

Arthur E. Imperatore School of Sciences and Arts

## Department of Mathematical Sciences

## Seminar

Louis Petingi

Computer Science Department College of Staten Island City University of New York

## On the characterization of the source-to-all-terminal diameter-constrained reliability domination

Friday, August 29, 2003 3:00 pm Lieb Bldg, 3rd Floor Conference Room

Abstract: Let G = (V, E) be a digraph with a distinguished set of terminal vertices  $K \subseteq V$  and a vertex  $s \in K$ . We define the s, K-diameter of G as the maximum distance between s and any of vertices of K. If the arcs fail randomly and independently with known probabilities (vertices are always operational), the Diameter-constrained s, K-terminal reliability of G,  $R_{s,K}(G, D)$ , is defined as the probability that surviving arcs span a subgraph whose s, K-diameter does not exceed D.

A graph invariant called the domination of a graph G was introduced by Satyanarayana and Prabhakar to generate the non-canceling terms of the classical reliability expression,  $R_{s,K}(G)$ , based on the same reliability model (i.e. arcs fail randomly and independently and where nodes are perfect), and defined as the probability that the surviving arcs span a subgraph of G with unconstrained finite s, K-diameter. This result allowed the generation of rapid algorithms for the computation of  $R_{s,K}(G)$ .

In this paper we present a characterization of the diameter-constrained s, K-terminal reliability domination of a digraph G = (V, E) with terminal set K = V, and for any diameter bound D, and, as a result, we solve the classical reliability domination, as a specific case. Moreover we also present a rapid algorithm for the evaluation of  $R_{s,V}(G, D)$ .