Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Corequisites: CH 117

General Chemistry Laboratory I (0-3-1)

(Lecture-Lab-Study Hours)

Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close

Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Corequisites: CH 115,

General Chemistry I (3-0-6)

(Lecture-Lab-Study Hours)

Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close

The first part of the course reviews algebra and precalculus skills. The second part of the course introduces students to topics from differential calculus, including limits, rates of change and differentiation rules.

This is an introductory programming course using the Java language. The topics include: basic facts about object-oriented programming and Java through inheritance and exceptions; recursion; UML diagrams and how to read class diagrams; ethics in computer science; and some basic understanding about computer systems: the compile/link/interpret/ execute cycle and data representation.

Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Corequisites: MA 115

Calculus I (4-0-8)

(Lecture-Lab-Study Hours)

An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close

This course empowers students with the written and oral communications skills essential for both university-level academic discourse as well as success outside Stevens in the professional world. Tailored to the Stevens student, styles of writing and communications include technical writing, business proposals and reports, scientific reports, expository writing, promotional documents and advertising, PowerPoint presentations, and team presentations. The course covers the strategies for formulating effective arguments and conveying them to a wider audience. Special attention is given to the skills necessary for professional document structure, successful presentation techniques and grammatical/style considerations.

This course introduces students to all the humanistic disciplines offered by the College of Arts and Letters: history, literature, philosophy, the social sciences, art, and music. By studying seminal works and engaging in discussions and debates regarding the themes and ideas presented in them, students learn how to examine evidence in formulating ideas, how to subject opinions, both their own, as well those of others, to rational evaluation, and in the end, how to appreciate and respect a wide diversity of opinions and points of view. Close

Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry.

Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close

Laboratory work to accompany CH 116: analytical techniques properties of solutions, chemical and phase equilibria, acid-base titrations, thermodynamic properties, electrochemical cells, and properties of chemical elements. Corequisites: CH 116

General Chemistry II (3-0-6)

(Lecture-Lab-Study Hours)

Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry. Close

Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close

Biological principles and their physical and chemical aspects are explored at the cellular and molecular level. Major emphasis is placed on cell structure, the processes of energy conversion by plant and animal cells, genetics and evolution, and applications to biotechnology.

Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close

Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close

An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close

Partial derivatives, the tangent plane and linear approximation, the gradient and directional derivatives, the chain rule, implicit differentiation, extreme values, application to optimization, double integrals in rectangular coordinates.

Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves.

An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close

An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close

Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close

Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close

This course introduces students to all the humanistic disciplines offered by the College of Arts and Letters: history, literature, philosophy, the social sciences, art, and music. By studying seminal works and engaging in discussions and debates regarding the themes and ideas presented in them, students learn how to examine evidence in formulating ideas, how to subject opinions, both their own, as well those of others, to rational evaluation, and in the end, how to appreciate and respect a wide diversity of opinions and points of view.

This course empowers students with the written and oral communications skills essential for both university-level academic discourse as well as success outside Stevens in the professional world. Tailored to the Stevens student, styles of writing and communications include technical writing, business proposals and reports, scientific reports, expository writing, promotional documents and advertising, PowerPoint presentations, and team presentations. The course covers the strategies for formulating effective arguments and conveying them to a wider audience. Special attention is given to the skills necessary for professional document structure, successful presentation techniques and grammatical/style considerations. Close

Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations.

Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close

Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close

Partial derivatives, the tangent plane and linear approximation, the gradient and directional derivatives, the chain rule, implicit differentiation, extreme values, application to optimization, double integrals in rectangular coordinates. Close

This course provides the background necessary for advanced study of mathematics or computer science. Topics include propositional calculus, predicates and quantifiers, elementary set theory, countability, functions, relations, proof by induction, elementary combinatorics, elements of graph theory, mends, and elements of complexity theory.

