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Abstract

The object of this paper, which is the first in a series of three, is to
lay the foundations of the theory of ideals and algebraic sets over groups.
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1 Introduction

1.1 Some general comments

The beginning of classical algebraic geometry is concerned with the geometry of
curves and their higher dimensional analogues. Today the geometry is closely
linked to the ideal theory of finitely generated polynomial algebras over fields.

For some years now we have attempted to lay the foundations of an anal-
ogous subject, which we term algebraic geometry over groups, which bears a
surprising similarity to elementary algebraic geometry - hence its name. In
the present paper we will introduce group-theoretic counterparts to algebraic
sets, coordinate algebras, the Zariski topology and various other notions such
as zero-divisors, prime ideals, the Lasker-Noether decomposition of ideals as
intersections of prime ideals, the Noetherian condition, irreducibility and the
Nullstellensatz. A number of interesting concepts arise, focussing attention on
some fascinating new aspects of infinite groups.

The impetus for much of this work comes mainly from the study of equations
over groups. We shall have more to say about this later in this introduction.

1.2 The category of G-groups

Our work centers around the notion of a G-group, where here G is a fixed group.
These G-groups can be likened to algebras over a unitary commutative ring,
more specially a field, with G playing the role of the coefficient ring. A group H
is termed a G-group if it contains a designated copy of G, which we will for the
most part identify with G. Notice that we allow for the possibility that G = 1
and also that G = H; in particular G is itself a G-group. Such G-groups form a
category in the obvious way. A morphism from a G-group H to a G-group H ′ is
a group homomorphism φ : H −→ H ′ which is the identity on G. We call these
morphisms G-homomorphisms. The kernels of G-homomorphims are termed
ideals; they are simply the normal subgroups which meet G in the identity. The
usual notions of group theory carry over to this category, allowing us to talk
about free G-groups, finitely generated and finitely presented G-groups and so
on. In particular, it is not hard to identify the finitely generated free G-groups.
They take the form

G[X] = G[x1, . . . , xn] = G ∗ F (X),

the free product of G and the free group F (X) =< x1, . . . , xn > freely generated
by {x1, ..., xn}. We sometimes say that X = {x1, . . . , xn} freely generates the
free G-group G[X]. We view G[X] as a non-commutative analogue of a poly-
nomial algebra over a unitary commutative ring in finitely many variables. We
think of the elements of G[X] as non-commutative polynomials with coefficients
in G. Similarly, if we stay inside the category of G-groups, the free product
of two G-groups A and B is their amalgamated product A ∗G B, with G the
amalgamated subgroup.
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In dealing with various products, it is sometimes useful to let the coefficient
group G vary. In particular, if Hi is a Gi-group for each i in some index set I,
then the unrestricted direct product

∏
i∈IHi can be viewed as a

∏
i∈IGi-group,

in the obvious way. If Hi is a G-group for each i, then we will sometimes think
of the unrestricted direct product P of the groups Hi as a G-group by taking
the designated copy of G in P to be the diagonal subgroup of the unrestricted
direct product of all of the copies of G in the various factors. In the case of,
say, the standard wreath product, if U is a G-group and if T is a G′-group, then
their (standard) wreath product A o T can be viewed as a G o G′-group in the
obvious way again.

1.3 Notions from commutative algebra

Our objective here is to introduce group-theoretic counterparts to the classical
notions of integral domain and Noetherian ring.

Let H be a G-group. Then we term a non-trivial element x ∈ H a G-zero
divisor if there exists a non-trivial element y ∈ H such that

[x, g−1yg] = 1 for all g ∈ G.

Notice that if G = 1 then every non-trivial element of the G-group H is a G-
zero divisor. We then term a G-group H a G-domain if it does not contain any
G-zero divisors; in the event that G = H we simply say that H is a domain.

We focus on G-domains in 2.1. We recall here that a subgroup M of a group
H is malnormal if whenever h ∈ H, h /∈ M , then h−1Mh∩M = 1. A group H is
termed a CSA-group if every maximal abelian subgroup M of H is malnormal.
If H is such a CSA-group and G is a non-abelian subgroup of H, then H, viewed
as a G-group, is a G-domain. Notice that every torsion-free hyperbolic group is
a CSA-group. This demonstrates, together with the Theorems A1, A2 and A3
below, that there is a plentiful supply of G-domains.

Theorem A1 If U is a G-domain and if T is a G′-domain, then the wreath
product U o T is a G oG′-domain.

Further domains can be constructed using amalgamated products.

Theorem A2 Let A and B be domains. Suppose that C is a subgroup of both
A and B satisfying the following condition:

(∗) if c ∈ C, c 6= 1, then either [c, A] 6⊆ C or [c,B] 6⊆ C.

Then the amalgamated free product H = A ∗C B is a domain.

Theorem A3 The free product, in the category of G-groups, of two G-domains
is a G-domain whenever G is a malnormal subgroup of each of the factors.

Theorems A1, A2, and A3 will be proved in 2.1.
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The analogue of the Noetherian condition in commutative algebra in the
present context is what we term G-equationally Noetherian. In order to explain
what this means we need to digress a little. To this end, let H be a G-group.
Then we term the set

Hn = {(a1, . . . , an) | ai ∈ H}
affine n-space over H and we sometimes refer to its elements as points. Let
G[X] be as in 1.2. As suggested earlier, the elements f ∈ G[X] can be viewed
as polynomials in the non-commuting variables x1, . . . , xn, with coefficients in
G. We use functional notation here,

f = f(x1, . . . , xn) = f(x1, . . . , xn, g1, . . . , gm) (1)

thereby expressing the fact that the word representing f in G[X] involves the
variables x1, . . . , xn and, as needed, the constants g1, . . . , gm ∈ G. We term

v = (a1, . . . , an) ∈ Hn (2)

a root of f if
f(v) = f(a1, . . . , an, g1, . . . , gm) = 1.

We sometimes say that f vanishes at v. If S is a subset of G[X] then v is said
to be a root of S if it is a root of every f ∈ S, i.e., S vanishes at v. In this event
we also say that v is an H-point of S. We then denote the set of all roots of S
by VH(S). Then a G-group H is called G-equationally Noetherian if for every
n > 0 and every subset S of G[x1, . . . , xn] there exists a finite subset S0 of S
such that

VH(S) = VH(S0).

In the event that G = H we simply say that G is equationally Noetherian,
instead of G is G-equationally Noetherian.

These G-equationally Noetherian groups will be of considerable interest to
us and play an important part in the theory that we will develop here. We
discuss them in detail in 2.2.

The class of all G-equationally Noetherian groups is fairly extensive. This
follows from the two theorems below.

Theorem B1 Let a group H be linear over a commutative, Noetherian, unitary
ring, e.g., a field. Then H is equationally Noetherian.

A special case of this theorem was first proved by Roger Bryant [BR] in 1977 and
another special case, that of free groups, by Victor Guba [GV] in 1986. Notice
that the following groups are linear, hence equationally Noetherian: polycyclic
[AL], finitely generated metabelian [RV2], free nilpotent or free metabelian (W.
Magnus, see, for example [WB]). Not all equationally Noetherian groups are
linear (see the discussion in 2.2).

Theorem B2 Let EG be the class of all G-equationally Noetherian groups. Then
the following hold:
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1. EG is closed under G-subgroups, finite direct products and ultrapowers;

2. EG is closed under G-universal (G-existential) equivalence, i.e., if H ∈ EG

and H ′ is G-universally equivalent (G-existentially equivalent) to H, then
H ′ ∈ EG;

3. EG is closed under G-separation, i.e., if H ∈ EG and H ′ is G-separated by
H, then H ′ ∈ EG.

(We defer the definition of G-separation until 1.4.) Here two groups are said
to be G-universally equivalent if they satisfy the same G-universal sentences.
These are formulas of the type

∀x1 . . . ∀xn(
s∨

j=1

t∧

i=1

(uji(x̄, ḡij) = 1 & wij(x̄, f̄ij) 6= 1))

where x̄ = (x1, . . . , xn) is an n-tuple of variables, ḡij and f̄ij are arbitrary tuples
of elements (constants) from G. Definition of G-separation is given in the next
section. We will prove Theorems B1 and B2 in 2.2.

It is not hard to construct examples of G-groups that are not G-equationally
Noetherian (see [BMRO] and 2.2). We note also here two theorems proved
in [BMRO], namely that if a G-group H contains an equationally Noetherian
subgroup of finite index, then H itself is equationally Noetherian; and if H is
an equationally Noetherian group and Q is a normal subgroup of H which is a
finite union of algebraic sets in H (in particular, if Q is a finite normal subgroup
or the center of H), then H/Q is equationally Noetherian. Finally, taking here
for granted the terminology described in [BMR1], we remark that if G is an
equationally Noetherian torsion-free hyperbolic group and if A is an unitary
associative ring of characteristic zero of Lyndon’s type, then the completion GA

is G-equationally Noetherian.

1.4 Separation and discrimination

We concern ourselves next with specific approximation techniques in groups and
rings. Two notions play an important part here, namely that of separation and
discrimination.

Let H be a G-group. Then we say that a family

D = {Di | i ∈ I}
of G-groups G-separates the G-group H, if for each non-trivial h ∈ H there exists
a group Di ∈ D and a G-homomorphism φ : H −→ Di such that φ(h) 6= 1.

Similarly, we say that D G-discriminates H, if for each finite subset
{h1, . . . , hn} of non-trivial elements of H there exists a Di ∈ D and a G-
homomorphism φ : H −→ Di such that φ(hj) 6= 1, j = 1, . . . , n.

If D consists of the singleton D, then we say that D G-separates H in the
first instance and that D G-discriminates H in the second. If G is the trivial
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group, then we simply say that D separates H or D discriminates H. In this
event the notions of separation and discrimination are often expressed in the
group-theoretical literature by saying, respectively, that H is residually D and
that H is fully residually D or H is ω-residually D.

In 2.3 we will prove, among other things, the following two useful criteria.

Theorem C1 [BMR2] Let G be a domain. Then a G-group H is G-discriminated
by G if and only if H is a G-domain and H is G-separated by G.

Benjamin Baumslag introduced and exploited this idea in the case of free groups
[BB].

We say that the G-group H is locally G-discriminated by the G-group H ′ if
every finitely generated G-subgroup of H is G-discriminated by H ′.

Theorem C2 Let H and H ′ be G-groups and suppose that at least one of them
is G-equationally Noetherian. Then H is G-universally equivalent to H ′ if and
only if H is locally G-discriminated by H ′ and H ′ is locally G-discriminated by
H.

The idea to tie discrimination to universal equivalence is due to V. Remeslen-
nikov [RV1], who formulated and proved a version of Theorem C2 in the case
of free groups.

1.5 Ideals

As usual, the notion of a domain leads one to the notion of a prime ideal. An
ideal P of the G-group H is said to be a prime ideal if H/P is a G-domain.
Prime ideals are especially useful in describing the ideal structure of an arbitrary
G-equationally Noetherian G-domain H.

An ideal Q of the G-group H is termed irreducible if Q = Q1 ∩ Q2 implies
that either Q = Q1 or Q = Q2, for any choice of the ideals Q1 and Q2 of H.
Irreducibility is important in dealing with ideals of a free G-group G[X]. In
the theory that we are developing here, we define, by analogy with the classical
case, the Jacobson G-radical JG(H) of the G-group H to be the intersection of
all maximal ideals of H with quotient G-isomorphic to G; if no such ideals exist,
we define JG(H) = H. Similarly, we define the G-radical RadG(Q) of an ideal
Q of a G-group H to be the pre-image in H of the Jacobson G-radical of H/Q,
i.e., the intersection of all the maximal ideals of H containing Q with quotient
G-isomorphic to G.

