
IEEE TRANSACTIONS ON EDUCATION, VOL. 49, NO. 2, MAY 2006 271

Teaching the Integration of Information
Systems Technologies

Jeffrey V. Nickerson, Member, IEEE

Abstract—A curriculum for a master’s level course called Inte-
grating Information Systems Technologies is presented. The course
content is drawn from industry practice, and teaches ways of inte-
grating large scale information systems. The teaching method used
is similar to the method used to teach architecture. Students are
asked to design complex systems in the form of posters; in each class
these posters are discussed. Course evaluations from 95 students
suggest that students find posters more effective than written pa-
pers and slide presentations. Specifically, students find that posters
not only encourage visualization, but also provide them a way of
seeing the thought processes of fellow students.

Index Terms—Decision making, design evaluation, design sci-
ence, information systems education, technical integration.

I. INTRODUCTION

THE design of information systems is traditionally taught
in a layered fashion. Students learn about networks,

databases, and applications in separate courses. In management
schools, students also take courses on finance, project man-
agement, and organizational behavior. This layered approach
allows for the partitioning of material into areas of instructor
expertise. However, practicing professionals in companies and
government institutions often face situations in which all of
these different layers need to be combined.

An information systems infrastructure for a large corporation
includes networks, databases, messaging systems, and applica-
tions. Designing or modifying an infrastructure calls for an un-
derstanding not only of technology, but also of business needs.
The narrowly educated network designer may fail to anticipate
the social trend toward telecommuting, which will in turn in-
crease the remote access bandwidth requirements. Similarly, the
technically trained database designer may fail to include remote
replication for a city susceptible to catastrophes.

Consequently, a course is needed which teaches the social
and technical aspects of information systems through design ac-
tivity. The ACM/AIS curriculum for Information Systems out-
lined such a course,1 calling it Integrating Information Systems
Technologies [1]. This paper describes the implementation of a
course under this name.

Manuscript received December 16, 2004; revised January 22, 2006. This
work was sponsored in part by the National Science Foundation under Grant
ITR-0326309.

The author is with the Center for Decision Technologies, Wesley J. Howe
School of Technology Management, Stevens Institute of Technology, Hoboken,
NJ 07030 USA (e-mail: jnickerson@stevens.edu).

Digital Object Identifier 10.1109/TE.2006.873966

1The Association for Computing Machinery (ACM), and the Association for
Information Systems (AIS) jointly publish a graduate curriculum for Informa-
tion Systems.

The course accomplishes several educational goals. First, stu-
dents learn to design complex integrated information systems.
In addition, students learn the concepts underlying technical and
social mechanisms of integration. Also, students improve their
presentation skills. Last, students learn how information sys-
tems design is practiced as a profession.

This paper contributes to the field of design research, an area
of growing interest to the computing disciplines. For example,
the National Science Foundation has recently sponsored de-
sign workshops and programs [2], [3]. Information systems re-
searchers have also shown an increased interest in design [4].

The paper proceeds in the following way. The next section re-
views previous work in the teaching of design. The third section
describes both the in-class teaching techniques and the course
content. The fourth section presents the instructors’ observa-
tions, and the fifth section analyzes the students’ feedback.

II. PAST WORK ON DESIGN TEACHING

The fields with the longest history of design pedagogy are ar-
chitecture and engineering. While architectural design had tra-
ditionally been taught by the apprentice method, in the 19th
century the Ecole des Beaux Arts institutionalized the teaching
of architecture. Similarly, the Ecole Polytechnique institution-
alized engineering education [5]. In the 1950s systems thinking
began to influence design education [6]. In contrast to previous
intuitive approaches to design, the design school at Ulm applied
systems principles [7]. The author was taught by Horst Rittel,
who brought many of the Ulm-based approaches to the Univer-
sity of California at Berkeley [8], [9].

In the management field, Simon called for a science of design
[10]. Influenced by Simon and by the Ulm-based approaches,
researchers have continued to invent systematic approaches to
design [11].

Design in architecture schools is taught in the following way.
In response to an assigned homework problem, students pre-
pare a design in the form of a poster. The students bring the
posters into class and put the posters on the wall. Then the pro-
fessor leads a class discussion on a selection of the posters. This
process, called a crit (short for critique), is repeated week after
week.

