. The quality of conformance
in the original model can represent one quality met-

ric, such as adaptability or reliability. Accordingly,
the vertical axis represents a CoSQ component—
namely, the portion of quality costs dedicated to
improving the particular quality factor. Intuitively,
the same nonlinear relationship should hold.
Increasing the investment in improving a certain
quality factor should increase the value of the corre-
sponding metric, and the amount of this increase
should taper off as the product achieves high quality
levels. “Perfect” quality may not be achievable at
finite costs, particularly in CBSs, where we cannot
accurately determine the quality and performance of
the COTS components. 

Although we may be able to determine the overall
CoQ with reasonable accuracy, determining the
amount dedicated to improving a particular quality
factor is difficult because all factors interrelate. For
quality metrics such as customer satisfaction, the rela-
tionship between cost and quality may be too com-
plex for such a simple model, as increased investments
in quality improvement may be invisible to the cus-
tomer. For example, users may find 95 percent relia-
bility satisfactory, making further investments in
reliability pointless. Further, customer satisfaction may
increase in jumps, resulting in a discontinuous cost-
quality curve, although empirical studies should ver-
ify this behavior.

Capability maturity models
Quality improvement’s return on investment depends

on the software engineering environment. Stephen
Knox discusses the cost of software quality based on
the Software Capability Maturity Model.10 The SW-
CMM maintains that a software development envi-
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ronment has a measurable process capability analogous
to industrial processes. The SW-CMM quantifies the
capability and maturity of the software development
process using five levels, ranging from a chaotic, ad hoc
development environment to one that is mature and
optimizing. These levels can also express the software
engineering environment metric we propose. Based on
the data presented, Knox makes two assumptions:

• The total cost of quality at SW-CMM Level 1
equals approximately 60 percent of the total cost
of development. 

• The total cost of quality will decrease by approx-
imately two-thirds as the development process
reaches SW-CMM Level 5, or full maturity. 

Figure 2 shows the various software cost-of-quality
categories, as well as the total cost of software qual-
ity, according to Knox, for the five SW-CMM levels.

A combination of Knox’s model and traditional
models provides a more accurate view of the CoQ in
CBSs. A three-dimensional model based on CoQ,
quality, and the software engineering environment can
help determine financially sound investments in qual-
ity, based on the development environment. In the case
of CBSs, where different vendors can have widely
varying software engineering environments, such a
model can help guide the vendor-selection process.

In place of Knox’s SW-CMM levels, we can use the
Software Acquisition Environment CMM to express
the software engineering environment.7 The levels of
acquisition maturity range from Initial, at Level 1, to
Optimizing, at Level 5. This model defines key process
areas for Levels 2 through 5, in which a key process
area states the goals the software must satisfy to
achieve each level of maturity. SA-CMM and SW-
CMM share a synergistic relationship, and we can use
them in parallel by defining a software engineering
environment metric with two weighted components,
one corresponding to each CMM.

Applying the metrics
One objective of evaluating costs of quality is to

determine ways to reduce them. A basic method
involves investing in prevention costs, with the goal
of eliminating nonconformance costs. As confidence
in system quality increases, we can afford reductions
in appraisal costs, leading to a reduction in total CoQ. 

We can approach investments in quality improve-
ment from the perspective of return on investment and
increased conformance to requirements such as relia-
bility,11 then use the metrics to evaluate the actual
quality improvement achieved as a result of a partic-
ular investment in software quality improvement.

Cost-benefit analysis of traditional software sys-
tems concludes that quality improvements yield the

greatest returns early in the life cycle.11 In CBSs, we
cannot make quality improvements during the early
stages of the acquired components’ development. To
compensate for this drawback, we must spread qual-
ity improvement efforts through the various stages of
system design and development. In the design phase,
such initiatives include 

• identifying cost factors and cost-benefit analyses
that address the unique risks associated with
CBSs, 

• determining the level of architectural match
between the application and the COTS compo-
nents, and 

• evaluating the complexity and cost associated
with integration, interoperability, and middle-
ware development. 

Our metrics can help decide between in-house
development and COTS acquisition and, if the latter,
how to select the most suitable component. In the
development phase, metrics can help estimate the costs
associated with the traditional development process.
During the entire life cycle, metrics can guide the esti-
mation of costs associated with the unique testing
requirements of COTS-based systems, such as inte-
gration testing, end-to-end testing, and thread testing.
After delivery, we can use cost metrics for trend analy-
sis of the COTS market.

I n the cost-benefit analysis of CBSs, we must avoid
premature judgment, as the benefits of COTS com-
ponent acquisition may materialize gradually. The

paradigm shift from conventional to COTS-based
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software engineering requires a considerable initial
investment. Short-term analysis results may favor in-
house development over COTS component acquisi-
tion, which argues for considering the software life
cycle and level of reuse when making such decisions.12

COTS products change rapidly, with long-term
effects, and research on CBS development is still in
the early stages. Given that cost-effectiveness and
quality are the two major factors in deciding for or
against component acquisition, we face an urgent
need for empirical and analytical research that will
lead to more accurate models of cost and quality in
CBSs. ✸
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FAMOUS FAILURES

ABSTRACT

Requirements Development, Requirements Verification, Requirements Validation, System
Verification, and System Validation are important systems engineering tasks. This paper
describes these tasks and then discusses famous systems where these tasks were done
correctly and incorrectly. This paper shows examples of the differences between developing
requirements, verifying requirements, validating requirements, verifying a system, and vali-
dating a system. Understanding these differences may help increase the probability of
success of future system designs. © 2004 Wiley Periodicals, Inc. Syst Eng 8: 1–14, 2005