More generally, if K is any G-group, then we define Jacobson K-radical
JK(H) of the G-group H to be the intersection of all ideals of H with quotient
G-embeddable into K; similarly we define the K-radical RadK(Q) of an ideal
Q of H to be the pre-image in H of the Jacobson K-radical of H/Q. Finally,
an ideal of a G-group is said to be a K-radical ideal if it coincides with its K-
radical.
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A finitely generated G-group H is called a K-affine G-group if JK(H) = 1.
The K-affine groups will play an important role in the abstract characterization
of coordinate groups defined over K.

All these notions will be discussed in detail in sections 4 and 5.

1.6 The affine geometry of G-groups

Let, as in 1.2,
Hn = {(a1, . . . , an) | ai ∈ H}

be affine n-space over the G-group H and let S be a subset of G[X]. Then the
set

VH(S) = {v ∈ Hn | f(v) = 1, for all f ∈ S}.
is termed the (affine) algebraic set over H defined by S.

We sometimes denote VH({s1, s2, . . .}) by VH(s1, s2, . . .).
The union of two algebraic sets in Hn is not necessarily an algebraic set.

We define a topology on Hn by taking as a sub-basis for the closed sets of this
topology, the algebraic sets in Hn. We term this topology the Zariski topology.
If H is a G-domain, then the union of two algebraic sets is again algebraic and
so in this case the closed sets in the Zariski topology consist entirely of algebraic
sets.

Then, fixing the G-group H, these algebraic sets can be viewed as the objects
of a category, where morphisms are defined by polynomial maps, i.e., if Y ⊆ Hn,
and Z ⊆ Hp are algebraic sets then a map φ : Y → Z is a morphism in this
category (or a polynomial map) if there exist f1, . . . , fp ∈ G[x1, . . . , xn] such
that for any (a1, . . . , an) ∈ Y

φ(a1, . . . , an) = (f1(a1, . . . , an), . . . , fp(a1, . . . , an)).

It turns out that this category is isomorphic to a sub-category of the category of
all G-groups. In order to explain more precisely what this sub-category consists
of we need to turn our attention to the ideals of algebraic sets.

1.7 Ideals of algebraic sets

Let, as before, H be a G-group, n a positive integer, Hn affine n-space over H
and G[X] = G[x1, . . . , xn].

Let Y ⊆ Hn. Then we define

IH(Y ) = {f ∈ G[X] | f(v) = 1 for all v ∈ Y }.

Suppose now that S is a non-empty subset of G[X] and that Y = V (S).
Every point y = (y1, . . . , yn) ∈ Hn defines a G-homomorphism φy of G[X] into
H, via evaluation, i.e., by definition, if f ∈ G[X], then φy(f) = f(y). It follows
that

IH(Y ) =
⋂

y∈Y

ker φy.
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Hence IH(Y ) is an ideal of G[X] provided only that Y is non-empty. If Y = ∅
and G 6= 1, then I(Y ) = G[X] is not an ideal. We shall, notwithstanding the
inaccuracy, term I(Y ) the ideal of Y under all circumstances.

In the event that Y is an algebraic set in Hn, then we define the coordinate
group Γ(Y ) of Y to be the G-group of all polynomial functions on Y . These are
the functions from Y into H which take the form

y 7→ f(y) (y ∈ Y ),

where f is a fixed element of G[x1, . . . , xn]. It is easy to see that

Γ(Y ) ' G[X]/I(Y ).

The ideals IH(Y ) completely characterize the algebraic sets Y over H, i.e., for
any algebraic sets Y and Y ′ over H we have:

Y = Y ′ ⇐⇒ IH(Y ) = IH(Y ′).

Similarly, the algebraic sets Y are characterized by their coordinate groups Γ(Y ):

Y ' Y ′ ⇐⇒ Γ(Y ) ' Γ(Y ′);

here ' represents isomorphism in the appropriate category (see 3.1 and 3.5 for
details).

Amplifying the remark above, it turns out that if H is a G-group, then
the category of all algebraic sets over H is equivalent to the category of all
coordinate groups defined over H, which is exactly the category of all finitely
generated G-groups that are G-separated by H. The latter result comes from
the abstract description of coordinate groups (see 5.1). We need another notion
from commutative algebra in order to explain how this comes about.

The ideal Q of G[X] is called H-closed if Q = IH(Y ) for a suitable choice
of the subset Y of Hn. We prove in 4.2 that the H-closed ideals of G[X] are
precisely the H-radical ideals of G[X]. Therefore, a finitely generated G-group
Γ is a coordinate group of an algebraic set Y ⊆ Hn (for a suitable n) if and
only if JH(Γ) = 1, which is equivalent to G-separation of Γ in H.

An elaboration of this approach yields some analogues of the Lasker-Noether
theorem, which we will describe below.

1.8 The Zariski topology of equationally Noetherian groups.

In the event that the G-group H is G-equationally Noetherian, it turns out
(irrespective of the choice of n) that the Zariski topology satisfies the descending
chain condition on closed subsets of Hn, i.e., every properly descending chain of
closed subsets of Hn is finite. Indeed, we have the following important theorem,
which is proved in 3.6.

Theorem D1 Let H be a G-group. Then for each integer n > 0, the Zariski
topology on Hn is Noetherian, i.e., satisfies the descending chain condition on
closed sets, if and only if H is G-equationally Noetherian.
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This implies, in particular, that every closed subset of Hn is a finite union of
algebraic sets. As is the custom in topology, a closed set Y is termed irreducible
if Y = Y1 ∪ Y2, where Y1 and Y2 are closed sets, implies that either Y = Y1 or
Y = Y2. So, by the remark above, every closed subset Y of Hn can be expressed
as a finite union of irreducible algebraic sets:

Y = Y1 ∪ . . . ∪ Yn.

These sets are usually referred to as the irreducible components of Y , which turn
out to be unique. This shifts the study of algebraic sets to their irreducible com-
ponents. It turns out that the irreducible ideals are the algebraic counterpart
to the irreducible algebraic sets. Indeed, let H be a G-domain; then (see 4.3) a
closed subset Y ⊆ Hn is irreducible in the Zariski topology on Hn if and only
if the ideal IH(Y ) is an irreducible ideal in G[X].

An elaboration of this approach yields a very important characterization of
irreducible algebraic sets in terms of their coordinate groups.

Theorem D2 Let H be a G-equationally Noetherian G-domain and let Y be
an algebraic set in Hn. Then the following conditions are equivalent:

1. Y is irreducible;

2. IH(Y ) is a prime ideal in G[X];

3. Γ(Y ) is G-equationally Noetherian G-domain;

4. Γ(Y ) is G-discriminated by H.

In the event that G = H we can add one more equivalent condition to Theorem
D2, which establishes a surprising relationship between coordinate groups of
irreducible algebraic sets over G and finitely generated models of the universal
theory of the group G.

Theorem D3 Let G be an equationally Noetherian domain and let Y be an
algebraic set in Gn. Then the following conditions are equivalent:

1. Y is irreducible;

2. Γ(Y ) is G-universally equivalent to G.

Moreover, any finitely generated G-group which is G-universally equivalent to
G is the coordinate group of some irreducible algebraic set over G.

1.9 Decomposition theorems

The categorical equivalence, described above, between algebraic sets over the
G-group H and the finitely generated G-groups which are G-separated by H,
leads to an analogue of a theorem often attributed to Lasker and Noether.
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Theorem E1 Let H be a G-equationally Noetherian G-domain. Then each H-
closed ideal in G[X] is the intersection of finitely many prime H-closed ideals,
none of which is contained in any one of the others, and this representaion
is unique up to order. Conversely distinct irredundant intersections of prime
H-closed ideals define distinct H-closed ideals.

Theorem E1 has a counterpart for ideals of arbitrary finitely generated G-groups.

Theorem E2 Let H be a finitely generated G-group and let K be a G-equationally
Noetherian G-domain. Then each K-radical ideal in H is a finite irredundant
intersection of prime K-radical ideals. Moreover, this representaion is unique
up to order. Furthermore, distinct irredundant intersections of prime K-radical
ideals define distinct K-radical ideals.

Theorems E1 and E2 are proved in 4.4. They lead to several interesting corol-
laries. Here we mention two of them, proved in 5.3, which stem from the
correspondence between algebraic sets and their coordinate groups.

Theorem F1 Let H be a G-equationally Noetherian G-domain. If Y is any
algebraic set in Hn, then the coordinate group Γ(Y ) is a subgroup of a direct
product of finitely many G-groups, each of which is G-discriminated by H.

Theorem F2 Let H be a non-abelian equationally Noetherian torsion-free hy-
perbolic group (here g = 1). Then every finitely generated group E which is
separated by H is a subdirect product of finitely many finitely generated groups,
each of which is discriminated by H.

1.10 The Nullstellensatz

We need next a variation of the notion of an algebraically closed group, which is
due to W.R. Scott [SW]. Here a non-trivial G-group H is termed G-algebraically
closed if every finite set of equations and inequations of the form

f = 1 and f 6= 1 (f ∈ G[x1, . . . , xn])

that can be satisfied in some G-group containing H, can also be satisfied in H.
This class of G-groups will play a part in the discussion that follows. Notice, in
the event that G = H we have the standard notion of algebraically closed group
due to W.R. Scott.

Hilbert’s classical Nullstellensatz is often formulated for ideals of polynomial
algebras over algebraically closed fields. One such formulation asserts that every
proper ideal in the polynomial ring K[x1, . . . , xn] over an algebraically closed
field K, has a root in K. It is easy to prove an analogous result for G-groups
(notice that this includes the case where G = H, below).

Theorem G1 Let H be a G-algebraically closed G-group. Then every ideal in
G[X], which can be generated as a normal subgroup by finitely many elements,
has a root in H.
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Another form of the Nullstellensatz for polynomial rings can be expressed as
follows. Suppose that S is a finite set of polynomials in K[x1, . . . , xn] and that
a polynomial f vanishes at all of the zeroes of S; then some power of f lies in the
ideal generated by S. With this in mind, we introduce the following definition.

Let H be a G-group and let S be a subset of G[x1, . . . , xn]. Then we say
that S satisfies the Nullstellensatz over H if

I(VH(S)) = gpG[X](S),

where here gpG[X](S) denotes the normal closure in G[X] of S. It follows, as
in the classical case, that an ideal in G[X] satisfies the Nullstellensatz if and
only if it is H-radical. Notice that in the event that VH(S) is non-empty, then
gpG[X](S) is actually the ideal of the G-group G[X] generated by S, i.e., the
smallest ideal of G[X] containing S.

The following version of the Nullstellensatz then holds.

Theorem G2 Let H be a G-group and suppose that H is G-algebraically closed.
Then every finite subset S of G[x1, . . . , xn] with VH(S) 6= ∅, satisfies the Null-
stellensatz; indeed, I(VH(S)) = gpG[X](S).

There is a simple criterion for determining whether a given set satisfies the
Nullstellensatz. Indeed, suppose that H is a G-group and that VH(S) 6= ∅,
where S is a subset of G[x1, . . . , xn] . Then S satisfies the Nullstellensatz over
H if and only if G[X]/gpG[X](S) is G-separated by H. Notice, that if the group
H is torsion-free and a set S ⊆ G[X] satisfies the Nullstellensatz over H, then
the ideal Q = gpG[X](S) is isolated in G[X], i.e., fn ∈ Q implies f ∈ Q (for any
f ∈ G[X]).

It is not easy to determine which systems of equations, e.g., over a free group,
satisfy the Nullstellensatz. We shall discuss a few examples in 6.