Engineering schools have recently been paying increased
attention to design. The undesired gap between theoretical
teaching and the demands of the profession has led to cap-
stone courses in design, as a way of integrating learning and
preparing students for the environments they will face [12].
Such courses usually focus on a single problem, solved by a
team. The success of these programs has led some schools to
add what they call cornerstone design courses, which are taught

0018-9359/$20.00 © 2006 IEEE

272 IEEE TRANSACTIONS ON EDUCATION, VOL. 49, NO. 2, MAY 2006

at the beginning of the program. Although design permeates
many different courses in engineering, the design courses
focus student attention on design processes rather than content
mastery [12], [13]. In addition, in many fields of engineering,
designs can be parameterized, and computer-aided design tools
have been developed to allow for the immediate manipulation
of these parameters. Engineering design courses often utilize
these tools.

Information systems design has clearly been influenced by
both engineering and architectural approaches. Engineering ap-
proaches are admired, but tools for information systems design
are not as evolved, and even the most popular computer-assisted
software engineering tools have low adoption rates for a variety
of technical and social reasons [14]. Thus, instructors find them-
selves challenged in creating an environment in which to teach
information systems design. Undergraduate Information Sys-
tems (IS) programs have sometimes introduced capstone design
courses, which follow the architectural and engineering tradi-
tion of assigning a sequence of problems [15]. However, to the
author’s knowledge, information systems design has not been
taught before using the crit method popular in architectural ed-
ucation, and this paper may be seen as an illustrative case of how
the method can be used.

III. THE COURSE

A. Student Audience

The course is being taught as a required course in a master’s
degree program in Information Systems at Stevens Institute of
Technology. Approximately 12 sections a year are held, with
about 20 students in each section. Most students are part-time
working professionals. In general, these students work in the
information technology departments of large corporations. Be-
cause of the location of the campus in New Jersey, neighboring
Manhattan, students tend to be employed either by the financial
industry or by the pharmaceutical industry. Also, many students
come from other countries. Both full-time and part-time stu-
dents have varied undergraduate backgrounds. Some students
have technical degrees in computer engineering and computer
science, while others have business or liberal arts degrees.

This heterogeneity of student backgrounds presents chal-
lenges for the instructor choosing course content. Such content
needs to be technical enough to interest the engineers and
computer scientists, but should be intelligible to the project
manager with a business background.

B. Technical Content

Advances in software have created a large number of poten-
tial technologies related to integration. Databases, client/server,
three-tier architectures, application servers, software buses,
Web services, and other technologies have all been described
as potential cures to the ills of fractured information systems.

The technical content of the course was selected with this
range of technologies in mind, along with consideration of the
computing disciplines spectrum. The ACM/AIS/IEEE curricula
task force2 describes this spectrum as a sequence of concerns

2ACM, AIS, and IEEE jointly publish a set of curricula that span the com-
puting disciplines.

running from the hardware, through the software, to the or-
ganization. The computing disciplines ordered in this way are:
electrical engineering, computer engineering, computer science,
software engineering, information technology, and information
systems [16]. Thus, information systems can be characterized
as the least technical, and the most social of the disciplines, in-
fluencing the nature of the material that is appropriate to teach
in the course. For example, one of the few papers on peda-
gogy related to integration is Wegmann’s description of a course
in Enterprisewide IT systems [17]. Wegmann’s course focuses
on the software engineering section of the spectrum; therefore,
it would not be appropriate for information systems students.
Along the computing discipline spectrum, other courses which
teach aspects of integration likewise have a different technical
emphasis. In particular, systems engineering curricula often in-
clude a course on systems architecture; such courses tend to em-
phasize hardware over software and technical mechanisms over
social mechanisms.

The concept map of Fig. 1 provides a visual layout of the
two major foci of the course, the teaching of design skill and
the communication of techniques for integration, both technical
and social. This content is consistent with the ACM/AIS de-
scription of this course [1] and with the general skills associ-
ated with information technology and systems training in the
ACM/AIS/IEEE curricula [16].

Two aspects of the design method are covered in depth—the
divergent thinking associated with generating alternatives [18],
and the convergent evaluation of these alternatives against many
criteria. The integration techniques include both technical and
social mechanisms for integration, and will be discussed in more
detail after the following description of the teaching techniques.

C. In-Class Teaching Techniques

Class sessions are divided into formal lectures and critiques
of student designs. The crit method from architecture, discussed
in Section II, is applied to student designs in the following way.
A design assignment is given, and all students return the next
week to tape their posters on the walls of the classroom. The
posters are required to be at least inches in size. Once
students post their own work, they look briefly at what the other
students have created. To provide quick feedback to each other,
the students are paired up. Each student presents the poster to his
or her colleague, receives feedback from the colleague, and then
listens, in turn, while the colleague presents. The process takes
about fifteen minutes. In this manner, each student receives peer
review every class. Not only do the students have an opportunity
to practice their presentations, but also they teach each other,
consistent with theories of sensemaking in education [19].