Key words: design; inspections; case studies

1. INTRODUCTION

Requirements Development, Requirements Verifica-
tion, Requirements Validation, System Verification and
System Validation are important tasks. This paper starts

with a definition and explanation of these terms. Then
it gives two dozen examples of famous system failures
and suggests the mistakes that might have been made.
These failures are not discussed in detail: The purpose
is not to pinpoint the exact cause of failure, because
these systems were all complex and there was no one
unique cause of failure. The systems are discussed at a
high level. The explanations do not present incontro-
vertible fact; rather they represent the consensus of
many engineers and they are debatable. These explana-
tions are based on many papers, reports, and movies
about these failures and discussion of these failures in
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many classes and seminars since 1997. It is hoped that
the reader will be familiar with enough of these systems
to be able to apply the concepts of requirements devel-
opment, verification and validation to some of these
systems without an extensive learning curve about the
details of the particular systems. When used in classes
and seminars, this paper has been given to the students
with a blank Table II. The students were asked to read
this paper and then Table II was discussed row by row.

2. REQUIREMENTS DEVELOPMENT

A functional requirement should define what, how well,
and under what conditions one or more inputs must be
converted into one or more outputs at the boundary
being considered in order to satisfy the stakeholder
needs. Besides functional requirements, there are doz-
ens of other types of requirements [Bahill and Dean,
1999]. Requirements Development includes (1) elicit-
ing, analyzing, validating, and communicating stake-
holder needs, (2) transforming customer requirements
into derived requirements, (3) allocating requirements
to hardware, software, bioware, test, and interface ele-
ments, (4) verifying requirements, and (5) validating
the set of requirements. There is no implication that
these five tasks should be done serially, because, like all
systems engineering processes, these tasks should be
done with many parallel and iterative loops.

There is a continuum of requirement levels as more
and more detail is added. But many systems engineers
have been dividing this continuum into two categories:
high-level and low-level. High-level requirements are
described with words like customer requirements, top-
level requirements, system requirements, operational
requirements, concept of operations, mission state-
ment, stakeholder needs, stakeholder expectations, con-
straints, external requirements, and what’s. Low-level
requirements are described with words like derived
requirements, design requirements, technical require-
ments, product requirements, allocated requirements,
internal requirements, and how’s. Some of these terms
have different nuances, but they are similar. In this
paper, we will generally use the terms high-level and
low-level requirements, and we will primarily discuss
high-level requirements.

3. VERIFICATION AND VALIDATION

Because the terms verification and validation are often
confused, let us examine the following definitions:

Verifying requirements: Proving that each require-
ment has been satisfied. Verification can be done

by logical argument, inspection, modeling, simu-
lation, analysis, expert review, test or demonstra-
tion.

Validating requirements: Ensuring that (1) the set
of requirements is correct, complete, and consis-
tent, (2) a model can be created that satisfies the
requirements, and (3) a real-world solution can
be built and tested to prove that it satisfies the
requirements. If Systems Engineering discovers
that the customer has requested a perpetual-mo-
tion machine, the project should be stopped.

Verifying a system: Building the system right: en-
suring that the system complies with the system
requirements and conforms to its design.

Validating a system: Building the right system:
making sure that the system does what it is sup-
posed to do in its intended environment. Valida-
tion determines the correctness and completeness
of the end product, and ensures that the system
will satisfy the actual needs of the stakeholders.

There is overlap between system verification and
requirements verification. System verification ensures
that the system conforms to its design and also complies
with the system requirements. Requirements verifica-
tion ensures that the system requirements are satisfied
and also that the technical, derived, and product require-
ments are verified. So checking the system requirements
is common to both of these processes.

There is also overlap between requirements valida-
tion and system validation. Validating the top-level
system requirements is similar to validating the system,
but validating low-level requirements is quite different
from validating the system.

Many systems engineers and software engineers use
the words verification and validation in the opposite
fashion. So, it is necessary to agree on the definitions
of verification and validation.

The Verification (VER) and Validation (VAL) proc-
ess areas in the Capability Maturity Model Integration
(CMMI) speak of, respectively, verifying requirements
and validating the system. Validation of requirements is
covered in Requirements Development (RD) Specific
Goal 3 [http://www.sei.cmu.edu/cmmi/; Chrissis, Kon-
rad and Shrum, 2003]. The CMMI does not explicitly
discuss system verification.

3.1. Requirements Verification

Each requirement must be verified by logical argument,
inspection, modeling, simulation, analysis, expert re-
view, test, or demonstration. Here are some brief dic-
tionary definitions for these terms:

Logical argument: a series of logical deductions
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Inspection: to examine carefully and critically, espe-
cially for flaws

Modeling: a simplified representation of some as-
pect of a system

Simulation: execution of a model, usually with a
computer program

Analysis: a series of logical deductions using mathe-
matics and models

Expert review: an examination of the requirements
by a panel of experts

Test: applying inputs and measuring outputs under
controlled conditions (e.g., a laboratory environ-
ment)

Demonstration: to show by experiment or practical
application (e. g. a flight or road test). Some
sources say demonstration is less quantitative
than test.

Modeling can be an independent verification tech-
nique, but often modeling results are used to support
other techniques.

