Department of Mathematical Sciences

Seminar in Nonlinear Systems

Itai Shafrir

Technion, Israel

On a Class of Vector-valued Singular Perturbation Problems

Tuesday, November 22, 2005 4:00 pm Peirce 218

Abstract: Let W be a smooth function on \mathbb{R}^2 satisfying:

- (i) W > 0 on $\mathbb{R}^2 \setminus \Gamma$, W = 0 on Γ , where Γ is a smooth closed curve in \mathbb{R}^2 ,
- (ii) $W_{nn} > 0$ on Γ ,

(iii)
$$\frac{\partial W}{\partial |z|} > 0$$
 for $|z| > R_0$.

We are interested in the asymptotic behavior, as $\epsilon \to 0$, of the minimizers $\{u_{\epsilon}\}$ for the minimization problem,

$$\min \int_G |\nabla u|^2 + \frac{1}{\epsilon^2} \int_G W(u), \ \text{ for } u \in H^1(G, \mathbf{R}^2) \text{ with } u = g \text{ on } \partial G,$$

where G is a bounded, smooth, simply connected domain of \mathbf{R}^2 and $g:\partial G\to \mathbf{R}^2$ is a smooth boundary data. An important special case is of $W(u)=(1-|u|^2)^2$, which leads to a well-studied Ginzburg-Landau type energy. The new features here are that we allow a quite general class of potentials and we do not assume that g is Γ -valued. This is a joint work with Nelly André (Tours).