1.11 Connections with representation theory

The set Hom(J, T ) of all homomorphisms of a finitely generated group J into
a group T has long been of interest in group theory. If J is a finite group
and T is the group of all invertible n × n matrices over the field C of complex
numbers, then the study of Hom(J, T ) turns into the representation theory of
finite groups. If T is an algebraic group over C, then Hom(J, T ) is an affine
algebraic set, the geometric nature of which lends itself to an application of
the Bass-Serre theory of groups acting on trees, with deep implications on the
structure of the fundamental groups of three dimensional manifolds.

The algebraic geometry over groups that we develop here can be viewed
also as a contribution to the general representation theory of finitely generated
groups. In order to explain, we work now in the category of G-groups, where G
is a fixed group; notice that in the event that G = 1, this is simply the category
of all groups.
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Now let J be a finitely generated G-group, equipped with a finite generating
set {x1, . . . , xn}, and let T be an arbitrarily chosen G-group. Express J as a
G-quotient group of the finitely generated free G-group F = G[x1, . . . , xn]:

J ' F/Q.

Then we have seen that the set HomG(J, T ) of G-homomorphims from J into T
can be parametrized by the roots of Q in Tn and hence carries with it the Zariski
topology. Observe that if the Nullstellensatz applies to Q, then the coordinate
group of this space can be identified with J , which explains its importance here.
It is not hard to see that HomG(J, T ) is independent of the choice of generating
set, i.e., the algebraic sets obtained are isomorphic in the sense that we have
already discussed. So HomG(J, T ) is a topological invariant of the G-group
J , which we refer to as the space of all representations of J in T . The group
InnG(T ) of G-inner automorphisms of T , i.e., those inner automorphisms of T
which commute element-wise with G, induce homeomorphisms of HomG(J, T )
and so we can form the quotient space of Hom(J, T ) by InnG(T ), which we
term the space of inequivalent representations of J in T . This is a finer in-
variant than Hom(J, T ), akin to the space of inequivalent representations or
characters of representations of a finite group. In the event that J and T are al-
gorithmically tractable and satisfy various finiteness conditions it is interesting
to ask whether these spaces can be described in finite terms and, if so, whether
they are computable and how they can be used to provide information about
J , assuming complete knowledge of T . The obvious questions involving the
various algebro-geometric properties of HomG(J, T ) are again of interest here,
in particular for finitely generated metabelian groups. Whether this touches on
the isomorphism problem for such groups remains to be seen. We leave this line
of development and the way in which our algebraic geometry over groups plays
a part for another time.

1.12 Related work

In 1959 R. Lyndon [LR1] initiated a general investigation into equations over
a free group. In 1960 he described solution sets of arbitrary equations of one
variable over a free group. Then in 1980 L. Commerford and C. Edmunds
[CE] described solution sets of quadratic equations over a free group. In 1985
G. Makanin [MG] showed that there is an algorithm whereby one can decide
whether an arbitrary system of equations over a free group has a solution and,
futhermore, that the universal theory of a free group is decidable. Shortly after
that A. Razborov [RA1] obtained a description of algebraic sets over a free group
based on the Makanin’s technique.

R. Bryant [BR] was the first to consider the whole collection of algebraic
sets of equations in one variable over a group as a basis for Zariski topology.
Subsequently this idea was taken up by V. Guba [GV] and J. Stallings [SJ].

Many of the we have developed here go back to E. Rips, who described some
of his thoughts in lectures and also in private conversations.
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The modern approach to some problems in model theory (for example,
to the characterization of uncountably categorical theories) rests heavily on
some abstract algebraic-geometric ideas that were exploited by B. Zilber and E.
Hrushovski [HZ].

Recently, elaborating the subject from the point of view of logic, B. Plotkin
[PB] generalized the categories of algebraic sets and the corresponding affine
objects to arbitrary universal algebras.

2 Notions from commutative algebra

2.1 G-domains

G-domains, which were introduced in 1.3, play an important role in this paper.
We recall first the definition of a G-zero divisor.

Definition 1 Let H be a G-group. A non-trivial element x ∈ H is called a
G-zero divisor if there exists a non-trivial element y ∈ H such that

[x, yg] = 1 for all g ∈ G. (3)

The G-group H is termed a G-domain if it has no G-zero divisors.

In the case when G = H we omit all mention of G and simply say that H is
a domain. Similarly, if x is an element of the group H, then we say that x is
a zero-divisor if it is an H-zero divisor, i.e., we view H as an H-group. Notice
that if H is G-domain for some G ≤ H, then H is also a domain.

We adopt throughout this paper the following notation. If J is a subgroup of
a group K and S is a subset of K, then we denote the subgroup of K generated
by the conjugates of all of the elements in S by all of the elements of J by gpJ(S).
So gpK(S) is the normal closure of S in K, i.e., the least normal subgroup of K
containing S.

Notice that the equation (3) is equivalent to the equation

[gpG(x), gpG(y)] = 1. (4)

We will call the subgroup [gpG(x), gpG(y)] the ¦-product of x and y and denote
it by x ¦ y. So a non-trivial element x in the G-group H is a G-zero divisor if
and only if x ¦ y = 1 for some non-trivial y ∈ H. Obviously,

x ¦ y = y ¦ x; (5)

therefore the element y in Definition 1 is also a G-zero divisor. Notice also
that if x is a G-zero divisor, then all the non-trivial elements in gpG(x) are also
G-zero divisors.

Definition 2 We say that an element x ∈ H is G-nilpotent of degree ≤ k if

[xg1 , xg2 , . . . , xgk ] = 1 for all gi ∈ G,

i.e., if gpG(x) is a nilpotent subgroup of class ≤ k. In the event that gpG(x) is
nilpotent of class exactly k, then we say that x is G-nilpotent of degree k.
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Again, if G = H then we omit all mention of G and say that the element x is
nilpotent. Notice, that if a group H is nilpotent of class c, then every element
is nilpotent of degree at most c.

The following lemma shows that G-nilpotent elements are G-zero divisors.

Lemma 1 Every non-trivial G-nilpotent element in a G-group H is a G-zero
divisor.

Proof. Let x ∈ H be a non-trivial G-nilpotent element. Thus gpG(x) is nilpo-
tent. If z is a non-trivial element in the center of gpG(x), then [x, zg] = 1 for
every choice of g ∈ G, as needed.

In the case of an associative ring, invertible elements are never zero divisors.
Similar result holds for groups. To this end we introduce here the following
definition.

Definition 3 Let H be a G-group. An element h ∈ H is termed G-invertible if
gpG(h) ∩G 6= 1.

The following lemma then holds.

Lemma 2 Let H be a G-group and assume that the subgroup G in H does not
contain any G-zero divisors from H. Then any G-invertible element in H is
not a G-zero divisor.

Proof. Let x be a G-invertible element in H. So there exists a non-trivial
element g ∈ gpG(x) ∩G. Suppose that x is a G-zero divisor. Then there exists
y ∈ H such that [gpG(x), gpG(y)] = 1. It follows that [gpG(g), gpG(y)] = 1, i.e.,
g is a G-zero divisor, a contradiction.

G-domains have a somewhat restricted normal subgroup structure, as the
following lemma shows.

Lemma 3 Let H be a G-domain. Then the following hold:

1. G is a non-abelian group;

2. Every G-subgroup of H is a G-domain;

3. Every abelian normal subgroup of H is trivial; in particular, if H 6= 1,
then H is not solvable and hence not nilpotent;

4. H is directly indecomposable.

The proof is straightforward and is left to the reader.
Our next objective is to show that the class of G-domains is fairly extensive.

As noted in the introduction, this class contains all non-abelian G-groups which
are also CSA-groups; hence it contains all non-abelian, torsion-free hyperbolic
groups and all groups acting freely on Λ-trees. It is not hard to prove that in
a CSA-group H the centralizers of all non-trivial elements are abelian [MR2].
This is equivalent to saying that commutativity is a transitive relation on the
set of all non-trivial elements of H [FGMRS]. We shall routinely make use of
this property.
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Proposition 1 Let G be a non-abelian group and let H be a CSA G-group.
Then H is a G-domain.

Proof. Let a, b ∈ G, [a, b] 6= 1 and suppose x, y are non-trivial elements of H. If

[x, ya] = [x, yb] = [x, yab] = 1,

then by the transitivity of commutation [yb, yab] = 1 and [ya, yb] = 1. The first
relation implies that [y, ya] = 1 and since a maximal abelian subgroup M of H
containing y is malnormal in H, we have [y, a] = 1. Now from [ya, yb] = 1 it
follows that [y, yb] = 1 and consequently, [y, b] = 1. This implies [a, b] = 1, a
contradiction, which completes the proof of the lemma.

It follows directly from the argument above that we have also proved the
following corollary.

Corollary 1 Let H be a G-group and suppose that H is a CSA-group. If a and
b are elements of G and if [a, b] 6= 1, then for every choice of the non-trivial
elements x and y in H, at least one of the following hold:

[x, ya] 6= 1, or [x, yb] 6= 1 or [x, yab] 6= 1.

A related result holds for G-domains.

Lemma 4 Let H be a G-domain and let a1, . . . , an be any given non-trivial
elements of H. Then there exist elements g2, . . . , gn in G such that

[a1, a
g2
2 , . . . , agn

n ] 6= 1.

Proof. Since H has no G-zero divisors, there exists an element g2 ∈ G such that
[a1, a

g2
2 ] 6= 1. The same argument applies now to [a1, a

g2
2 ] and a3 and so the

desired conclusion follows inductively.
There are many other G-domains besides these CSA-groups, as the following

theorem shows.

Theorem A1 Let T be a torsion-free domain and let U be a G-domain. Then
the (standard) wreath product W = U o T of U by T is a G o T -domain.

Proof. In order to prove that W is a G o T -domain, suppose that x, y ∈ W are
a pair of non-trivial elements. Now W is the semi-direct product of B and T ,
where B, the normal closure of U in W , is the direct product of the conjugates
U t of U by the elements t ∈ T . We have to find an element z ∈ G o T such
that [x, yz] 6= 1. If x, y ∈ B, then we can find an element t ∈ T such that the
supports of x and yt overlap. In view of the fact that U is a G-domain, we can
find an element g ∈ G such that [x, ytg] 6= 1 and so we can take z = tg ∈ G oT . If
x, y are non-trivial modulo B, then simply by going over to the quotient group
W/B (' T ), the existence of z ∈ T and hence in G o T , is immediate. Finally,
suppose that y ∈ B and x /∈ B. Now x = tb, where t ∈ T, t 6= 1, b ∈ B. We
need to express y in the form

y = b1 . . . bm
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where bi is a non-trivial element in U ti and t1, . . . , tm are distinct elements of
T . We claim that x does not commute with y (and hence that we can choose
z=1). Otherwise

{t1t, . . . , tmt} = {t1, . . . , tm}.
This means that right multiplication by t gives rise to a permutation of the finite
set {t1, . . . , tm}. Consequently a big enough power of t induces the identity
permutation on {t1, . . . , tm} which implies that t1t

k = t1 for a large enough
choice of k. But T is torsion-free and so this is impossible. This completes the
proof of the theorem.

We now assume the hypothesis and notation of the above theorem. Then
we have the following simple proposition.

Proposition 2 Let W = U o T . Then the following hold:

1. For an arbitrary finite set Z of elements from G o T there exists a pair of
non-trivial elements x, y ∈ B such that [x, yz] = 1 for each z ∈ Z;

2. W is not a CSA-group; indeed, it is not even commutative transitive.

Proof. 1). Let B be the normal closure of U in W . Then B is the direct product
of the conjugates U t of U by the elements t ∈ T . If we fix a finite set Z, then
[x, yz] = 1 for each z ∈ Z, provided the supports of all of the elements involved
are disjoint. This is easy to arrange since T is torsion-free.