Next, a formal crit is performed. Several students who have
volunteered during the previous class present their work to the
entire class. After the presentation, the students and professor
offer suggestions and opinions about the work, and compare it
to other posters in the room. Technical and organizational issues
are thereby debated in the context of a proposed solution. In the
discussions the instructor serves as a guide, using the posters as
platforms for introducing increasingly sophisticated concepts.

Four individual assignments are given over the first ten weeks
of the class; each assignment is discussed twice in class, so that

NICKERSON: TEACHING THE INTEGRATION OF INFORMATION SYSTEMS TECHNOLOGIES 273

Fig. 1. Partial concept map for the course content.

students learn how to revise their designs in response to peer
reviews. Educational literature suggests that students will not
transfer knowledge in one domain to another unless they master
the ability to abstract problems and the ability to think about the
process of solving problems [20]–[22]. Both of these skills are
developed through the discussions during the crits. In addition,
the similarities between different types of systems problems are
discussed explicitly in class following each assignment.

Final grading of the assignments is reserved until after the
last poster is complete, when students are asked to submit a
portfolio of the four completed designs for comments. This ap-
proach is consistent with educational research which finds that
students learn more if given chances to revise their work prior
to evaluation [23]. As the course progresses, the instructor pro-
vides verbal feedback immediately after the class to students
producing substandard work.

The use of paper posters may seem anachronistic in an age
of electronic slides. The paper posters, however, are an effec-
tive response to the constraints of the classroom. The instructors
wish to expose students to many alternative designs for the same
problem and would like students to be able to see and discuss
all these designs at the same time. The instructors also wish to
be able to see all the work at the same time so they can make
comparisons. For both these reasons, some way of displaying
20 designs at the same time is needed.

One can imagine classrooms of the future in which projec-
tion walls might provide sufficient resolution to display many
images simultaneously, eliminating the need to produce paper
posters. Then, designs could be brought in electronically, with
the added advantage that they could be manipulated in real time
to suggest revisions. However, approximately 100 megapixels
are necessary to display 20 posters (assuming posters
at 120 pixels per linear inch). Clearly, the classroom display of
that much information through computer projection is at least
several years away.

For the time being, then, physical posters present a cost-ef-
fective method for presenting large amounts of simultaneous
visual information. However, since the posters will need to be
revised in response to peer review, students should produce the
posters using software, so that they can refine and regenerate
their designs. Some commonly available diagramming pack-
ages make it simple to produce posters by breaking up large
designs into tiled and slightly overlapping small pages that can
be taped together without undue effort. This technique is how
all the students produce their assignments.

The poster content has mandatory elements. Students are
requested to provide both problem and solution scenarios,
consistent with the ideas of Carroll [24]. Spatial and temporal
diagrams are also requested, in the form of Unified Modeling
Language (UML) deployment and sequence diagrams. In addi-
tion, students are asked to bring in their early designs in order
to show the evolution of their ideas.

D. The Assignments and Course Chronology

Designs of information systems are often evaluated according
to the criteria of functionality, reliability, performance, cost,
maintenance, flexibility, security, and organizational impact.
Some design problems naturally suggest particular criteria.
The instructor chooses a range of problems that will prompt
discussions of all of these criteria. For example, a problem
statement for the redesign of the New York Stock Exchange
might emphasize reliability and performance criteria, while a
sales force automation problem might stress flexibility.

The sequence of assignments and the lectures are shown in
Table I. The first lecture introduces the students to the syllabus.
Also, a topical problem is picked for an in-class, team-based ex-
ercise; for example, a recent class was asked to design a hurri-
cane response system. The students break into teams, draw a de-
sign, and report their ideas to the entire class. This first exercise
gives the instructor a fast gauge of the background knowledge

274 IEEE TRANSACTIONS ON EDUCATION, VOL. 49, NO. 2, MAY 2006

TABLE I
THE COURSE CHRONOLOGY

level of the students and gives students a safe way to practice
new skills.

The first homework assignment, the design of a personal
information system, is based on an early assignment given
during the 1970s in Horst Rittel’s Urban Planning course at UC
Berkeley. Architecture students often responded with physical
drawings of their living space. Today, information systems
students often respond with designs relying solely on personal
digital assistants. These information systems students make the
same mistake the architecture students did. They focus on the
static objects of the system, rather than on the processes that
produce the information. After the posters are presented at the
beginning of the second class, process-oriented ways of solving
the problem are discussed [25], [26], and the students are asked
to revise their posters for the next class.