Requirements verification example 1: The prob-
ability of receiving an incorrect bit on the telecommu-
nications channel shall be less than 0.001. This
requirement can be verified by laboratory tests or dem-
onstration on a real system.

Requirements verification example 2: The prob-
ability of loss of life on a manned mission to Mars shall
be less than 0.001. This certainly is a reasonable re-
quirement, but it cannot be verified through test. It
might be possible to verify this requirement with analy-
sis and simulation.

Requirements verification example 3: The prob-
ability of the system being canceled by politicians shall
be less than 0.001. Although this may be a good require-
ment, it cannot be verified with normal engineering test
or analysis. It might be possible to verify this require-
ment with logical arguments.

3.2. Requirements Validation

Validating requirements means ensuring that (1) the set
of requirements is correct, complete, and consistent, (2)
a model that satisfies the requirements can be created,
and (3) a real-world solution can be built and tested to
prove that it satisfies the requirements. If the require-
ments specify a system that reduces entropy without
expenditure of energy, then the requirements are not
valid and the project should be stopped.

Here is an example of an invalid requirements set for
an electric water heater controller.

If 70° < Temperature < 100°, then output 3000 Watts.

If 100° < Temperature < 130°, then output 2000
Watts.

If 120° < Temperature < 150°, then output 1000
Watts.

If 150° < Temperature, then output 0 Watts.

This set of requirements is incomplete, what should
happen if Temperature < 70°? This set of requirements
is inconsistent, what should happen if Temperature =
125°? These requirements are incorrect because units
are not given. Are those temperatures in degrees Fahr-
enheit or Centigrade?

Of course, you could never prove that a requirements
set was complete, and perhaps it would be too costly to
do so. But we are suggesting that many times, due to
the structure of the requirements set, you can look for
incompleteness [Davis and Buchanan, 1984].

Detectable requirements-validation defects include
(1) incomplete or inconsistent sets of requirements or
use cases, (2) requirements that do not trace to top-level
requirements [the vision statement or the Concept of
Operation (CONOPS)], and (3) test cases that do not
trace to scenarios (use cases).

At inspections, the role of Tester should be given an
additional responsibility, requirements validation.
Tester should read the Vision and CONOPS and specifi-
cally look for requirements-validation defects such as
these.

3.3. System Verification and Validation

One function of Stonehenge on Salisbury Plain in Eng-
land might have been to serve as a calendar to indicate
the best days to plant crops. This might have been the
first calendar, and it suggests the invention of the con-
cept of time. Inspired by a visit to Stonehenge, Bahill
built an Autumnal Equinox sunset-sight on the roof of
his house in Tucson.

Bahill now wants verification and validation docu-
ments for this solar calendar, although he should have
worried about this before the hardware was built. This
system fails validation. He built the wrong system. The
people of England must plant their crops in the early
spring. They need a Vernal Equinox detector, not an
Autumnal Equinox detector. The ancient ones in Tuc-
son needed a Summer Solstice detector, because all of
their rain comes in July and August. System validation
requires consideration of the environment that the sys-
tem will operate in.

In 3000 B.C., the engineers of Stonehenge could
have verified the system by marking the sunset every
day. The solstices are the farthest north and south (ap-
proximately). The equinoxes are about midway be-
tween the solstices and are directly east and west. In the
21st century, residents of Tucson could verify the sys-

                                           FAMOUS FAILURES  3



tem by consulting a calendar or a farmer’s almanac and
observing the sunset through this sight on the Autumnal
Equinox next year. If the sunset is in the sight on the
day of the Autumnal Equinox, then the system was built
right. When archeologists find Bahill’s house 2000
years from now, he wants them to ask, “What do these
things do?” and “What kind of people built them?”

System-validation artifacts that can be collected at
discrete gates include white papers, trade studies, phase
reviews, life cycle reviews, and red team reviews. These
artifacts can be collected in the proposal phase, at the
systems requirements review (SRR), at the preliminary
design review (PDR), at the critical design review
(CDR), and in field tests.

System-validation artifacts that can be collected
continuously throughout the life cycle include results of
modeling and simulation and the number of operational
scenarios (use cases) modeled.

Detectable system-validation defects include (1) ex-
cessive sensitivity of the model to a particular parameter
or requirement, (2) mismatches between the
model/simulation and the real system, and (3) bad de-
signs.

At inspections, the role of Tester should be given an
additional responsibility, system validation. Tester
should read the Vision and CONOPS and specifically
look for system-validation artifacts and defects such as
these.

A very important aspect of system validation is that
it occurs throughout the entire system life cycle. You
should not wait for the first prototype before starting
validation activities.

3.4. External Verification and Validation

System verification and validation activities should
start in the proposal phase. Verification and validation
are continuous processes that are done throughout the
development life cycle of the system. Therefore,
most of theses activities will be internal to the com-
pany. However, it is also important to have external
verification and validation. This could be done by an
independent division or company. External verifica-
tion and validation should involve system usage by
the customer and end user in the system’s intended
operating environment. This type of external verifi-
cation and validation would not be done throughout
the development cycle. It would not occur until at
least a prototype was available for testing. This is one
of the reasons the software community emphasizes
the importance of developing prototypes early in the
development process.