2). Since U is a G-domain, it is non-abelian. It follows that B is not
commutative transitive and hence neither is W .

It follows that we can use wreath products to construct G-domains which
are not CSA-groups.

We prove next the following theorem.

Theorem A2 Let A and B be domains. Suppose that C is a subgroup of both
A and B satisfying the following condition:

(∗) if c ∈ C, c 6= 1, either [c, A] 6⊆ C or [c,B] 6⊆ C.

Then the amalgamated free product H = A ∗C B is a domain.

Proof. We will make use of the usual notation and terminology for working
with elements of amalgamated products, described, e.g., in [KMS]. Let us note
that if C = A or C = B then H is one of the factors and we have nothing to
prove. We can assume therefore that C is a proper subgroup of both factors.
The condition (*) implies that if C 6= 1 then C is not simultaneously normal
in both factors; in particular, its index is greater than 2 in at least one of the
factors. Notice also that since both A and B are domains, neither of them is
abelian, unless they are trvial.

Suppose that x is a zero divisor in H. Then there exists a non-trivial element
y ∈ H such that [yh, xh′ ] = 1, for every choice of elements h, h′ in H. So,
in particular, [x, y] = 1. It follows then from a theorem of A. Karrass and
D. Solitar (see [MKS], Theorem 4.5) that this is impossible unless one of the
following conditions holds:
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1. Either x or y belongs to some conjugate of the amalgamated subgroup C;

2. Neither x nor y is in a conjugate of C, but x is in a conjugate of a factor
(A or B) and y is in the same conjugate of that factor;

3. Neither x nor y is in a conjugate of a factor and x = g−1cgzn, y =
g−1c∗gzm, where c, c∗ ∈ C, and g−1cg, g−1c∗g and z commute pairwise.

We will consider these three cases in turn.
If x ∈ Cg then we can assume that x ∈ C. If y ∈ A∪B, then [y, xw] 6= 1 for

a suitable choice of w ∈ A ∪ B, because A and B are domains. So y /∈ A ∪ B.
Choose h ∈ H so that y′ = yh is cyclically reduced. By the remark above we
can assume that y′ is of length at least two. So, replacing y′ by its inverse if
necessary, we find that

y′ = a1b1 . . . anbn (n ≥ 1),

where ai ∈ A− C, bi ∈ B − C, for each choice of i. As we mentioned above C
is not normal in both A and B. Therefore there exists an element v ∈ A ∪ B
such that xv 6∈ C. For definiteness, suppose that xv ∈ A. Then

xvy′ 6= y′xv

because xvy′ is of length at most n, whereas y′xv is of length n + 1. Thus the
first case cannot arise.

We consider next, the second case. We can assume here that both x and y
belong to one and the same factor. Since each factor is a domain, there exists
an element t in the appropriate factor such that [y, xt] 6= 1, which means that
x is not an H-zero divisor. Hence this case cannot arise.

We are left with the third possibility. We can assume here that x = czn, y =
c1z

m, c, c1 ∈ C and c, c1, z commute pairwise, and that the length of z is
at least 2. We claim that there exists an element f ∈ H such that if we
write the elements z and f in reduced form then the products cznf−1czmf and
f−1czmfczn are also in reduced form and not equal to one another. Indeed,
if we choose the first syllable of f appropriately, then we can make sure that
the product f−1czmf is reduced. Similarly, if we choose the last syllable of f
appropriately, we can arrange that the products cznf−1 and fczn are reduced
and moreover, that the last syllables in f and z either lie in different factors or
lie in the same factor but have different right coset representatives. It follows
then that [y, xf−1

] 6= 1. This completes the proof of the theorem.
We mention here two consequences of this theorem

Corollary 1 Let A and B be domains. Then A ∗B is a domain.

Corollary 2 Let A and B be domains and let C be a subgroup of both of them.
If C is malnormal either in A or in B, then A ∗C B is a domain.

It is worth pointing out that the condition (*), above, is essential.
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Example 1 Let F be free on x and y and F̄ free on x̄ and ȳ. Let, furthermore,
C = gpF (x) and C = gpF̄ (x̄). Then H = F ∗C=C F̄ is not an H-domain.

Proof. The elements y and ȳ have exactly the same action (by conjugation) on
the normal subgroup C in the group H. Hence the element y−1ȳ centralizes the
subgroup C. It follows that [y−1ȳ, gpH(x)] = 1, i.e., x is an H-zero divisor.

Finally we have the following

Theorem A3 The free product, in the category of G-groups, of two G-domains
A and B is a G-domain whenever G is malnormal in both A and B.

The proof can be carried out along the same lines as the proof of the theorem
above. We note only that the first two cases are completely analogous, while the
last case is even easier. It suffices here to note only that a non-trivial element
of G cannot commute with an element of either A or B which is not contained
in G.

It follows immediately then from this theorem that if A and B are free and
G is a maximal cyclic subgroup of both of them, then the free product of A and
B in the category of G-groups is a G-domain.

2.2 Equationally Noetherian groups

We have already defined what it means for a G-group H to be G-equationally
Noetherian. This notion is very different from what is known as the Noetherian
condition in everyday group theory. Recall that a group is said to be Noetherian
if it satisfies the maximum condition on its subgroups. Another condition that
has turned out to be useful is the maximal condition on normal subgroups
introduced by Philip Hall (see [BR]). However neither of these chain conditions
turn out to be useful in the context of algebraic geometry over groups. We recall
the relevant definitio that we introduced in 1.3.

Definition 4 A G-group H is said to be G-equationally Noetherian if for every
n > 0 and every subset S of G[x1, . . . , xn] there exists a finite subset S0 of S
such that

V (S) = V (S0).

In the case H = G we omit all mention of G and simply say that H is equa-
tionally Noetherian group.

Sometimes, if S, S0 ⊆ G[x1, . . . , xn] and VH(S) = VH(S0) we will say that
the systems of equations S = 1 and S0 = 1 are equivalent over H. If G = 1,
then a subset S of G[X] is termed coefficient-free and we refer to the system
S = 1 of equations as a coefficient-free system.

We respectively denote by E and EG the class of all equationally Noetherian
groups and the class of all G-equationally Noetherian groups. In particular, E1

is the class of all G-equationally Noetherian groups with G = 1 (i.e., the class of
all groups that satisfy the Noetherian condition with respect to coefficient-free
systems of equations). If G′ ≤ G then every G-group H can be viewed also as
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a G′-group; clearly EG ⊆ EG′ . It follows that an equationally Noetherian group
H is G-equationally Noetherian for every choice of the subgroup G of H. The
converse, properly formulated, also holds.

Proposition 3 Let H be a G-group. If G is finitely generated and H ∈ E1,
then H ∈ EG.

Proof. Let S be a subset of G[x1, . . . , xn]. Each element w ∈ S can be expressed
functionally in the form

w = w(x̄, ā) = w(x1, . . . , xn, a1, . . . , ak),

where a1, . . . , ak is a finite generating set for G. Let us replace the generators
ai by new variables, say yi. The new set S(x̄, ȳ) ⊆ G[x̄, ȳ] is coefficient-free;
hence VH(S(x̄, ȳ)) = VH(S0(x̄, ȳ)) for some finite subset S0(x̄, ȳ) ⊆ S(x̄, ȳ).
Now consider the set of solutions of the system S0(x̄, ȳ) = 1 for which yi = ai.
This is exactly the algebraic set VH(S0(x̄, ā)). But these solutions also satisfy
the whole system S(x̄, ȳ) = 1; therefore VH(S0(x̄, ā)) = VH(S(x̄, ā)) = VH(S).

We have been unable to resolve the following problem.

Problem 1 Let H be a G-group such that every one-variable system S con-
tained in G[x] is equivalent over H to a finite subset of itself. Does this imply
that H is G-equationally Noetherian?

The following theorem is, in a sense, due to R. Bryant ([BR], 1977), in the
one variable case; it was reproved by V. Guba ([GV], 1986), in the case of free
groups. Both proofs of the authors cited are similar and can be carried over to
a proof of the following theorem.

Theorem B1 Let H be a linear group over a commutative, Noetherian, unitary
ring, e.g., a field. Then H is equationally Noetherian.

Proof. Consider first the case where H is a subgroup of the general linear
group GL(n,K) over a field K. We can think of matrices from GL(n,K) as
elements of the K-vector space Kn2

of dimension n2. The classical Zariski
topology on Kn2

, which is Noetherian by Hilbert’s basis theorem, induces the
usual Zariski topology on GL(n,K) and, consequently also on H, which is
therefore Noetherian in this topology. Since multiplication and inversion in
H are continuous functions in this induced Zariski topology, for every element
w(x1, . . . , xn) ∈ G[x1, . . . , xn], the set of all roots VH(w) of w is closed in this
topology, since it is the pre-image of 1 under the continious map Hn −→ H
defined by w. This implies that every algebraic set over H is closed in this
topology, because such sets are exactly intersections of sets of roots of single
elements in G[x1, . . . , xn]. In other words, the classical Zariski topology on H is
a refinement of the non-commutative analogue of the Zariski topology on H that
we have introduced here. It follows that this non-commutative Zariski topology
is also Noetherian.
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In general, the group GL(n,R) over a commutative, Noetherian, unitary
ring R is a subgroup of a direct product of finitely many linear groups over a
field (see [WB]); hence it is equationally Noetherian by Theorem B2 below.

As we noted earlier, not all equationally Noetherian groups are linear; we
shall prove, below, that all abelian groups are equationally Noetherian, thereby
providing some additional examples (see [WB]). There are other examples of
finitely generated equationally Noetherian non-linear groups, which are due to
R. Bryant. He proved [BR] that finitely generated abelian-by-nilpotent groups
are equationally Noetherian. Since the wreath product of a non-trivial, finitely
generated abelian group U by a finitely generated nilpotent group T is linear if
and only if T is virtually abelian [WB], this provides us with more equationally
Noetherian groups that are not linear. The paper [BMRO] contains a further
discussion about equationally Noetherian groups as well as additional examples
of various kinds.

We prove now the following theorem.

Theorem 1 Every abelian group A is equationally Noetherian.

Proof. Every system S = 1 of equations over an abelian group A is equivalent
to a linear system, obtained by abelianizing each of the elements in S. Each
such linear system over A can be re-expressed in the form

S : mi1x1 + . . . minxn = ai (i ∈ I, mij ∈ Z, ai ∈ A).

As usual (applying the Euclidean algorithm), this system is equivalent to a finite
linear system fi = bi (bi ∈ A), i = 1, . . . , k in row-echelon form. So k ≤ n.
Notice, that all the equations fi = bi are some integer linear combinations of
finite family S0 of equations from the original system S = 1. Hence, VA(S0) =
VA(S). This completes the proof.

It is important to notice that the system of equations in row-echelon form
obtained above consists of no more than n equations. However S0 can contain
an arbitrarily large number of equations (see the example below).

Example 2 Let p1, . . . , pn be distinct primes and suppose that a group H has
elements of orders p1, . . . , pn. Then the system

xp1...pi−1pi+1...pn = 1, i = 1, . . . , n,

is equivalent to the system
x = 1,

which is in row-echelon form. If we now re-express this latter system in terms
of the original one, we find that all of the original equations are needed.

Examples of nilpotent groups which are not G-equationally Noetherian are
plentiful - see, e.g., Proposition 4, (1) below. So Theorem 1 can not be gener-
alized to nilpotent groups.

