Provost Office Meet the Vice President Institute Offices & Services Institute Statistics
 
   Research Enterprise Home spacer
bullet
spacer
Research News spacer
bullet
spacer
Research@Stevens spacer
bullet
spacer
Research Centers spacer
bullet
spacer
   Office of Sponsored Research spacer
bullet
spacer
   Entrepreneurship spacer
bullet
spacer
Contact Us spacer
bullet
spacer
Stevens Institute of Technology

Research Highlight


News
gray gray Share/Save/Bookmark
Share
gray
Print

Back 


November 15, 2010

New Characteristics of Premature Aging Protein Discovered at Stevens

FULL STORY > >>

Glavy Lab Chemical Biology ProgramDr. Joseph Glavy at Stevens Institute of Technology studies the smallest and most basic elements of life. The Assistant Professor of Chemical Biology runs the Glavy Lab, where advanced student scientists study the nuclear pore complexes (NPCs) in cells, observing the minutest mechanisms of life as they unfold during mitosis. The Glavy Lab's formal purpose is to study the NPC at the molecular level in the pursuit of the unknown or unexpected in the well-studied but not always well-understood nuclei of living cells.

His team has uncovered a disease-related protein outside of its known range and published the results in the August 2010 issue of Cell Cycle. The article's co-authors, Dr. Simarna Kaur, Tommy White, and Amanda DiGuilio are current or recent students of Stevens Institute of Technology.

The NPC is a supramolecular assembly that provides gateways for molecular trafficking between DNA with a cell's nucleus and the cytoplasm within the cell membrane walls in eukaryotic cells. Protein, RNA, ions, and other small molecules are transported through the NPC on their way into the nucleus. The composition of the NPC is about thirty proteins, called nucleoporins (Nups), which are arranged quasi-symmetrically and in subcomplexes that break apart during mitosis in some cells.

Dr. Glavy investigated interactions within the NPC of mammalian cells while a post-doctoral researcher at Rockefeller University in New York City. Unlike other living cells, the mammalian cell NPC breaks down around DNA during mitosis, allowing specific Nup subcomplexes to be isolated and studied in the lab, but also leaving room for something to go wrong in the reorganization of the nucleus . Focused on the very specific Nup 107-160 subcomplex, the Glavy Lab had been looking for what might go wrong during mitosis.

But rather than genetic mutations, the lab discovered something far more important within Nup 107-160: the Werner Helicase Interacting Protein 1 (WHIP). WHIP's moniker derives from its interaction with Werner protein, which maintains genome stability and conversely is responsible for the progeria disease Werner's Syndrome. This adult-onset disease causes premature aging and increased susceptibility to other old-age diseases such as cancer, heart disease, and diabetes.

Chemical Biology program lab resultsThe initial discovery of WHIP within the NPC, when it had been associated with the Werner protein, prompted further exploration to deduce the role of WHIP during mitosis. The scientists isolated the NPC subcomplex and used immunofluorescence and immunoblotting to detect the presence and movement of WHIP during mitosis. They discovered WHIP interacting within the NPC autonomous of Werner protein, demonstrating a novel relation.

In addition to its connection with gene-stabilizing Werner protein, WHIP may play an independent, unique role in the cell cycle. Beyond supporting DNA replication, WHIP may also function to detect genetic damage. The authors look forward to future work that will further understanding of this protein's role in maintaining genome stability, and in completing some of that important work themselves.

It may be years before the Glavy Lab's insights into WHIP can be turned into therapies for sufferers of Werner Syndrome and other progeria diseases, but this new look into the workings of the body creates hope for future treatments and other advances in biology and medicine.

"Cell biology is a growing, multi-disciplinary field that is establishing a foundation of knowledge for the future," says Dr. Glavy. "We are beginning to establish tangible relations between biology and disease and advancing towards an understanding of gene repair and expression that might help with drug development in the future."

For more information about this research at Stevens Institute of Technology, The Innovation UniversityTM, please visit the website of the Glavy Lab. Learn more about the student research team in the full version of this story.


News
gray gray Share/Save/Bookmark
Share
gray
Print
News Archive
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003

Learn more about Research at Stevens
Join our online communities and stay up-to-date!


© Copyright 2009 Stevens Institute of Technology. All rights reserved.
      

School of Engineering & Science | School of Systems & Enterprises | College of Arts & Letters | School of Technology Management
Stevens Institute of Technology | 1 Castle Point on Hudson, Hoboken, NJ 07030 | Phone: 201.216.5263 | Fax: 201.216.8909