4. FAMOUS FAILURES

We learn from our mistakes. In this section, we look at
some famous failures and try to surmise the reason for
the failure so that we can ameliorate future mistakes. A
fault is a defect, error, or mistake. One or many faults
may lead to a failure of a system to perform a required
function [www.OneLook.com]. Most well-engineered
systems are robust enough to survive one or even two
faults. It took three or more faults to cause each failure
presented in this paper. System failures are prevented
by competent and robust design, oversight, test, redun-
dancy, and independent analysis. In this paper, we are
not trying to find the root cause of each failure. Rather
we are trying to illustrate mistakes in developing re-
quirements, verifying requirements, validating require-
ments, verifying a system, and validating a system.
Table I shows the failures we will discuss.

HMS Titanic had poor quality control in the manu-
facture of the wrought iron rivets. In the cold water of
April 14, 1912, when the Titanic hit the iceberg, many
rivets failed and whole sheets of the hull became unat-
tached. Therefore, verification was bad, because they
did not build the ship right. An insufficient number of
lifeboats was a requirements development failure.
However, the Titanic satisfied the needs of the ship
owners and passengers (until it sank), so validation was
OK [Titanic, 1997]. These conclusions are in Table II.

The Tacoma Narrows Bridge was a scaleup of an
old design. But the strait where they built it had strong
winds: The bridge became unstable in these crosswinds
and it collapsed. The film of its collapse is available on
the Web: It is well worth watching [Tacoma-1 and
Tacoma-2]. The design engineers reused the require-
ments for an existing bridge, so these requirements
were up to the standards of the day. The bridge was built
well, so verification was OK. But it was the wrong
bridge for that environment, a validation error. [Billah
and Scanlan, 1991].

The Edsel automobile was a fancy Ford with a
distinct vertical grille. The designers were proud of it.
The requirements were good and they were verified.
But the car didn’t sell, because people didn’t want it.
Previous marketing research for the Thunderbird was
successful, but for the Edsel, management ignored mar-
keting. Management produced what management
wanted, not what the customers wanted, and they pro-
duced the wrong car [Edsel].

In Vietnam, our top-level requirement was to con-
tain Communism. This requirement was complete, cor-
rect, and feasible. However, we had no exit criteria, and
individual bombing runs were being planned at a dis-
tance in Washington DC. Our military fought well and
bravely, so we fought the war right. But it was the wrong
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war. We (in Bahill’s opinion) should not have been
there: bad validation.

John F. Kennedy, in a commencement address at
Duke University in 1961, stated the top-level require-
ments for the Apollo Program: (1) Put a man on the
moon (2) and return him safely (3) by the end of the
decade. These and their derived requirements were
right. The Apollo Program served the needs of Ameri-
cans: so, validation was OK. But on Apollo 13, for the
thermostatic switches for the heaters of the oxygen
tanks, they changed the operating voltage from 28 to 65
V, but they did not change the voltage specification or
test the switches. This was a configuration management
failure that should have been detected by verification.
On the other hand, perhaps Apollo 13 was a tremendous
success and not a failure. The lunar module, the astro-
nauts, the backup systems and the backup crew were
robust, so the mission was heroically saved. [Apollo 13,
1995].

The Concorde Supersonic Transport (SST) was de-
signed and built in the 1960s and 1970s by Britain and
France. It flew commercially from 1976 to 2003. The
requirements for the airplane were fine and the airplane
was built well. But we suggest that it fails validation:
because the purpose of a commercial airplane is to
make money,  and  the  Concorde  d id  not .
[http://www.concordesst.com/]. The Concorde was a

success only as a political statement, not as a business
system. Once again, these conclusions are not black and
white. Indeed one of the reviewers of this paper stated,
The Concorde “established a basis of European techni-
cal self confidence that permitted Airbus to erode much
of the US dominance in this field. Thus, it can reason-
ably be argued that the Concorde was a successful
strategic program.”

The IBM PCjr was a precursor to modern laptop
computers, but it was a financial failure. The keyboard
was too small for normal sized fingers. People did not
like them and they did not buy them. Modern laptops
have normal sized keyboards and PDAs have a stylus.
It seems that there is an unwritten requirement that
things designed for fingers should be big enough to
accommodate fingers. They got the requirements
wrong. They build a nice machine with good verifica-
tion. And the success of present day laptops validates
the concept [Chapman, Bahill, and Wymore, 1992: 13].

In 1986, General Electric Co. (GE) engineers said
they could reduce the part count for their new refrig-
erator by one-third by replacing the reciprocating com-
pressor with a rotary compressor. Furthermore, they
said they could make it easier to machine, and thereby
cut manufacturing costs, if they used powdered-metal
instead of steel and cast iron for two parts. However,
powdered-metal parts had failed in their air condition-
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ers a decade earlier [Chapman, Bahill, and Wymore,
1992: 19]

Six hundred compressors were “life tested” by run-
ning them continuously for 2 months under tempera-
tures and pressures that were supposed to simulate 5
years’ actual use. Not a single compressor failed, which
was the good news that was passed up the management
ladder. However, the technicians testing the compres-
sors noticed that many of the motor windings were
discolored from heat, bearing surfaces appeared worn,
and the sealed lubricating oil seemed to be breaking
down. This bad news was not passed up the manage-
ment ladder!

By the end of 1986, GE had produced over 1 million
of the new compressors. Everyone was ecstatic with the
new refrigerators. However, in July of 1987 the first
refrigerator failed; quickly thereafter came an ava-
lanche of failures. The engineers could not fix the
problem. In December of 1987, GE started buying
foreign compressors for the refrigerators. Finally, in the
summer of 1988 the engineers made their report. The
two powdered-metal parts were wearing excessively,
increasing friction, burning up the oil, and causing the
compressors to fail. GE management decided to redes-
ign the compressor without the powdered-metal parts.
In 1989, they voluntarily replaced over 1 million defec-
tive compressors.