The example above suggests the following
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Problem 2 Let H be a G-group. Suppose that for every integer n > 0 and
every subset S of G[x1, . . . , xn] there exists a finite subset S0 of G[x1, . . . , xn]
such that VH(S) = VH(S0). Is H G-equationally Noetherian?

We are now in a position to formulate our next theorem.

Theorem B2 Let EG be the class of all G-equationally Noetherian G-groups.
Then the following hold:

1. EG is closed under G-subgroups, finite direct products and ultrapowers;

2. EG is closed under G-universal (G-existential) equivalence, i.e., if H ∈ EG

and H ′ is G-universally (G-existentially) equivalent to H, then H ′ ∈ EG;

3. EG is closed under separation, i.e., if H ∈ EG and H ′ is G-separated by
H, then H ′ ∈ EG.

Proof. 1. Suppose, first, that a G-group H is G-equationally Noetherian and
that H ′ is a G-subgroup of H. Let S be a subset of G[x1, . . . , xn]. Since H is
G-equationally Noetherian, there is a finite subset S0 of S such that VH(S) =
VH(S0). We claim that VH′(S) = VH′(S0). Indeed, if v ∈ VH′(S0), then v ∈
VH(S0) = VH(S). Hence v ∈ VH′(S). It follows that VH′(S) = VH′(S0), as
desired.

Suppose next that H1, . . . , Hk are G-equationally Noetherian G-groups and
that D is their direct product. According to the remarks made in the intro-
duction, we can turn D into a G-group by choosing the copy of G in D to be
the diagonal subgroup {(g, . . . , g) | g ∈ G} of D. Now let S be a subset of
G[x1, . . . , xn]. Then for each i, VHi(S) = VHi(Si), where Si is a finite subset of
S. Put S0 = S1 ∪ . . . ∪ Sk. Then VD(S) = VD(S0). This completes the proof
of the most of 1. The statement about ultrapowers follows from 2 as indicated
below.

2. Suppose that S ⊆ G[x1, . . . , xn] . Now VH(S) = VH(S0), where S0 =
{f1, . . . , fk} is a finite subset of S. For each f ∈ S, let

φf = ∀x1∀x2 . . . ∀xn (
k∧

i=1

fi(x1, . . . , xn) = 1 → f(x1, . . . , xn) = 1).

Let Φ be the set of all such sentences. Then all of the sentences in Φ are satisfied
in H and hence also in H ′. This translates into VH′(S) = VH′(S0), as desired.

Notice that an ultrapower U of a G-group H is G-elementarily equivalent
to H (see, e.g., [CK]). So, in particular, U and H are G-universally equivalent.
Consequently, if H ∈ EG, then U ∈ EG.

3. Let S be a subset of G[X]. Then there exists a finite subset S0 of S
such that VH(S) = VH(S0). We claim that this implies that VH′(S) = VH′(S0).
For if this is not the case, there exists v = (a1, . . . , an) ∈ H ′n such that S0

vanishes at v but S does not vanish at v. So there exists an element f ∈ S
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such that f(v) 6= 1. Choose now a G-homomorphism φ of H ′ into H so that
φ(f(v)) = f((φ(a1), . . . , φ(an)) 6= 1. But for each f ′ ∈ S0, f ′(v) = 1 and
therefore φ(f ′(v)) = f ′(φ(a1), . . . , φ(an)) = 1, i.e., (φ(a1), . . . , φ(an)) is a root
of S0. So (φ(a1), . . . , φ(an)) is a root of S and therefore f(φ(a1), . . . , φ(an)) = 1,
a contradiction. This completes the proof of Theorem B2.

In general the restricted direct product of G-equationally Noetherian groups
need not be G-equationally Noetherian. On the other hand, direct powers of
groups from E1 still belong to E1. This is the content of the following proposition.

Proposition 4 1. Let {Hi | i ∈ I} be a family of Gi-equationally Noetherian
Gi-groups. If there are infinitely many indices i for which Gi is not in the
center of Hi, then the restricted direct product D =

∏
i∈I Hi of the groups

Hi, viewed as a G =
∏

i∈I Gi-group, is not G-equationally Noetherian.

2. The class E1 is closed under unrestricted and restricted direct powers.

Proof. 1. We choose an infinite subset J of I and elements aj ∈ Gj which are
not in the center of Hj , j ∈ J . Consider now the subset S = {[x, aj ] | j ∈ J} of
G[x]. Then S is not equivalent to any of its finite subsets.

2. Let H ∈ E1 and let I be a set of indices. Denote by HI the unrestricted
I-th power of H. Let S ⊆ F (X), where F (X) is the free group on X (i.e., S = 1
is a coefficient-free system of equations). Then VH(S) = VH(S0) for some finite
subset S0 of S. It is easy to see that VHI (S) = VHI (S0).

In view of the fact that E1 is closed under subgroups, this suffices for the
proof of the proposition.

The next result provides a description of the Baumslag-Solitar groups which
are equationally Noetherian .

Proposition 5 Let

Bm,n =< a, t; t−1amt = an > (m > 0, n > 0).

Then Bm,n is equationally Noetherian provided either m = 1 or n = 1 or m = n;
in all other cases Bm,n does not belong to E1.

Proof. If either m = 1 or n = 1, then Bm,n is metabelian and linear. If m = n,
observe that the normal closure N of t and am is the direct product of a free
group of rank m and the infinite cyclic group on am. Moreover N is of index
m in Bm,m. Now N is linear and hence so too is Bm,m. Thus in all the cases
above Bm,n is equationally Noetherian.

Suppose then that m 6= 1, n 6= 1 and m 6= n. On replacing t by t−1 if
necessary, we can assume that m does not divide n. Observe that the elements

amk

, t−1amk

t, . . . , t−kamk

tk (6)

all commute, but if j is chosen sufficiently large, a does not commute with
t−jamk

tj . Let

S = {[x1, x
−i
2 x1x

i
2] | i = 1, 2, . . .} ⊆ F (x1, x2).
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Suppose that G ∈ E1. Then there exists an integer ` > 0 such that

V (S) = V ({[x1, x
−i
2 x1x

i
2] | i = 1, 2, . . . , `}).

But this implies that
(am`

, t−jam`

tj) ∈ V (S),

contradicting (6).
Notice that in the case of commutative rings, if R is a Noetherian ring then

the ring of polynomials R[x] is also Noetherian. We do not know whether the
corresponding result, which we formulate here as a conjecture, also holds.

Conjecture 1 Let G be an equationally Noetherian group. Then the free G-
group G[x1, . . . , xn] is G-equationally Noetherian.

We can prove this conjecture for various classes of equationally Noetherian
groups, by making use of the specific properties of the groups involved. However
the general conjecture remains unresolved. The best we can do is to prove the
following theorem.

Theorem 2 Let G be a linear group or a torsion-free hyperbolic equationally
Noetherian group. Then the group G[x1, . . . , xn] is also equationally Noetherian.

Proof. Suppose, first, that G is a linear group. The free product of G and a
free group F (x1, . . . , xn) is again linear (see, for example, [WB], p. 35); hence
G[x1, . . . , xn] is equationally Noetherian.

If G is a torsion-free hyperbolic group, then the group G[X] is G-separated
by the G-equationally Noetherian group G [BMR2]. Consequently G[X] is G-
equationally Noetherian by Theorem B2. Since G[x1, . . . , xn] is finitely gener-
ated and in E1, then by Proposition 3 G[x1, . . . , xn] is equationally Noetherian.

The most general open questionS in this direction are

Problem 3 Is the free product of two equationally Noetherian groups equation-
ally Noetherian?

Problem 4 Is an arbitrary hyperbolic group equationally Noetherian?

2.3 Separation and discrimination

In this section we prove some results for groups; the corresponding result hold
also for rings, but we restrict our attention here only to groups.

We recall first some definitions given in the introduction.

Definition 5 Let H be a G-group. Then we say that a family

D = {Di | i ∈ I}
of G-groups G-separates H if for each non-trivial h ∈ H there exists a group
Di ∈ D and a G-homomorphism φ : H −→ Di such that φ(h) 6= 1.

We say that D G-discriminates H if for each finite subset {h1, . . . , hn} of
non-trivial elements of H there exists a Di ∈ D and a G-homomorphism φ :
H −→ Di such that φ(hj) 6= 1, j = 1, . . . , n.
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If D consists of the singleton D, then we say that D G-separates H in the
first instance and that D G-discriminates H in the second. If G is the trivial
group, then we omit any mention of G and simply say that D separates H or
D discriminates H. These notions of separation and discrimination are often
expressed in the group-theoretical literature by saying, respectively, that H is
residually D and that H is fully residually D or ω-residually D.

Definition 6 Let KG be the category of all G-groups, let SG ⊂ KG be the
subcategory of all G-groups G-separated by the singleton G and let DG be the
subcategory of SG consisting of those G-groups which are G-discriminated by G.

If the group G has no G-zero divisors then according to [BMR2] there exists
a very simple criterion for a group in SG to belong to DG. Benjamin Baumslag
was the first to exploit this kind of argument in the case of free groups [BB].

Theorem C1 [BMR2] Let G be a domain. Then a G-group H is G-discriminated
by G if and only if H is a G-domain and H is G-separated by G.

Proof. Let H ∈ SG and suppose that H is a G-domain. Then for an arbitrary
finite set h1, . . . , hn of non-trivial elements of H there exist elements z2, . . . , zn ∈
H such that the left-normed commutator c = [h1, h

z2
2 , . . . , hzn

n ] is non-trivial.
Hence we can separate c in G by a G-homomorphism φ : H −→ G such that
φ(c) 6= 1. But this implies that φ(hi) 6= 1 for all i. This shows that G G-
discriminates H.

Suppose now that H ∈ DG and that f, h are two nontrivial elements of H.
Then there exists a G-homomorphism φ : H −→ G such that φ(f) and φ(h) are
both nontrivial in G. Since G is a domain, it follows that [φ(f), φ(h)g] 6= 1 for
some g ∈ G. But then [f, hg] 6= 1 in H, which shows that H is a G-domain.

It is not hard to see that if F is a non-abelian free group, then F × F is
separated by F , but it is not discriminated by F - this remark is due to [BB].

Now we give an important characterization of finitely generated G-groups
which are G-universally equivalent to G, when G is equationally Noetherian.
This characterisation goes back to [RV1] in the case of free groups.

We say that the G-group H is locally G-discriminated by the G-group H ′ if
every finitely generated G-subgroup of H is G-discriminated by H ′.

Theorem C2 Let H and H ′ be G-groups and suppose that at least one of them
is G-equationally Noetherian. Then H is G-universally equivalent to H ′ if and
only if H is locally G-discriminated by H ′ and H ′ is locally G-discriminated by
H.

Proof. Suppose that H is G-universally equivalent to H ′ and, furthermore, that
one of them is G-equationally Noetherian. By Theorem B2 both H and H ′ are
G-equationally Noetherian.

Let K be a finitely generated G-subgroup of H and let

K =< x1, . . . , xn; r1, r2, . . . , >
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be a G-presentation of K with finitely many G-generators. The system of equa-
tions {ri(x1, . . . , xn) = 1 | i = 1, 2, . . .} is equivalent over H ′ to one of its finite
subsets, say, {ri(x1, . . . , xn) = 1 | i ≤ m}. Let u1(x1, . . . , xn), . . . , uk(x1, . . . , xn)
be arbitrary elements from K. We have to find a homomorphism from K to H ′

which separates the given elements u1(x1, . . . , xn), . . . , uk(x1, . . . , xn) from the
identity. The formula

Φ = ∃x1 . . . xn(
m∧
1

ri(x1, . . . , xn) = 1
k∧
1

uj(x1, . . . , xn) 6= 1)

holds in H and thus it holds in H ′. Consequently, there exist elements h1, . . . , hn

in H ′ such that

r1(h1, . . . , hn) = 1, . . . , rm(h1, . . . , hn) = 1,

but
u1(h1, . . . , hn) 6= 1, . . . , uk(h1, . . . , hn) 6= 1.