The second lecture reviews the creation of scenarios. Sce-
nario-based techniques are taught in most systems analysis
courses, yet the students often need reinforcement. In particular,
many do not grasp the importance of specificity in the scenario.
Students also are unclear on the potential use of a scenario
to envision not only the problem, but also a future solution.
Three sources of scenario ideas are discussed: Jacobson [27],
Schwartz [28], and Carroll [29]. Systems approaches to gen-
erating alternative designs are also introduced. These include
Rittel’s method of systematic doubt, in which each logical term
in a scenario is negated as a way to generate potential solutions.

The third lecture presents mechanisms of integration,
including database integration, publish-and-subscribe, and
store-and-forward. General principles of synchronous versus
asynchronous methods of integration are presented. Enterprise
application integration is explained.

The next assignment comes directly from an industry
problem the author has encountered in many corporations.
Students are asked to design the integration of seven customer
databases in a company, without changing the applications
which rely on these databases. The problem is deeper than it
first appears, and solving it calls for a thoughtful analysis of
read and write transactions.

The fourth lecture discusses decision making as it relates to
the evaluation of design. Design evaluation is a multi-attribute
decision problem under conditions of uncertainty; students
learn how such problems are described and handled. They

also learn how engineering approaches can be used to find
optimal solutions. Specifically, they learn the criteria used to
evaluate systems and several ways of trading off these criteria
[30]–[32]. Automated approaches to generating design are also
noted [33]. The differences between parametric engineering
design methods and the ad hoc methods of information sys-
tems are discussed, as are the social aspects of the evaluation
process [34].

The fifth lecture discusses organization theory in relation to
integration [35]. Recent research into social networks is also ex-
plained because this research shows how integrating technolo-
gies such as e-mail are used in practice [36].

The next design problem asks students to design a notification
system for a large news organization and to estimate the cost of
their solution. Students are expected to select the appropriate
integration mechanism for this problem, such as publish-and-
subscribe. Imaginative students sometimes design less costly
solutions based on social networking.

The sixth lecture discusses cross-organizational integration,
which is the expansion of companies’ information systems to
include the systems of their customers and suppliers [37]. The
seventh lecture looks at coordination science [38], [39] which
provides a way of analyzing and designing business processes.
Alexander’s concept of a design pattern is explained [40], [41].
Also discussed are architecture frameworks [42] and their use
in producing an architecture document [43].

The eighth class is an exam. Short questions about the course
content and the readings are followed by a long design question.
For example, students might be asked to design a sales force
automation system.

A final individual problem is also assigned. Students are
asked to redesign the Internet protocols in the face of increased
mobility and increased commercial usage; Joy’s ideas on het-
erogeneity in software are discussed to stimulate conversation
[44], as is the Turing award lecture of Cerf and Kahn [45]. The
assignment helps integrate the material of the course and leads
to a deeper understanding of the infrastructure that increasingly
underlies large integrated systems.

The ninth lecture reviews the results of the exam and then
turns to addressing the resiliency of systems in detail, using a
case study approach. Ideas of distribution and replication are
discussed.

NICKERSON: TEACHING THE INTEGRATION OF INFORMATION SYSTEMS TECHNOLOGIES 275

The tenth lecture focuses on software integration standards.
The design of standards is discussed, because it provides an ex-
ample of how complex technical design can be accomplished in
groups. The eleventh lecture discusses areas where coordination
standards are still being developed, such as the Semantic Web
and Web services choreography [46]. Students learn why some
companies decide to adopt such emerging standards.

The group project is assigned. This assignment may vary ac-
cording to the current needs of the surrounding industries. For
example, a recent assignment asked students to design disaster
plans in anticipation of a flu epidemic. The last assignment is
produced as both a poster and a written report detailing the ar-
chitecture. The report provides students an opportunity to show
the depth of their thinking.

The twelfth lecture discusses emerging technologies; re-
cently, this lecture has focused on mobile ad hoc networks. The
thirteenth lecture is a summary lecture, and the fourteenth class
consists of the group presentations of the final assignment.

IV. INSTRUCTOR EXPERIENCES

The author and six other instructors have now taught this
course using the curriculum described in this paper. All agree
that the experience is very different from teaching using more
traditional techniques.

The crits change the classroom environment. When assign-
ments are submitted as written reports, the viewing of the work
is private, between student and professor. In the crit environ-
ment, however, everyone sees each other’s work.

The instructors believe the students’ ability to present ideas,
answer criticism, and ask questions increases more rapidly
in this open environment; one wrote that the poster method
“makes the material much more alive—you can get more class-
room discussion than with other methods.” In contrast to slide
presentations given one-by-one, the method allows for what
one instructor calls “cross-poster comparison.” Also, since the
“posters stay up,” he can “refer to [student’s] solutions during
the lecture period.”