The designers who specified the powdered-metal
parts made a mistake, but everyone makes mistakes.

Systems Engineering is supposed to expose such prob-
lems early in the design cycle or at least in the testing
phase. This was a verification failure.

The requirements for the Space Shuttle Challenger
seem to be OK. But the design, manufacturing, testing,
and operation were faulty. Therefore, verification was
bad [Feynman, 1985; Tufte, 1997]. Bahill thinks that
validation was also bad, because putting schoolteachers
and Indian art objects in space does not profit the U.S.
taxpayer. Low temperatures caused the o-rings to leak,
which led to the explosion of Challenger. The air tem-
perature was below the design expectations, and no
shuttle had ever been launched in such cold weather.
The political decision was to launch in an environment
for which the system was not designed, a validation
mistake.

The Chernobyl Nuclear Power Plant was built
according to its design, but it was a bad design: Valida-
tion was wrong. Requirements and verification were
marginally OK, although they had problems such as
poor configuration management evidenced by undocu-
mented crossouts in the operating manual. Human error
contributed to the explosion. Coverup and denial for the
first 36 hours contributed to the disaster. This is our
greatest failure: It killed hundreds of thousands, per-
haps millions, of people. Here are references for the
U.S. Nuclear Regulatory Commission summary [Cher-
nobyl-1], a general web site with lots of other links
[Chernobyl-2], a BBC report [Chernobyl-3], and for
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some photos of what Chernobyl looks like today [Cher-
nobyl-4].

The Marketing Department at the Coca Cola Com-
pany did blind tasting between Coca Cola and Pepsi
Cola. Most of the people preferred Pepsi. So, they
changed Coke to make it taste like Pepsi. This made
Coke more pleasing to the palate, but Coke’s branding
was a much stronger bond. People who liked Coke
would not buy or drink New Coke, and they com-
plained. After 4 months, the company brought back the
original under the name of Classic Coke and finally they
abandoned New Coke altogether. They did the market-
ing survey and found the taste that most people pre-
ferred, so the requirements development was OK. They
manufactured a fine product, so verification was OK.
But they did not make what their customers wanted, a
validation mistake [http://www.snopes.com/cokelore/
newcoke.asp].

The A-12 Avenger was to be a carrier-based stealth
airplane that would replace the A-6 in the 1990s. This
program is a classic example of program mismanage-
ment. Major requirements were inconsistent and were
therefore continually changing. Nothing was ever built,
so we cannot comment on verification. Validation was
bad, because they never figured out what they needed
[Fenster, 1999; Stevenson, 2001].

The Hubble Space Telescope was built at a cost of
around 1 billion dollars. The requirements were right.
Looking at the marvelous images we have been getting,
in retrospect we can say that this was the right system.
But during its development the guidance, navigation,
and control (GNC) system, which was on the cutting
edge of technology, was running out of money. So they
transferred money from Systems Engineering to GNC.
As a result, they never did a total system test. When the
Space Shuttle Challenger blew up, the launch of the
Hubble was delayed for a few years, at a cost of around
1 billion dollars. In that time, no one ever looked
through that telescope. It was never tested. They said
that the individual components all worked, so surely the
total system will work. After they launched it, they
found that the telescope was myopic. Astronauts from
a space shuttle had to install spectacles on it, at a cost
of around 1 billion dollars. [Chapman, Bahill, and
Wymore, 1992: 16]

The SuperConducting SuperCollider started out
as an American Big Science project. Scientists were
sure that this system was needed and would serve their
needs. But it was a high political risk project. Poor
management led to cost overruns and transformed it
into a Texas Big Physics project; consequently, it lost
political support. The physicists developed the require-
ments right and the engineers were building a very fine
system. But the system was not what the American

public, the bill payer, needed. [Moody et al., 1997:
99–100].

The French Ariane 4 missile was successful in
launching satellites. However, the French thought that
they could make more money if they made this missile
larger. So they built the Ariane 5. It blew up on its first
launch, destroying a billion dollars worth of satellites.
The mistakes on the Ariane 5 missile were (1) reuse of
software on a scaled-up design, (2) inadequate testing
of this reused software, (3) allowing the accelerometer
to run for 40 seconds after launch, (4) not flagging as
an error the overflow of the 32-bit horizontal-velocity
storage register, and (5) allowing a CPU to shutdown if
the other CPU was already shutdown. The requirements
for the Ariane 5 were similar to those of the Ariane 4:
So it was easy to get the requirements right. They
needed a missile with a larger payload, and that is what
they got: So, that part of validation was OK. However,
one danger of scaling up an old design for a bigger
system it that you might get a bad design, which is a
validation mistake. Their failure to adequately test the
scaled-up software was a verification mistake [Kunzig,
1997].

The United Nations Protection Force (UNPRO-
FOR) was the UN mission in Bosnia prior to NATO
intervention. They had valid requirements (stopping
fighting in former Yugoslavia is valid) but these require-
ments were incomplete because a peacekeeping force
requires a cease-fire before keeping the peace. This
expanded cease-fire requirement later paved the way for
the success of NATO in the same mission. Moreover,
the UNPROFOR failed to meet its incomplete require-
ments because they were a weak force with limited
capabilities and poor coordination between countries.
UNPROFOR had incomplete requirements, and was
the wrong system at the wrong time. This was a partial
requirements failure, and a failure of verification and
validation [Andreatta, 1997].