It follows that ri(h1, . . . , hn) = 1, i = 1, 2, . . . , . Hence, the map

x1 −→ h1, . . . , xn −→ hn

can be extended to a G-homomorphism φ : K −→ H which separates the ele-
ments u1(x1, . . . , xn), . . . , uk(x1, . . . , xn). This proves that K is G-discriminated
by H ′. Since K was an arbitrary finitely generated G-subgroup of H it follows
that H is locally G-discriminated by H ′. Similarly, H ′ is locally G-discriminated
by H.

Now suppose that the G-group H is locally G-discriminated by the G-group
H ′. We claim that any ∃-sentence with constants from G which holds in H
holds also in H ′. Let us consider a formula of the type

Φ = ∃x1, . . . , xn(
s∧
1

ui(x1, . . . , xn) = 1
t∧
1

vj(x1, . . . , xn) 6= 1),

where the words ui and vj may contain constants from G. Let the elements
a1, . . . , an ∈ H satisfy this sentence in H. Denote by K the G-subgroup
generated by {a1, . . . , an}. By hypothesis, there exists a G-homomorphism
f : K −→ H ′ which separates the elements

v1(a1, . . . , an), . . . , vt(a1, . . . , an)

in H ′. This implies that the images f(a1), . . . , f(an) satisfy the same equalities
ui(f(a1), . . . , f(an)) = 1, i = 1, . . . , s and the same inequalities

vi(f(a1), . . . , f(an)) 6= 1, i = 1, . . . , t

in H ′. Therefore, the sentence Φ holds in H ′. This shows that H is G-
existentially equivalent to H ′, and hence H is G-universally equivalent to H ′.

A G-subgroup H of the G-group H ′ is said to be G-existentially closed in
H ′, if any existential sentence with constants from G holds in H ′ if and only if
it holds in the subgroup H.
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Corollary 3 Let H be a G-group which is locally G-discriminated by G. Then
G is G-existentially closed in H and, in particular, G is universally equivalent
to H.

The proof follows along exactly the same lines as the proof of the second part
of Theorem C2.

2.4 Universal groups

The discussion in this subsection stems from a consideration of a well-known
fact from the field theory. If K is a given field and K is its algebraic closure
then any finite algebraic extension of K is embeddable in K, i.e., K is universal
for fields which are finitely generated (as modules) over K. This remark leads
to the following

Definition 7 Let K be a category of groups and let λ be a cardinal number.
We term a group H ∈ K λ-universal in K if every group in K generated by
fewer then λ generators is embeddable in H and conversely, every subgroup of
H generated by fewer then λ generators belongs to K.

The main goal of this subsection is to discuss universal groups with respect
to the categories SG and DG. In this case all the notions from the defini-
tion above are relative to the category of G-groups, i.e., all embeddings are
G-monomorphisms and all the subgroups in consideration are G-subgroups. We
will focus mostly on the case of λ = ℵ0, but most of the results can be carried
over to the general case.

Suppose now that the G-group H is separated by the family D = {Di | i ∈ I}
of G-groups. For each h ∈ H, h 6= 1, there exists an index i ∈ I and a G-
homomorphism θi : H −→ Di such that θi(h) 6= 1. Let Ki,h be the kernel of θi.
Then Ki,h is an ideal of H and

⋂

h∈H,h 6=1

Ki,h = 1.

It follows that the canonical homomorphism

θ : H −→ P =
∏

h∈H,h 6=1

H/Ki,h (7)

is an injective G-homomorphism of the G-group H into the G-group P , where
in this instance we take the diagonal of all the copies of G in the various factors
to be the designated copy of G in P . Notice that H/Ki,h is G-isomorphic to a
G-subgroup of Di and hence H is G-isomorphic to a G-subgroup of the G-group
obtained by forming the unrestricted direct product of all of the groups in D.

If D is just the singleton {G}, then it is not hard to deduce the following
proposition.
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Proposition 6 Let I be a set of indices and suppose its cardinality is not less
than the maximum of the cardinalities of G and ℵ0. Then the unrestricted direct
power (viewed as a G-group)

Gℵ0(I) =
∏

i∈I

Gi, (Gi ' G)

is an ℵ0-universal group in the category SG.

Proof. The group Gℵ0(I) lies in SG since every non-trivial element h ∈ Gℵ0(I)
has a non-trivial coordinate hi for some i ∈ I. Hence the canonical projection
into the i-th factor Gℵ0(I) −→ G separates h in G. Moreover, for the same
reason, every G-subgroup of Gℵ0(I) also lies in SG. On the other hand, every
finitely generated G-group from SG is embeddable in Gℵ0(I). Indeed, the car-
dinality of any finitely generated G-group is not greater then the maximum of
the cardinality of G and ℵ0. Now the result follows from the (7).

The G-subgroups of Gℵ0(I) which are G-discriminated by G can be charac-
terised by considering the supports of their elements. In order to explain, let
I(g) be the set of all indices i ∈ I such that the i-th coordinate of the element
g ∈ Gℵ0(I) is non-trivial. Now if H is a G-subgroup of Gℵ0(I), put

I(H) = {I(h) | h ∈ H, h 6= 1}.
Proposition 7 Let G be a domain. Then a G-subgroup H of Gℵ0(I) is G-
discriminated by G if and only if the set I(H) satisfies the following condition:
the intersection of an arbitrary finite collection of sets from I(H) is non-empty.

Proof. Let h1, . . . , hn be non-trivial elements of the G-subgroup H of Gℵ0(I)
which is G-discriminated by G. By Theorem C1, H is a G-domain. Hence there
are elements z2, . . . , zn ∈ H such that the commutator

c = [h1, h
z2
2 , . . . , hzn

n ]

is non-trivial. Consequently, I(c) is non-empty and

I(c) ⊆ I(h1) ∩ . . . ∩ I(hn).

Therefore I(h1) ∩ . . . ∩ I(hn) is non-empty.
On the other hand, suppose that the G-subgroup H of Gℵ0(I) satisfies the

given condition. Let h1, . . . , hn be non-trivial elements of H. Then I(h1)∩ . . .∩
I(hn) is non-empty. Let i ∈ I belong to this intersection. Then the projection
of Gℵ0(I) into the i-th factor G is a G-homomorphism of H onto G which maps
each of the hi into non-trivial elements of G, as required.

The following result is a corollary of the proof above rather then the propo-
sition itself.

Corollary 4 Let H be a G-domain. Suppose H is a G-subgroup of the direct
product of the finitely many G-groups H1, . . . , Hn. If we denote by λi the re-
striction to H of the canonical projection H1× . . .×Hn → Hi, then at least one
of λ1, . . . , λn is an embedding.
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Proof. Suppose that for each i = 1, . . . , n there exists a non-trivial element, say
ci, in the kernel of the homomorphism λi. Then the element c = [c1, c

g2
2 , . . . , cgn

n ]
is also non-trivial for some choice of the elements g2, . . . , gn ∈ G. It follows that
λi(c) = 1 for each i = 1, . . . , n, which is impossible since c 6= 1. This completes
the proof.

Now we are able to describe some groups which are “almost” ℵ0-universal
in the category DG. Let I be an arbitrary countable set of indices. A set U of
non-empty subsets of I is called an ultrafilter over I if the following conditions
hold:

1. U is closed under finite intersections;

2. If X ∈ U and Y is any subset of I containing X, then Y ∈ U ;

3. For every subset X of I either X ∈ U or I −X ∈ U .

The ultrafilter U over I gives rise to a normal subgroup N of the cartesian
product Gℵ0(I), which is defined as follows:

N = {g ∈ Gℵ0(I) | I − I(g) ∈ U}.
The quotient group of Gℵ0(I) by N is called the ultrapower of G with respect to
the ultrafilter U , we denote this group by Gℵ0(I)/U . An ultrafilter U is said to
be non-principal if there is no element i ∈ I such that i ∈ X for every X ∈ U.

Proposition 8 Let G be an equationally Noetherian group. Then for any
countably infinite set I and any non-principal ultrafilter U over I, the ultra-
power Gℵ0(I)/U has the following properties:

1. Gℵ0(I)/U is a G-group, where G is embedded in Gℵ0(I)/U via the diagonal
mapping;

2. Every finitely generated G-group in DG is G-embeddable in Gℵ0(I)/U ;

3. Every finitely generated G-subgroup of Gℵ0(I)/U belongs to DG.

Proof. By Theorem C2 every finitely generated G-group H in DG is univer-
sally equivalent to G, hence by standard arguments from logic (see, for example,
[CK]), H is embeddable in Gℵ0(I)/U. On the other hand all finitely generated
G-subgroups of Gℵ0(I)/U are universally equivalent to G (again see the book
[CK]) and hence by Theorem C2 they belong to DG.

Notice, that in general the ultrapower Gℵ0(I)/U does not belong to the
category DG therefore it is not a universal object for this category. Moreover,
if G 6= 1 then the universal group Gℵ0(I) , as well as the group Gℵ0(I)/U ,
is uncountable whenever U is not a principal ultrafilter. The question as to
whether there exist natural countable universal groups in the categories SG

and DG is important for the further development of algebraic geometry over
groups. In the case when G is a free non-abelian group O.Kharlampovich and
A.Myasnikov proved [KM] that exponential group FZ[x] is an ℵ0-universal group
in the category DG. This result leads to the following
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Conjecture 2 Let G be a non-abelian torsion-free hyperbolic group. Then the
Z[x]–completion GZ[x] of G (see [MR2] for details) is an ℵ0-universal group in
the category DG.

Notice, that the group GZ[x] is G-discriminated by G [BMR2]. It follows there-
fore that in order to prove Conjecture 2 it suffices only to prove that any finitely
generated G-group which is G-discriminated by G is G-embeddable into GZ[x].

3 Affine algebraic sets

3.1 Elementary properties of algebraic sets and the Zariski
topology

Let G be a fixed group, let H be a G-group and let n be a positive integer. We
take for granted here the definitions and notation described in the introduction.
In view of its importance, however, we recall the following definition.

Definition 8 Let S be a subset of G[X]. Then the set

VH(S) = {v ∈ Hn | f(v) = 1 for all f ∈ S}
is termed the (affine) algebraic set over H defined by S.

We sometimes denote VH(S) simply by V (S).
The following example provides us with algebraic sets.

Example 3 Let H be a G-group. Then the following subsets of H are algebraic:

1. The G-singleton {a} (here a ∈ G):

VH(xa−1) = {a};

2. For any subset M of H, the centralizer CH(M):

VH({[x,m] | m ∈ M}) = CH(M).

The next lemma allows one to construct algebraic sets in “higher dimen-
sions”.

Lemma 5 Let H be a G-group and let U and W be affine algebraic sets in Hn

and Hp, respectively. Then U ×W is an algebraic set in Hn+p.