The course presents challenges: because the technique is new
to them, “students will be apprehensive.” Shy students “may be
intimidated” by bolder students’ work in the first classes. The
first few classes in general will not produce many great posters.
Some instructors find showing previous students’ work, good
and bad, is important so that students get a sense of what is
possible.

The consensus of the instructors is that the early classes are
the most delicate to manage; the goal is to encourage the good
design work without discouraging the less experienced students.
One instructor says “in-class exercises are crucial” because stu-
dents get quick feedback from their peers and the instructor be-
fore undertaking the homework assignments.

Another instructor noted that the posters can be used “to so-
cialize the student into the discipline.” Some instructors think
the poster approach helps students “get directly to the point”;
however, “brevity of expression may also hide information.”

Fig. 2. A histogram of the mean assessment for the assignments from the 95
students. Nine means extremely useful.

V. STUDENT ASSESSMENTS

The instructors ask students for anonymous feedback at the
end of every semester by presenting a student feedback form.
This form asks the students to assess the usefulness of each of
the assignments. This form also asks them what they think they
have learned. All students attending the last class of the semester
filled out the form.

Fig. 2 is a histogram of 95 responses to this questionnaire,
representing nearly all students in five sections of the course the
author has taught over a period of three semesters. The students
were asked to rank each assignment on a scale from 1 to 9, not
at all useful to extremely useful.

The mean response was 7.3. The group assignment had an
average value of 8.2, with a standard deviation of 1.2; the first
assignment had an average value of 6.5, and a standard deviation
of 2. The last individual assignment had an average of 8.0, and
a standard deviation of 1.5.

Why was the initial assignment seen as less useful than later
assignments? Students noted that they did not know what to do
the first time. They also did not know what to expect in the
critique of the first assignment. Thus, the students might have
been remembering their feelings of confusion when they made
their evaluations.

Just as the students’ work improved throughout the semester,
their perception of the usefulness of the assignments improved.
The last individual assignment and the group assignment which
takes place at the end of the course were both rated highly. This
result held up even when new assignments were substituted for
old, leading to the tentative conclusion that as students’ mastery
increases, their perception of the value of the assignments also
increases.

The author was interested in finding out what students think
of the poster technique since they have not encountered this
technique before in the program. One question reads “overall,
how effective did you think the posters were in teaching applica-
tion of course concepts compared to traditional assignments?”

276 IEEE TRANSACTIONS ON EDUCATION, VOL. 49, NO. 2, MAY 2006

The students were asked to answer either a) more effective,
b) about the same, or c) less effective. Two percent left the
question blank; 6% said the technique was less effective; 16%
said the technique was equally effective; and 76% found the
posters more effective than traditional assignments.

Students were asked “do you think the course has improved
your ability to design systems?” Four percent did not answer
the question; 5% said no; 7% hedged their answer (for example,
“somewhat”); and 84% said yes.

Students were also asked open-ended questions on the advan-
tages and disadvantages of the poster approach.

In discussing the disadvantages, 24 students noted that the
assignments took longer than normal assignments. A few
complained about the logistics of printing and assembling the
posters. Five students thought that visualizing ideas was a
difficult task for which they were not prepared (“sometimes it’s
hard to draw your thoughts on a diagram”), and several called
for tutorials on the creation of the appropriate diagrams. One,
and only one, student noted that “not everyone is creative.”

Even with these disadvantages, the students generally liked
the poster approach. In their discussion of advantages, 23 said
they liked the visual, configurational, all-at-once approach of
the poster. In the words of one student,

“Presenting a hyperlinked concept in a 2-dimensional
space is extremely useful to navigate back and forth as op-
posed to serialized powerpoint presentation. Additionally,
it gives a holistic view of the entire design.”

Nineteen found that being able to see what other students
were doing was valuable. They observed that the posters were
“quick to understand.” Fifteen liked the creativity they were
called on to exhibit through the generation of alternative de-
signs: “thinking out of the box is well practiced in the course.”
Thirteen thought the poster format “forces you to be concise”
and improved critical thinking. They liked presenting ideas spa-
tially “instead of writing essays” and liked the ability to “see the
thought patterns of other people.”

VI. CONCLUSION

The complexity of modern information systems creates a
problem for instructors. On the one hand, specialized knowl-
edge needs to be taught, and this knowledge is organized
into technology layers. On the other hand, real world prob-
lems range across these layers. The author has presented the
curriculum for a course which, through a series of design exer-
cises, teaches students how to think about complex and realistic
problems. The content of the course is drawn from industry
practice and includes an analysis of different mechanisms for
integration. The design exercises use a poster technique which
is common in design education but rarely used in information
systems education. Students think the approach works better
than traditional techniques and find the overall course valuable.