The Lewis Spacecraft was an Earth-orbiting satel-
lite that was supposed to measure changes in the Earth’s
land surfaces. But due to a faulty design, it only lasted
3 days in orbit. “The loss of the Lewis Spacecraft was
the direct result of an implementation of a technically
flawed Safe Mode in the Attitude Control System. This
error was made fatal to the spacecraft by the reliance on
that unproven Safe Mode by the on orbit operations
team and by the failure to adequately monitor spacecraft
health and safety during the critical initial mission
phase” [Lewis Spacecraft, 1998].

Judging by the number of people walking and driv-
ing with cellular phones pressed to their ears, at the turn
of the 21st century there was an overwhelming need for
portable phones and the Motorola Iridium System
captured the requirements and satisfied this need. The
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Motorola phones had some problems such as being
heavy and having a time delay, but overall they built a
good system, so verification is OK. But their system
was analog and digital technology subsequently proved
to be far superior. They should have built a digital
system. They built the wrong system [http://www.
spaceref.com/news/viewnews.html?id=208].

On the Mars Climate Orbiter, the prime contractor,
Lockheed Martin, used English units for the satellite
thrusters while the operator, JPL, used SI units for the
model of the thrusters. Therefore, there was a mismatch
between the space-based satellite and the ground-based
model. Because the solar arrays were asymmetric, the
thrusters had to fire often, thereby accumulating error
between the satellite and the model. This caused the
calculated orbit altitude at Mars to be wrong. Therefore,
instead of orbiting, it entered the atmosphere and
burned up. But we do not know for sure, because (to
save money) tracking data were not collected and fed
back to earth. Giving the units of measurement is a
fundamental part of requirements development. And
they did not state the measurement units correctly: so
this was a requirements-development mistake. There
was a mismatch between the space-based satellite and
the ground-based model: This is a validation error. They
did not do the tests that would have revealed this mis-
take, which is a verification error.

On the Mars Polar Lander, “spurious signals were
generated when the lander legs were deployed during
descent. The spurious signals gave a false indication
that the lander had landed, resulting in a premature
shutdown of the lander engines and the destruction of
the lander when it crashed into the Mars surface. … It
is not uncommon for sensors … to produce spurious
signals. … During the test of the lander system, the
sensors were incorrectly wired due to a design error. As
a result, the spurious signals were not identified by the
system test, and the system test was not repeated with
properly wired touchdown sensors. While the most
probable direct cause of the failure is premature engine
shutdown, it is important to note that the underlying
cause is inadequate software design and systems test”
[Mars Program, 2000].

The Mars Climate Orbiter and the Mars Polar Lander
had half the budget for project management and sys-
tems engineering of the previously successful Path-
finder. These projects (including Pathfinder) were some
of the first in NASA’s revised “Faster, Better, Cheaper”
philosophy of the early 1990s. It is important to note
that despite early failures, this philosophy has yielded
successes and is an accepted practice at NASA [2000].

Some failures are beyond the control of the designers
and builders, like the failure of the World Trade Tow-
ers in New York after the September 11, 2001 terrorist

attack. However, some people with 20/20 hindsight say
that they (1) missed a fundamental requirement that
each building should be able to withstand the crash of
a fully loaded airliner and (2) that the FBI did or should
have known the dates and details of these terrorist plans.
This reinforces the point that many of our opinions are
debatable. It also points out the importance of perspec-
tive and the problem statement. For example, what
system do we want to discuss—the towers or the attack
on the towers? For purposes of this paper, we will reflect
on the buildings as a system, and assume “they” refers
to the World Trade Center designers. Clearly, the build-
ings conformed to their original design and fulfilled
their intended purpose—maximizing premium office
space in lower Manhattan—so validation and verifica-
tion were OK. However, the building’s requirements
proved incomplete, and failed to include antiterrorism
provisions. This is a requirements failure.

NASA learned from the failure of the Space Shuttle
Challenger; but they seemed to have forgotten the les-
sons they learned, and this allowed the failure of the
Space Shuttle Columbia. At a high level, the Columbia
Study Committee said that NASA had a culture that
prohibited engineers from critiquing administrative de-
cisions. The NASA culture produced arrogance toward
outside advice. After the Challenger failure, they in-
stalled an 800 telephone number so workers could
anonymously report safety concerns, but over the years
that phone number disappeared. At a low level, the
original design requirements for the Shuttle Orbiter
“precluded foam-shedding by the External Tank.”
When earlier missions failed to meet this requirement
but still survived reentry, NASA treated this as an
“in-family [previously observed]” risk and ignored the
requirement. But the system still failed to meet its
requirements—a verification failure [Columbia, 2003;
Deal, 2004]. We deem Columbia a system validation
failure for the same reasons as the Challenger.

The Northeast electric power blackout in August
2003 left millions of people without electricity, in some
cases for several days. Some of the causes of this failure
were an Ohio electric utility’s (1) not trimming trees
near a high-voltage transmission line, (2) using soft-
ware that did not do what it should have done, and (3)
disregarding four voluntary standards. Verification and
validation were fine, because the system was what the
people needed and it worked fine for the 26 years since
the last blackout. The big problem was a lack of indus-
try-wide mandatory standards—a requirements failure
[http://www.2003blackout.info/].

Table II presents a consensus about these failures. It
uses the three CMMI process areas, RD, VER, and
VAL. Table II uses the following code:
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RD: Requirements Development, Did they get the
requirements right?