The proof is analogous to that of the corresponding theorem in algebraic ge-
ometry. Indeed, if U = V (S), where S ⊆ G[x1, . . . , xn] and W = V (T ), where
T ⊆ G[y1, . . . , yp], then

U ×W = V (S ∪ T ),

where we view S ∪ T as a subset of G[x1, . . . , xn, y1, . . . , yp].
The following lemma is useful.
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Lemma 6 Let H be a G-group and Hn affine n-space over H. Then for arbi-
trary subsets Si of G[X], the following hold:

1. VH(1) = Hn ;

2. VH(g) = ∅ for any non-trivial g ∈ G;

3. S1 ⊆ S2 =⇒ VH(S1) ⊇ VH(S2);

4. VH(S) = VH(gpG[X](S));

5.
⋂

i∈I VH(Si) = VH(
⋃

i∈I Si);

6. If H is a G-domain, then

VH(S1) ∪ VH(S2) = VH([s1, s
g
2] | si ∈ Si, g ∈ G)

= VH(s1 ¦ s2 | si ∈ Si, i = 1, 2);

7. If H is a G-domain, then

VH(Q1) ∪ VH(Q2) = VH(Q1 ∩Q2),

for any ideals Q1, Q2 of G[X].

Proof. The verification of the first 5 assertions is straightforward and will be
left to the reader. In order to prove 6 we first prove that

VH({[s1, s
g
2] | si ∈ Si, g ∈ G}) ⊆ VH(S1) ∪ VH(S2).

Suppose, that v = (a1, . . . , an) ∈ Hn, v /∈ VH(S1)∪VH(S2). So v /∈ VH(S1), v /∈
VH(S2). Hence there exist s1 ∈ S1 and s2 ∈ S2 such that

s1(v) 6= 1, s2(v) 6= 1.

Since H is a G-domain, there exists g ∈ G, such that

[s1(v), s2(v)g] 6= 1.

Hence
v 6∈ VH({[s1, s

g
2] | si ∈ Si, g ∈ G}).

The reverse inclusion is immediate, which proves 6.
Now 7 follows from 6 since

Q1 ¦Q2 ⊆ [Q1, Q2] ⊂ Q1 ∩Q2

and hence

VH(Q1) ∪ VH(Q2) = VH(Q1 ¦Q2) ⊇ VH([Q1, Q2]) ⊇ VH(Q1 ∩Q2).

The reverse inclusion is obvious.
Notice, that the ¦-product plays exactly the same role as multiplication of

polynomials in the case of polynomial algebras.
The upshot of the preceding lemma is the following
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Theorem 3 Let H be a G-group. We define a subset of Hn to be closed if
it is the intersection of an arbitrary number of finite unions of algebraic sets
in Hn; this defines a topology on Hn, called the Zariski topology. The Zariski
topology is a T1-topology, i.e., the singletons are closed sets. Moreover if H is
a G-domain, then the closed sets in the topology are the algebraic sets.

This kind of topology was first introduced by R. Bryant [BR] when n=1.
Notice that continuity of maps in the Zariski topology depends only on the

algebraic sets. The next lemma is an immediate consequence of this remark.

Lemma 7 Let H and K be G-groups and let f : Hn −→ Km be a map. If the
pre-image of an algebraic set of Km is an algebraic set of Hn, then the map f
is continuous in the Zariski topology.

We remark that, in general, the union of two algebraic sets need not be
algebraic.

Example 4 Let A be an abelian group, viewed as an A-group. Then any alge-
braic set in An is a coset with respect to some subgroup of An, where An is now
an abelian group, under the operation of coordinate-wise multiplication.

Indeed, suppose S ⊆ A[x1, . . . , xn]. If s ∈ S, then s can be written in the form
s = s∗s′, where s′ is in the derived group of A[x1, . . . , xn] and

s∗ = x
m(s)1
1 x

m(s)2
2 . . . xm(s)n

n as (as ∈ A). (8)

Put S∗ = {s∗ | s ∈ S}. Since A is abelian VA(S) = VA(S∗), which means that
VA(S) consists exactly of all solutions in An of the multiplicatively written,
linear system of equations

x
m(s)1
1 x

m(s)2
2 . . . xm(s)n

n = a−1
s (s ∈ S). (9)

The algebraic set VA(S1) of the corresponding homogeneous system S1:

x
m(s)1
1 x

m(s)2
2 . . . xm(s)n

n = 1 (s ∈ S), (10)

is a subgroup of An and as usual

VA(S) = bVA(S1)

where b = (b1, . . . , bn) ∈ An is an arbitrarily chosen solution of the system of
equations given by (9).

Since the union of two such cosets need not be a coset, for example the
union of two distinct cosets with respect to the same subgroup, it follows that
the union of two algebraic sets need not be an algebraic set.
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3.2 Ideals of algebraic sets

Let, as before, H be a G-group, n be a positive integer, Hn be affine n-space
over H and G[X] = G[x1, . . . , xn]. We recall some of the notions detailed in the
introduction.

Definition 9 Let Y ⊆ Hn. Then

IH(Y ) = {f ∈ G[X] | f(v) = 1 for all v ∈ Y }.
Notice, that IH(∅) = G[X] and 1 ∈ IH(Y ) for every Y .

Lemma 8 For any Y ⊆ Hn the set IH(Y ) is an ideal of the G-group G[x1, . . . , xn].

Proof. In order to prove the lemma, observe that every point v = (a1, . . . , an) ∈
Hn can be used to define a G-homomorphism

φv : G[X] −→ H

by the evaluation map:

φv(f) = f(v), f ∈ G[X],

i.e. φv : xi 7→ ai, g 7→ g, where i = 1, . . . , n, g ∈ G. Now observe that

IH(Y ) =
⋂

v∈Y

Ker φv. (11)

Since the intersection of ideals in a G-group is again an ideal, it follows that
IH(Y ) is an ideal of G[X].

Definition 10 An ideal in G[X] is termed an H-closed ideal if it is of the form
IH(Y ) for some subset Y of Hn.

Sometimes we omit the subscript H and simply write I(Y ).

Definition 11 If Y is an affine algebraic set in Hn, then I(Y ) is termed the
ideal of Y .

The various parts of the following lemma are either consequences of the
foregoing discussion or can be proved directly from the definitions.

Lemma 9 Let Y, Y1, Y2 be subsets of Hn. Then the following hold.

1. Y1 ⊆ Y2 =⇒ I(Y1) ⊇ I(Y2).

2. I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

3. I(Y1 ∩ Y2) ⊇ I(Y1) ∪ I(Y2).

4. S ⊆ G[X] =⇒ I(V (S)) ⊇ gpG[X](S).

5. If Y is an algebraic set in Hn, then V (I(Y )) = Y .
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6. If Q is an H-closed ideal of G[X], then IH(V (Q)) = Q.

One consequence of Lemma 9 that is worth drawing attention to here is the
following

Corollary 5 1. If Y1 and Y2 are algebraic sets in Hn, then

Y1 = Y2 ⇐⇒ IH(Y1) = IH(Y2);

2. The functions I and V are inclusion reversing inverses when applied to
the algebraic sets in Hn and the H-closed ideals in G[X].

The following lemma will be of use in the sequel.

Lemma 10 Suppose that the G-group H is a G-domain and that Y is a subset
of Hn. Then V (I(Y )) = Y , the closure of Y in the Zariski topology on Hn.

Proof. Let C be a closed subset in Hn containing Y . The set C is an algebraic
set for H is a G-domain. Then I(C) ⊆ I(Y ), and hence C = V (I(C)) ⊇
V (I(Y )). Therefore V (I(Y )) is the minimal closed subset of Hn containing Y ,
i.e., V (I(Y )) = Y .

3.3 Morphisms of algebraic sets.

Throughout this section we shall assume that H is a G-group, that G[X] =
G[x1, . . . , xn] and that Hn is affine n-space over H.

We will make use of the following

Definition 12 Let f(x1, . . . , xn) ∈ G[X]. The map µf : Hn −→ H defined by

µ(a1, . . . , an) = f(a1, . . . , an)

is termed the polynomial function on Hn defined by f . Its restriction to an
algebraic set Y in Hn is similarly termed a polynomial function on Y .

Lemma 11 Any polynomial function µf : Hn −→ H is continuous in the
Zariski topology.

Proof. By Lemma 7 it is enough to prove that the pre-image of any algebraic
set Z ⊆ H is an algebraic set in Hn. Now, if Z = VH(S) then

µ−1
f (Z) = VH(s(f(x1, . . . , xn)) | s ∈ S).

Hence µ−1
f (Z) is an algebraic set in Hn.

Lemma 12 Group multiplication and inversion in H are continuous in the
Zariski topology.

To prove this it suffices to notice that multiplication is described by x1x2 and
inversion by x−1

1 .
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Corollary 6 For any a, b ∈ G the map h → ahb is a homeomorphism of H in
the Zariski topology.

We need next to define a morphism of algebraic sets.

Definition 13 Let H be a G-group and let Y ⊆ Hn, Z ⊆ Hp be algebraic sets.
Then a map

φ : Y −→ Z

is termed a morphism of the algebraic set Y to the algebraic set Z if there exist
f1, . . . , fp ∈ G[x1, . . . , xn] such that for any (a1, . . . , an) ∈ Y

φ(a1, . . . , an) = (f1(a1, . . . , an), . . . , fp(a1, . . . , an)).

Definition 14 Two algebraic sets Y and Z are said to be isomorphic if there
exist morphisms

φ : Y −→ Z, θ : Z −→ Y

such that θφ = 1Y , φθ = 1Z .

We then have the following

Lemma 13 Every morphism from an algebraic set Y ⊆ Hn to an algebraic set
Z ⊆ Hp is a continuous map in the Zariski topology.

The proof is similar to the proof of Lemma 11 and is therefore omitted.

Corollary 7 The canonical projection Hn+m −→ Hm is continuous in the
Zariski topology.

3.4 Coordinate groups

Let as before, H be a G-group, let G[X] = G[x1, . . . , xn] and let Y ⊆ Hn be an
algebraic set defined over G.

We denote, as already stated in the introduction, the set of all polynomial
functions on Y by Γ(Y ). If µ, ν ∈ Γ(Y ), we define the product of µ and ν by

µν(y) = µ(y)ν(y) (y ∈ Y ) (12)

and the inverse of µ by

µ−1(y) = µ(y)−1 (y ∈ Y ). (13)

Proposition 9 The set Γ(Y ) of all polynomial functions on Y forms a G-group
with respect to multiplication and inversion, as defined above, with G embedded
in Γ(Y ) via the mapping g −→ µg of G into Γ(Y ) (g ∈ G).

The proof is straightforward and is consequently omitted.

Definition 15 Γ(Y ) is called the coordinate group of the algebraic set Y .
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For each i = 1, . . . , n, define on Y ⊆ Hn the polynomial function

ti : (a1, . . . , an) 7→ ai ((a1, . . . , an) ∈ Y ).

These coordinate functions all belong to Γ(Y ). The following is an immediate
consequence of the definitions.

Lemma 14 The map x1 7→ t1, . . . , xn 7→ tn defines a G-epimorphism from
G[X] onto Γ(Y ) with kernel IH(Y ). Hence

G[x1, . . . , xn]/IH(Y ) ' Γ(Y ).

Denote
GR(Y ) = G[x1, . . . , xn]/IH(Y ).

In what follows we will refer to the group GR(Y ) also as the coordinate group
of the algebraic set Y .

Corollary 8 For any algebraic set Y ⊆ Hn the coordinate group Γ(Y ) is G-
separated by H.

Proof. Since Γ(Y ) is G-isomorphic to G[x1, . . . , xn]/IH(Y ) it suffices to prove
that the latter group is G-separated by H. The separation now follows from
the description of IH(Y ) as the intersection of the kernels of G-homomorphisms
from G[x1, . . . , xn] into H (see 3.2).

In particular, if G = H, then the coordinate groups Γ(Y ) are all G-separated
by G, i.e., they all are contained in the category SG (see 2.4). We will have
more to say about this in section 5.1.