ACKNOWLEDGMENT

The author wishes to acknowledge the encouragement to
develop the course from J. N. Luftman, E. A. Stohr, and
S. Tewksbury. The author appreciates the suggestions of

the other course instructors, K. Bent, R. Kelly, M. McDowell,
M. zur Muehlen, A. Saltzman, and W. Wong, as well as the con-
tributions of many students. In addition, S. Desai, E. Friedman,
A. Kay, and R. E. Watson provided helpful insights.

REFERENCES

[1] J. T. Gorgone and P. Gray, Eds., (1999) MSIS 2000: Model Curriculum
and Guidelines for Graduate Degree Programs in Information Systems:
Report of the Joint ACM/AIS task Force on Graduate IS Curriculum.
[Online]. Available: http://www.aisnet.org/Curriculum/msis2000.pdf

[2] K. Sullivan. (2003) Preliminary Report: NSF Workshop on the Sci-
ence of Design: Software and Software-Intensive Systems. [Online].
Available: http://www.cs.virginia.edu/~sullivan/sdsis/SDSIS%20Pre-
liminary%20Report%20 020 210b.pdf

[3] R. Ramakrishnan, P. Bernstein, and A. Halevy. (2003) Workshop on
the Science of Design for Information Systems. [Online]. Available:
http://www.cs.wisc.edu/sdis03/

[4] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information research,” MIS Quart., vol. 28, no. 1, pp. 75–105, 2004.

[5] I. Grattan-Guinness, “The ecole polytechnique, 1794–1850: differences
over educational purpose and teaching practice,” Amer. Math. Month.,
Mar. 2005.

[6] L. Bertalanffy, “An outline of general systems theory,” Brit. J. Phil. Sci.,
vol. 1, no. 2, pp. 139–164, 1950.

[7] R. Spitz, Hfg Ulm: the View Behind the Foreground: the Political History
of the Ulm School of Design, 1953–1968. Stuttgart, Germany: Edition
Axel Menges, 2002.

[8] H. W. J. Rittel and M. M. Webber, “Dilemmas in a general theory of
planning,” Policy Sciences, vol. 4, no. 2, pp. 155–169, 1973.

[9] H. W. J. Rittel and University of California Berkeley, “APIS, A Concept
for an Argumentative Planning Information System,” Institute of Urban
& Regional Development, University of California, Berkeley, Working
Paper no. 324, 1980.

[10] H. A. Simon, The Sciences of the Artificial. Cambridge, MA: MIT
Press, 1969.

[11] M. Nadin, “Computational design. Design in the age of a knowledge
society,” Formdiskurs, J. Design Design Theory, vol. 2, no. 1, pp. 40–60,
1996.

[12] C. L. Dym, A. M. Agogino, O. Eris, D. D. Frey, and L. J. Leifer, “Engi-
neering design thinking, teaching, and learning,” J. Eng. Educ., vol. 94,
no. 1, pp. 103–120, Jan. 2005.

[13] G. Pahl and W. Beitz, Engineering Design: A Systematic Ap-
proach. New York: Springer, 1996.

[14] W. J. Orlikowski, “Case tools as organizational-change—Investigating
incremental and radical changes in systems-development,” MIS Quart.,
vol. 17, no. 3, pp. 309–340, 1993.

[15] K. Surendran, I. C. Ehie, and C. Somarajan, “Enhancing student learning
across disciplines: A case example using a systems analysis and de-
sign course for MIS and ACS majors,” J. Inf. Technol. Educ., vol. 4,
pp. 257–274, 2005.

[16] Joint Task Force for Computing Curricula. (2004) Computing
Curricula 2004. [Online]. Available: http://www.acm.org/educa-
tion/Overview_Draft_11-22-04.pdf

[17] A. Wegmann, “Designing enterprisewide IT systems,” IEEE Trans.
Educ., vol. 47, no. 4, pp. 490–497, 2004.

[18] J. Baer, Creativity and Divergent Thinking: A Task-Specific Ap-
proach. Hillsdale, NJ: L. Erlbaum Associates, 1993.

[19] R. D. Pea, “Learning scientific concepts through material and social ac-
tivities: conversational analysis meets conceptual change,” Educ. Psych.,
vol. 28, no. 3, pp. 265–277, 1993.

[20] G. Salomon and D. N. Perkins, “Rocky roads to transfer: rethinking
mechanisms of a neglected phenomenon,” Educ. Psych., vol. 24, no. 2,
pp. 113–142, 1989.

[21] M. L. Gick and K. J. Holyoak, “The cognitive basis of knowledge
transfer,” in Transfer of Learning: Contemporary Research and Appli-
cations, S. M. Cornier and J. D. Hagman, Eds. New York: Academic,
1987, pp. 9–46.