VER: Requirements Verification, Did they build the
system right?

VAL: System Validation, Did they build the right
system?

“They” refers to the designers and the builders.

Engineers with detailed knowledge about any one of
these failures often disagreed with the consensus of
Table II, because they thought about the systems at a
much more detailed level than was presented in this
paper. Another source of disagreement was caused by
the fuzziness in separating high-level requirements
from system validation. For example, many people said,
“The designers of the Tacoma Narrows Bridge should
have been the world’s first engineers to write a require-
ment for testing a bridge in strong crosswinds.”

The failures described in Tables I and II are of
different types and are from a variety of industries and
disciplines. The following list divides them (and a few
other famous failures) according to the characteristic
that best describes the most pertinent aspect of the
systems:

Hardware intensive: GE rotary compressor refrig-
erator, IBM PCjr, Titanic, Tacoma Narrows
Bridge, and Grand Teton Dam

Software intensive: Ariane 5 missile, some tele-
phone outages, computer virus vulnerability, and
MS Outlook

Project: A-12, SuperConducting SuperCollider,
Space Shuttle Challenger, Space Shuttle Colum-
bia, War in Vietnam, Edsel automobile, Apollo-
13, New Coke, UNPROFOR, Lewis Spacecraft,
Mars Climate Orbiter, Mars Polar Lander, Three
Mile Island, Hubble Space Telescope, Chernobyl
Nuclear Power Plant, and Concorde SST

System: Motorola’s Iridium system, Western Power
Grid 1996, WTT Attacks, and Northeast Power
Grid in 1977 and 2003. 

Financial: Enron (2003), WorldCom (2003), and
Tyco (2003).

More famous failures are discussed in Petroski
[1992], Talbott [1993], Dorner [1996], Bar-Yam
[2004], and Hessami [2004].

5. SYSTEM AND REQUIREMENTS
CLASSIFICATION MODEL

As previously mentioned, because System Verification
and Validation are often confused with Requirements
Development, it is worth juxtaposing these concepts in

a unified model. This model helps further clarify termi-
nology and demonstrates how the concepts of System
Verification, System Validation, and Requirements De-
velopment interact in the systems engineering design
process.

Our model first divides the set of all systems into two
subsets: (1) verified and validated systems and (2)
unverified or unvalidated systems. The model next di-
vides the set of all system requirements into four subsets
(1) valid requirements, (2) incomplete, incorrect or
inconsistent requirements, (3) no requirements, and (4)
infeasible requirements.

We now explore the union of all possible systems
with all possible requirement sets. The result, shown in
Table III, is a System and Requirements Classification
Model (SRCM). This model (1) provides a means of
categorizing systems in terms of design conformity and
requirements satisfaction and (2) provides a way to
study requirements not yet satisfied by any system.
Each region of the model is discussed below, in an order
that best facilitates their understanding.

Region A1: This region denotes the set of systems
that have been verified and validated and have valid
requirements. It represents systems that conform to
their designs and fulfill a valid set of requirements. A
properly forged 10 mm wrench designed and used to
tighten a 10 mm hex nut is an example of a system in
this region. Most commercial systems fall into this
category.

Region B1: Region B1 is composed of unverified or
unvalidated systems that have valid requirements.
These systems have perfectly legitimate designs that, if
properly implemented, satisfy a valid set of require-
ments. Most systems will pass through this region dur-
ing development. However, some fielded system will
be in this region because of poor design realization.
Fielded systems in this region are often categorized as
error prone or “having bugs.” A 10 mm wrench that
breaks when tightening a 10 mm hex nut because of
poor metal content is an example of a system in this
region. These systems are potentially dangerous, be-
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cause presumptions about legitimate designs can hide
flaws in implementation. 

Region A2: This region denotes verified and vali-
dated systems that satisfy an incomplete, incorrect, or
inconsistent set of requirements. These systems fail
because the assigned requirements do not adequately
satisfy the stakeholder needs. Adequate satisfaction
results when a system meets the needs of a majority of
the principal stakeholders (as defined by the chief deci-
sion maker). A system in this region would be a properly
forged 10 mm wrench that is used to tighten a 10 mm
hex bolt, but the bolt fails to tighten because of a
previously unnoticed backing/lock nut. In this case, a
new system design featuring two tools is required.
Another example would be a user’s manual that incor-
rectly instructs a user to apply a properly forged 11 mm
wrench to tighten a 10 mm hex nut. The wrench is
fulfilling its design (it would have worked for 11mm),
adheres to its design (properly forged), but is the wrong
tool for the job. The IBM PCjr was a useful and properly
functioning computer that was not quite what consum-
ers really wanted. The 2003 Northeast Blackout, with
its lack of industry-wide standards, also fits into this
region.

Region A3: This region represents systems that are
verified (adhere to their designs) and validated, but

whose intended designs do not match any significant
requirement. A significant requirement is one that is
shared by the majority of principal stakeholders. These
systems are often described as offering solutions in
search of problems. A strange looking (and properly
forged) wrench designed to tighten a non-existent nut
is an example of a system in this region. Yes, this wrench
might eventually satisfy the needs of a customer in a
completely foreign context, such as use as a paper-
weight. However, it does not meet a requirement within
the context of its original design (a tool for tightening
a nonexistent nut). The weak glue created by 3M stayed
in the A3 region for a long time until someone invented
Post-it® notes. Their scientists studied the glue care-
fully, but 3M certainly did not have a requirement for
weak glue. In the 1940s IBM, Kodak, General Electric,
and RCA were offered the patents for what eventually
became the Xerox photocopy machine, but they de-
clined saying that there was no requirement to replace
carbon paper.