An introduction to experimental measurements and data analysis. Students will learn how to use a variety of measurement techniques, including computer-interfaced experimentation, virtual instrumentation, and computational analysis and presentation. First semester experiments include basic mechanical and electrical measurements, motion and friction, RC circuits, the physical pendulum, and electric field mapping. Second semester experiments include the second order electrical system, geometrical and physical optics and traveling and standing waves.

Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close

Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close

Review of matrix operations, Cramer’s rule, row reduction of matrices; inverse of a matrix, eigenvalues and eigenvectors; systems of linear algebraic equations; matrix methods for linear systems of differential equations, normal form, homogeneous constant coefficient systems, complex eigenvalues, nonhomogeneous systems, the matrix exponential; double and triple integrals; polar, cylindrical and spherical coordinates; surface and line integrals; integral theorems of Green, Gauss and Stokes. Corequisites: MA 221

Differential Equations (4-0-8)

(Lecture-Lab-Study Hours)

Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close

This is a course on standard data structures, including sorting and searching and using the Java language. The topics include: stages of software development; testing; UML diagrams; elementary data structures (lists, stacks, queues, and maps); use of elementary data structures in application frameworks; searching; sorting; and introduction to asymptotic complexity analysis. Corequisites: CS 135

Discrete Structures (2-2-8)

(Lecture-Lab-Study Hours)

The aim of this course is to integrate knowledge of basic mathematics with the problems involving specification, design, and computation. By the end of the course, the student should be able to: use sets, functions, lists, and relations in the specification and design of problems; use properties of arithmetic, modular arithmetic (sum, product, exponentiation), prime numbers, greatest common divisor, factoring, Fermat?s little theorem; use binary, decimal, and base-b notation systems and translation methods; use induction to design and verify recursive programs; and implement in Scheme all algorithms considered during the course. Close

This is an introductory programming course using the Java language. The topics include: basic facts about object-oriented programming and Java through inheritance and exceptions; recursion; UML diagrams and how to read class diagrams; ethics in computer science; and some basic understanding about computer systems: the compile/link/interpret/ execute cycle and data representation. Close

An introduction to experimental measurements and data analysis. Students will learn how to use a variety of measurement techniques, including computer-interfaced experimentation, virtual instrumentation, and computational analysis and presentation. First semester experiments include basic mechanical and electrical measurements, motion and friction, RC circuits, the physical pendulum, and electric field mapping. Second semester experiments include the second order electrical system, geometrical and physical optics and traveling and standing waves.

An introduction to experimental measurements and data analysis. Students will learn how to use a variety of measurement techniques, including computer-interfaced experimentation, virtual instrumentation, and computational analysis and presentation. First semester experiments include basic mechanical and electrical measurements, motion and friction, RC circuits, the physical pendulum, and electric field mapping. Second semester experiments include the second order electrical system, geometrical and physical optics and traveling and standing waves.

This course introduces basic concepts of linear algebra from a geometric point of view. Topics include the method of Gaussian elimination to solve systems of linear equations; linear spaces and dimension; independent and dependent vectors; norms, inner product, and bases in vector spaces; determinants, eigenvalues and eigenvectors of matrices; symmetric, unitary, and normal matrices; matrix representations of linear transformations and orthogonal projections; the fundamental theorems of linear algebra; and the least-squares method and LU-decomposition. Prerequisites: Sophomore or higher class standing.

This course begins with a brief introduction to writing programs in a higher level language, such as Matlab. Students are taught fundamental principles regarding machine representation of numbers, types of computational errors, and propagation of errors. The numerical methods include finding zeros of functions, solving systems of linear equations, interpolation and approximation of functions, numerical integration and differentiation, and solving initial value problems of ordinary differential equations. Corequisites: MA 221

Differential Equations (4-0-8)

(Lecture-Lab-Study Hours)

Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close

Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close

Partial derivatives, the tangent plane and linear approximation, the gradient and directional derivatives, the chain rule, implicit differentiation, extreme values, application to optimization, double integrals in rectangular coordinates. Close

This is a course on more complex data structures, and algorithm design and analysis, using the C language. Topics include: advanced and/or balanced search trees; hashing; further asymptotic complexity analysis; standard algorithm design techniques; graph algorithms; complex sort algorithms; and other "classic" algorithms that serve as examples of design techniques.