[22] J. G. Greeno, D. R. Smith, and J. L. Moore, Transfer on Trial: Intelli-
gence, Cognition, and Instruction. Norwood, MA: Ablex, 1993.

[23] K. Bain, What the Best College Teachers Do. Cambridge, MA: Har-
vard University Press, 2004.

[24] J. M. Carroll, Scenario-Based Design: Envisioning Work and Tech-
nology in System Development. New York: Wiley, 1995.

[25] D. Allen, Getting Things Done: the Art of Stress-Free Produc-
tivity. New York: Viking, 2001.

NICKERSON: TEACHING THE INTEGRATION OF INFORMATION SYSTEMS TECHNOLOGIES 277

[26] S. Fertig, E. Freeman, and D. Gelernter, “Lifestreams: an alternative to
the desktop metaphor,” in Proc. CHI, 1996, pp. 410–411.

[27] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach. Reading, MA: Addison-Wesley, 1992.

[28] P. Schwartz, The Art of the Long View, 1st ed. New York: Dou-
bleday/Currency, 1991.

[29] J. M. Carroll, Making Use: Scenario-Based Design of Human-Computer
Interactions. Cambridge, MA: MIT Press, 2000.

[30] R. L. Keeney and H. Raiffa, Decisions With Multiple Objectives: Pref-
erences and Value Tradeoffs. Cambridge, U.K.: Cambridge University
Press, 1993.

[31] D. P. Grant, Design by Objectives. San Luis Obispo, CA: Design
Methods Group, 1982.

[32] Y. Hatamura, Decision-Making in Engineering Design. New York:
Springer, 2005.

[33] E. K. Antonsson and J. Cagan, Formal Engineering Design Syn-
thesis. New York: Cambridge University Press, 2001.

[34] M. Bergman, J. King, and K. Lyytinen, “Large scale requirements anal-
ysis revisited: the need for understanding the political ecology of re-
quirements engineering,” Req. Eng. J., vol. 7, no. 3, pp. 152–171, 2002.

[35] P. R. Lawrence and J. W. Lorsch, Organization and Environment; Man-
aging Differentiation and Integration. Boston, MA: Division of Re-
search, Graduate School of Business Administration, Harvard Univer-
sity, 1967.

[36] P. S. Dodds, D. J. Watts, and C. F. Sabel, “Information exchange and
the robustness of organizational networks,” PNAS, vol. 100, no. 21, pp.
12 516–12 521, 2003.

[37] E. A. Stohr and J. V. Nickerson, “Intra Enterprise Integration,” in Com-
peting in the Information Age: Align in the Sand, 2nd ed, J. Luftman,
Ed. New York: Oxford University Press, 2002, pp. 227–251.

[38] K. Crowston, “A taxonomy of organizational dependencies and coordi-
nation mechanisms,” in Tools for Organizing Business Knowledge: The
MIT Process Handbook, T. W. Malone, K. Crowston, and G. Herman,
Eds. Cambridge, MA: MIT Press, 1994, pp. 85–108.

[39] T. W. Malone, K. Crowston, and G. A. Herman, Organizing Business
Knowledge: the MIT Process Handbook. Cambridge, MA: MIT Press,
2003.

[40] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Construction. New York: Oxford University Press,
1977.

[41] E. Gamma, Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA: Addison-Wesley, 1995.

[42] P. Kruchten, “Architectural Blueprints—The 4 + 1 view model of soft-
ware architecture,” IEEE Software, vol. 12, no. 6, pp. 42–50, 1995.

[43] M. Maier and E. Rechtin, The Art of Systems Architecting, 2nd
ed. Boca Raton, FL: CRC Press, 2000.

[44] B. Schlender, “Joy after sun,” Fortune, Sep. 29, 2003.
[45] V. G. Cerf and R. E. Kahn, ACM Turing Lecture: Assessing the In-

ternet: Lessons Learned, Strategies for Evolution, and Future Possibili-
ties Philadelphia, PA, 2005.

[46] M. zur Muehlen, J. V. Nickerson, and K. D. Swenson, “Developing web
services choreography standards—the case of REST vs. SOAP,” Dec.
Supp. Syst., vol. 40, no. 1, pp. 9–29, 2005.

Jeffrey V. Nickerson (S’86–M’87) received the Ph.D. and M.S. degrees in com-
puter science from New York University, the M.F.A. degree in graphic design
from Rhode Island School of Design, and the B.A. degree in visual design from
the University of California at Berkeley.