The types B2 and B3 are unverified equivalents of
types A2 and A3, respectively. Not only do these system
designs either address nonexisting, incomplete, or in-
correct requirements, but the systems also fail to adhere
to their designs or fail to satisfy stakeholder needs in
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the process. Exemplifying famous failures are listed in
Table IV.

Our model also features several other regions of
importance. Region C1 represents the set of all valid
requirements that have no satisfying system designs.
This region represents potential and realizable systems
that will satisfy the stakeholder’s needs. An affordable
and efficient electric car—arguably within our techno-
logical grasp—represents one such system. In essence,
the art and science of requirements development is the
process of pairing requirements from this region to
systems in region A1. Entrepreneurship thrives in this
region.

Another important region, C4, denotes infeasible
requirements. Naturally, there are no overlapping sys-
tems here, because technology prevents such systems
from being built. A perpetual motion machine repre-
sents one such system. However, this category is impor-
tant because research and development efforts are
concerned with expanding the verified/unverified sys-
tem boundary into this region. We believe requirements
will logically and sometimes quietly move from this
region into C1 and C2 as technology advances.

Region C2 represent requirements that are incom-
plete/incorrect and do not have an assigned design.
These regions represent systems that could become
troublesome inhabitants of the B2 region in the future.

Although system design is not a serial process, be-
cause there are many iterative loops, the ideal system
design path starts at C3 (or perhaps even C4), goes up
the column and then across the row to A1. Other paths
are also possible. For example, a previously unnoticed
feasible requirement may cause a system to quickly
move from C1 directly across to A1. A prototype design
process might see a system move from C3 up to C2,
then back and forth several times from C2 to A2 until
finally reaching the top row (and eventually A1).

Table IV summarizes some of our famous failures
and categorizes each failure according to one of the
model’s ten regions. Two system generalizations were
added to demonstrate membership in each important
category.

Most of the failures of this report were chosen ran-
domly. They were chosen before this paper was written
and before the SCRM model was formulated. The ex-
ceptions were the systems added in Table IV that were
not in Table II. The systems of this paper do not present
an even distribution of types of failure or types of
system. Furthermore, the distribution was not intended
to reflect real life. Data from the Standish Group [1994]
could be used to infer what real world distributions
might look like. As an example of our discrepancy from
the real world, consider that of our two dozen examples
only one, the A-12 airplane, was canceled before any

airplanes were built. Whereas the Standish Group Re-
port [1994] said that for software projects that were
seriously started, two-thirds were canceled before com-
pletion. Figure 1 shows the number of systems of Table
IV that fit into each region of Table III.

6. WHAT COULD HAVE BEEN DONE
BETTER?

We studied these famous failures and tried to answer
the question, “What could they have done better?” Our
answers are in Table V. Of course, like all generaliza-
tions about complex systems, our answers are not pre-
cise. But, nonetheless, they may be helpful. The
conclusions in Table V are based on documents with
much more detail than was presented in this paper.

7. LESSONS LEARNED

Is it important to develop requirements, verify require-
ments, validate requirements, verify the system, and
validate the system? Yes. This paper has shown exam-
ples where failure to do these tasks has led to system
failures. Is doing these tasks a necessary and sufficient
condition for system success? No. Many systems suc-
ceed just by luck; and success depends on doing more
than just these five tasks. Is it important to understand
the difference between these five tasks? Yes. The CMMI
is a collection of industry best practices, and it says that
differentiating between these tasks is important. If you
can distinguish between these five tasks, you will have
a better chance of collecting data to prove that you do
these five tasks. This paper has also shown some unique
metrics that could be used to prove compliance.

However, there can be controversy about our con-
sensus. Is getting the top-level requirement wrong, a

Figure 1. Number of systems from Table IV that are in each
cell of the SRCM model.
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system-validation problem or a requirements-develop-
ment problem? This issue provided the most contention
in discussions about these famous failures. It prompted
questions such as, “Should they have written a require-
ment that the Tacoma Narrows Bridge be stable in cross
winds? Should they have written a requirement that the
Challenger not be launched in cold weather? Should the
Russian designers have told their Communist Party
bosses that there should be a requirement for a safe
design?” For the space shuttles, the top-level require-
ment was to use a recyclable space vehicle to put people
and cargo into orbit. Was this a mistake? If so, what
type?

Can we learn other lessons from this paper that will
help engineers avoid future failures? Probably not. Such
lessons would have to be based on complete detailed
failure analyses for each system. Such analyses are
usually about 100 pages long.

8. CONCLUSION

In this paper, we have sought to elucidate the fre-
quently confused concepts of requirements develop-
ment, requirements verification, requirements
validation, system verification, and systems validation.
After a brief terminology review, we inundated the
reader with a casual review of two dozen famous fail-

ures. These examples were not offered as detailed fail-
ure analyses, but as recognized specimens that demon-
strate how shortcomings in requirements development,
verification and validation can cause failure either indi-
vidually, collectively, or in conjunction with other
faults. To further distinguish these concepts, we in-
cluded the system and requirements classification
model and several summary views of the failures—fail-
ures by discipline, failure generalization, and lessons
learned. We hope our approach will promote under-
standing of terminology and improve understanding
and compliance in these five critical systems engineer-
ing tasks.
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