Getting acquainted with C++: data types, input and output, functions, writing simple C++ programs, flow control, Boolean expressions, decision statements, if/then, and switch/case. Loop operations, while, do/while, and for loops. Arrays and pointers. Defining structs and classes, constructors and destructors, and operator overloading using an example String class. Templates. Abstract data types: vectors, lists, stacks, queues, and priority trees with applications. Trees and simple sorting with searching algorithms. By invitation only. Students who complete this class are exempt from CS 115 and CS 284. Close

This is a course on standard data structures, including sorting and searching and using the Java language. The topics include: stages of software development; testing; UML diagrams; elementary data structures (lists, stacks, queues, and maps); use of elementary data structures in application frameworks; searching; sorting; and introduction to asymptotic complexity analysis. Close

Introduces the essentials of probability theory and elementary statistics. Lectures and assignments greatly stress the manifold applications of probability and statistics to computer science, production management, quality control, and reliability. A statistical computer package is used throughout the course for teaching and for assignments. Contents include: descriptive statistics, pictorial and tabular methods, and measures of location and of variability; sample space and events, probability axioms, and counting techniques; conditional probability and independence, and Bayes' formula; discrete random variables, distribution functions and moments, and binomial and Poisson distributions; continuous random variables, densities and moments, normal, gamma, and exponential and Weibull distributions unions; distribution of the sum and average of random samples; the Central Limit Theorem; confidence intervals for the mean and the variance; hypothesis testing and p-values, and applications for the mean; simple linear regression, and estimation of and inference about the parameters; and correlation and prediction in a regression model.

Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close

Partial derivatives, the tangent plane and linear approximation, the gradient and directional derivatives, the chain rule, implicit differentiation, extreme values, application to optimization, double integrals in rectangular coordinates. Close

This course is primarily for students interested in using numerical methods to solve problems in mathematics, science, engineering, and management. Computational projects will be a significant part of this course and it is expected that students already have experience programming in at least one high level language. Standard topics include numerical solutions of ordinary and partial differential equations, techniques in numerical linear algebra, the Fast Fourier Transform, optimization methods, and an introduction to parallel programming. Additional topics will depend on the interests of the instructor and students.

This course introduces basic concepts of linear algebra from a geometric point of view. Topics include the method of Gaussian elimination to solve systems of linear equations; linear spaces and dimension; independent and dependent vectors; norms, inner product, and bases in vector spaces; determinants, eigenvalues and eigenvectors of matrices; symmetric, unitary, and normal matrices; matrix representations of linear transformations and orthogonal projections; the fundamental theorems of linear algebra; and the least-squares method and LU-decomposition. Prerequisites: Sophomore or higher class standing. Close

This course begins with a brief introduction to writing programs in a higher level language, such as Matlab. Students are taught fundamental principles regarding machine representation of numbers, types of computational errors, and propagation of errors. The numerical methods include finding zeros of functions, solving systems of linear equations, interpolation and approximation of functions, numerical integration and differentiation, and solving initial value problems of ordinary differential equations. Close

Simple harmonic motion, oscillations and pendulums; Fourier analysis; wave properties; wave-particle dualism; the Schrödinger equation and its interpretation; wave functions; the Heisenberg uncertainty principle; quantum mechanical tunneling and application; quantum mechanics of a particle in a "box," the hydrogen atom; electronic spin; properties of many electron atoms; atomic spectra; principles of lasers and applications; electrons in solids; conductors and semiconductors; the n-p junction and the transistor; properties of atomic nuclei; radioactivity; fusion and fission.

Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close

Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close