He is an Associate Professor at Stevens Institute of Technology, Hoboken, NJ,
in the Wesley J. Howe School of Technology Management. He is the Director
of the Center for Decision Technologies. His research interests include mobile
ad hoc networks, sensor networks, standard making, and design. Prior to joining
Stevens Institute of Technology, he was a partner at PriceWaterhouseCoopers,
consulting on issues related to system design.

	toc
	Teaching the Integration of Information Systems Technologies
	Jeffrey V. Nickerson, Member, IEEE
	I. I NTRODUCTION
	II. P AST W ORK ON D ESIGN T EACHING
	III. T HE C OURSE
	A. Student Audience
	B. Technical Content
	C. In-Class Teaching Techniques

	Fig.€1. Partial concept map for the course content.
	D. The Assignments and Course Chronology

	TABLE€I T HE C OURSE C HRONOLOGY
	IV. I NSTRUCTOR E XPERIENCES

	Fig.€2. A histogram of the mean assessment for the assignments f
	V. S TUDENT A SSESSMENTS
	VI. C ONCLUSION

	J. T. Gorgone and P. Gray, Eds., (1999) MSIS 2000: Model Curricu
	K. Sullivan . (2003) Preliminary Report: NSF Workshop on the Sci
	R. Ramakrishnan, P. Bernstein, and A. Halevy . (2003) Workshop o
	A. R. Hevner, S. T. March, J. Park, and S. Ram, Design science i
	I. Grattan-Guinness, The ecole polytechnique, 1794 1850: differe
	L. Bertalanffy, An outline of general systems theory, Brit. J. P
	R. Spitz, Hfg Ulm: the View Behind the Foreground: the Political
	H. W. J. Rittel and M. M. Webber, Dilemmas in a general theory o
	H. W. J. Rittel and University of California Berkeley, APIS, A C
	H. A. Simon, The Sciences of the Artificial . Cambridge, MA: MIT
	M. Nadin, Computational design. Design in the age of a knowledge
	C. L. Dym, A. M. Agogino, O. Eris, D. D. Frey, and L. J. Leifer,
	G. Pahl and W. Beitz, Engineering Design: A Systematic Approach
	W. J. Orlikowski, Case tools as organizational-change Investigat
	K. Surendran, I. C. Ehie, and C. Somarajan, Enhancing student le
	Joint Task Force for Computing Curricula . (2004) Computing Curr
	A. Wegmann, Designing enterprisewide IT systems, IEEE Trans. Edu
	J. Baer, Creativity and Divergent Thinking: A Task-Specific Appr
	R. D. Pea, Learning scientific concepts through material and soc
	G. Salomon and D. N. Perkins, Rocky roads to transfer: rethinkin
	M. L. Gick and K. J. Holyoak, The cognitive basis of knowledge t
	J. G. Greeno, D. R. Smith, and J. L. Moore, Transfer on Trial: I
	K. Bain, What the Best College Teachers Do . Cambridge, MA: Harv
	J. M. Carroll, Scenario-Based Design: Envisioning Work and Techn
	D. Allen, Getting Things Done: the Art of Stress-Free Productivi
	S. Fertig, E. Freeman, and D. Gelernter, Lifestreams: an alterna
	I. Jacobson, Object-Oriented Software Engineering: A Use Case Dr
	P. Schwartz, The Art of the Long View, 1st ed. New York: Doubled
	J. M. Carroll, Making Use: Scenario-Based Design of Human-Comput
	R. L. Keeney and H. Raiffa, Decisions With Multiple Objectives:
	D. P. Grant, Design by Objectives . San Luis Obispo, CA: Design
	Y. Hatamura, Decision-Making in Engineering Design . New York: S
	E. K. Antonsson and J. Cagan, Formal Engineering Design Synthesi
	M. Bergman, J. King, and K. Lyytinen, Large scale requirements a
	P. R. Lawrence and J. W. Lorsch, Organization and Environment; M
	P. S. Dodds, D. J. Watts, and C. F. Sabel, Information exchange
	E. A. Stohr and J. V. Nickerson, Intra Enterprise Integration, i
	K. Crowston, A taxonomy of organizational dependencies and coord
	T. W. Malone, K. Crowston, and G. A. Herman, Organizing Business
	C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Languag
	E. Gamma, Design Patterns: Elements of Reusable Object-Oriented
	P. Kruchten, Architectural Blueprints The 4 $+$ 1 view model of
	M. Maier and E. Rechtin, The Art of Systems Architecting, 2nd ed
	B. Schlender, Joy after sun, Fortune, Sep. 29, 2003.
	V. G. Cerf and R. E. Kahn, ACM Turing Lecture: Assessing the Int
	M. zur Muehlen, J. V. Nickerson, and K. D. Swenson, Developing w