3.5 Equivalence of the categories of affine algebraic sets
and coordinate groups

Let H be a G-group and let ASH be the category of all algebraic sets over H
defined by systems of equations with coefficients in G (morphisms in ASH are
the morphisms of algebraic sets defined above). Denote by AGH the category
of all coordinate groups of the algebraic sets in ASH (morphisms in AGH are
G-homomorphisms). Notice that both categories are defined relative to a given
G-group H.

Theorem 4 Let H be a G-group. Then the categories ASH and AGH are
equivalent to each other.

We have to define two functors F : ASH −→ AGH and G : AGH −→ ASH

such that
GF ' 1ASH

, FG ' 1AGH
.

If Y is an algebraic set defined over H, then F(Y ) is the coordinate group
of Y :

F(Y ) = Γ(Y ).

36



In order to define F on morphisms, suppose that Y ⊆ Hn and Z ⊆ Hp are
algebraic sets and φ : Y −→ Z is a morphism from Y to Z. We then define

F(φ) : Γ(Z) −→ Γ(Y )

as follows:
F(φ)(f) = f ◦ φ,

where f is a polynomial function on Z (i.e., an element from Γ(Z)) and ◦
denotes the composition of functions. It is not hard to see that F(φ) is a G-
homomorphism of G-groups and that

F(ψφ) = F(φ) F(ψ) , F(1Y ) = 1Γ(Y ) .

Notice that F is a contravariant functor. We define next the functor G :
AGH −→ ASH as follows. Since the objects in AGH are simply the Γ(Y ),
where Y is an algebraic set in some Hn, we define

G(Γ(Y )) = Y.

Next we define G on G-homomorphisms. To this end, let

ϑ : Γ(Y ) −→ Γ(Z)

be a G-homomorphism from one coordinate group Γ(Y ) to another coordinate
group Γ(Z). Now we G-present each of Γ(Y ), Γ(Z), using the isomorphisms

Γ(Y ) ' G[x1, . . . , xn]/I(Y ), Γ(Z) ' G[x1, . . . , xk]/I(Z).

So
ϑ(xiI(Y )) = wi(x1, . . . , xk)I(Z), i = 1, . . . , n.

Define now G(ϑ) : Z −→ Y by

G(ϑ)((a1, . . . , ak)) = ( w1(a1, . . . , ak), . . . , wn(a1, . . . , ak) ) .

It is not hard to verify then that G is a contravariant functor from AGH to
ASH . Moreover,

GF ' 1ASH , FG ' 1AGH .

Corollary 9 Let H be a G-group. Then algebraic sets Y1 ⊂ Hn and Y2 ⊂ Hp

are isomorphic if and only if the coordinate groups Γ(Y1) and Γ(Y2) are G-
isomorphic.

3.6 The Zariski topology of equationally Noetherian groups.

The equationally Noetherian property for a G-group H can be expressed in
terms of the descending chain condition on algebraic sets over H.

Proposition 10 Let H be a G-group. Then H is G-equationally Noetherian if
and only if every properly descending chain of algebraic sets over H is finite.
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Proof. Suppose that H is G-equationally Noetherian. Every strictly descending
chain of algebraic sets in Hn

V1 ⊃ V2 ⊃ . . . (14)

gives rise to a strictly ascending chain of ideals:

I(V1) ⊂ I(V2) ⊂ . . . . (15)

Put
S =

⋃

i

I(Vi).

Then VH(S) = VH(S0) for some finite subset S0 of S. But then S0 ⊆ I(Vm) for
some m, which implies that

⋂

i

Vi = VH(S) = VH(I(Vm)) = Vm,

i.e., the chain (14) terminates in no more than m steps.
Assume now that the set of all algebraic sets over H satisfies the descending

chain condition. Let S be a subset of G[x1, . . . , xn]. If VH(S) 6= VH(S0) for any
finite subset S0 of S, then there exists an infinite sequence s1, s2, . . . of elements
of S such that

VH(s1) ⊃ VH(s1, s2) ⊃ . . .

is an infinite, strictly descending chain of algebraic sets, a contradiction. Hence
H is G-equationally Noetherian.

We recall that a topological space is termed Noetherian if it satisfies the
descending chain condition on closed subsets.

Theorem D1 Let H be a G-group. Then for each integer n > 0, the Zariski
topology on Hn is Noetherian if and only if H is G-equationally Noetherian.

Proof. Suppose that the G-group H is G-equationally Noetherian. We need to
prove that Hn is Noetherian for every n > 0 in the Zariski topology. It follows
from Proposition 10 that the set A of all algebraic sets contained in Hn satisfies
the descending chain condition. Let A1 be the set of all finite unions of the
sets in A and let A2 be the set of all (possibly infinite) intersections of sets in
A1. By the definition of the Zariski topology, A2 is the set of closed subsets of
Hn. We first prove that A1 satisfies the descending chain condition. Suppose
that M1 = V1 ∪ . . . ∪ Vm and that M2 = W1 ∪ . . . ∪Wk are sets in A1 and that
M1 ⊃ M2. Then for every i ≤ m we have Vi ⊃ Vi∩Wj which gives rise to a tree
of subsets with root vertex Vi and with a unique edge from the root to every
proper subset of the form Vi∩Wj . A strictly descending chain of sets in A1, say

M1 ⊃ M2 ⊃ . . . , (16)

gives rise to m trees of subsets such that each vertex of each tree is a finite
intersection of sets in A, hence in A; moreover, for each such vertex there are only
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finitely many outgoing edges. In the resultant graph, every path corresponds
to a strictly descending chain of algebraic sets and so is finite. By Koenig’s
lemma this implies that the whole graph is finite. Therefore, the chain (16) is
also finite.

Since A1 satisfies the descending chain condition and is closed under finite
intersections, the intersection of an arbitrary collection of sets in A1 is the
intersection of some finite subcollection; hence it is also in A1. Consequently,
A2 = A1 and hence satisfies the descending chain condition. Consequently, Hn

is Noetherian in the Zariski topology. Conversely, if Hn is Noetherian for every
n, then H is G-equationally Noetherian by Proposition 10. This completes the
proof.

Corollary 10 Let H be a G-equationally Noetherian group. Then every closed
set in Hn is a finite union of algebraic sets.

A non-empty subset Y of a topological space X is said to be irreducible if it
can not be expressed as the union Y = Y1 ∪ Y2 of two proper subsets, each one
of which is closed in Y , in the induced topology.

Proposition 11 In a Noetherian topological space X every non-empty closed
subset Y can be expressed as a finite union Y = Y1 ∪ . . . ∪ Yn of irreducible
closed subsets Yi. If we require that Yi 6⊆ Yj for i 6= j, then the Yi, the so-called
irreducible irreducible components of Y , are unique.

The proof is standard (see, for example, [HR]).

Corollary 11 Let H be a G-equationally Noetherian group. Then every subset
Y of Hn, which is closed in the Zariski topology, is a finite union of irreducible
algebraic sets, each of which is uniquely determined by Y .

Proposition 12 Let H be a G-equationally Noetherian group and let Y be a
subset of Hn, closed in the Zariski topology. If Y = Y1 ∪ . . .∪ Ym is the decom-
position of Y into its irreducible components, then the coordinate group Γ(Y ) is
canonically embedded into the direct product of the coordinate groups Γ(Yi):

Γ(Y ) ↪→ Γ(Y1)× . . .× Γ(Ym).

Proof. The irreducible decomposition Y = Y1 ∪ . . . ∪ Ym implies (by Lemma 9)
the corresponding decomposition of the ideal I(Y ):

I(Y ) = I(Y1) ∩ . . . ∩ I(Ym).

The canonical homomorphisms

λi : Γ(Y ) = G[X]/I(Y ) −→ G[X]/I(Yi) ' Γ(Yi)

give rise to an embedding

λ : Γ(Y ) −→ Γ(Y1)× . . .× Γ(Ym)

where λ = λ1 × . . .× λm.
The following lemma establishes a very important property of coordinate

groups of irreducible closed sets.
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Lemma 15 Let H be a G-equationally Noetherian group. If a closed set Y ⊆
Hn is irreducible, then the coordinate group Γ(Y ) is G-discriminated by H.

Proof. Let S ⊆ G[X] and Y = VH(S). As we mentioned above Γ(Y ) '
G[X]/I(S). Suppose that there exist finitely many non-trivial elements u1I(S), . . . , unI(S)
in G[X]/I(S) that can not be discriminated in H by a G-homomorphism, i.e.,
for any G-homomorphism φ : G[X]/I(S) −→ H there exists an i such that
φ(uiI(S)) = 1. It follows then that

Y = VH(S) = VH(S ∪ {u1}) ∪ . . . ∪ VH(S ∪ {un}).
On the other hand, since G[X]/I(S) is G-separated by H (see 3.4 Corollary
8), VH(S ∪ {ui}) is a proper closed subsetof VH(S) = Y . This contradicts the
irreducibility of Y .

In particular, if G = H is equationally Noetherian, then the coordinate
group Γ(Y ) of an irreducible closed set Y ⊆ Gn is G-discriminated by G, i.e.,
Γ(Y ) belongs to the category DG from 2.4.

In the case when H is a G-equationally Noetherian G-domain we have the
following important characterization of irreducible closed sets in terms of their
coordinate groups.

Theorem 5 Let H be a G-equationally Noetherian G-domain. Then a closed
subset Y ⊆ Hn is irreducible if and only if the coordinate group Γ(Y ) is G-
discriminated by H.

Proof. The only if statement has been already proved in Lemma 15 above. Now,
let the coordinate group Γ(Y ) of a closed set Y ⊆ Hn be G-discriminated by
H. Suppose

Y = Y1 ∪ . . . ∪ Ym

is the decomposition of Y into its irreducible components, then

I(Y ) = I(Y1) ∩ . . . ∩ I(Ym)

and by Proposition 12 there exists an embedding

λ : Γ(Y ) −→ Γ(Y1)× . . .× Γ(Ym)

which is induced by the canonical epimorphisms

λi : Γ(Y ) = G[X]/I(Y ) −→ G[X]/I(Yi) ' Γ(Yi).

We claim that at least one of these canonical epimorphisms is an isomorphism.
Indeed, suppose that each epimorphism λi has a non-trivial kernel. Choose an
arbitrary non-trivial element ui from the kernel of λi, i = 1, . . . , m. The group
Γ(Y ) is G-discriminated by the G-domain H; hence Γ(Y ) is also a G-domain (see
2.3). Therefore, there are elements g2, . . . , gm ∈ G such that the commutator

u = [u1, u
g2
2 , . . . , ugm

m ]

is non-trivial. Hence λ(u) 6= 1. But, for each i = 1, . . . , m λi(u) = 1, which
implies that λ(u) = 1, contradicting the observation above. Hence, for a suitable
choice of i, the homomorphism λi is an isomorphism. Consequently, I(Y ) =
I(Yi) and hence Y = Yi, which implies that Y is irreducible.
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4 Ideals

4.1 Maximal ideals

Throughout this section let G denote a non-trivial group and let H be a G-group.
Ideals in G-groups enjoy many of the same properties as do ideals in com-

mutative rings. We term an ideal M of the G-group H a maximal ideal of H if
M is not contained in any other ideal of H. Notice that in view of the fact that
G 6= 1, every ideal of H is different from H.

Lemma 16 If G 6= 1 then every ideal in a G-group H is contained in a maximal
ideal.

The proof of the lemma is a standard application of Zorn’s lemma.

Definition 16 A G-group H is termed G-simple, if the only proper ideal of H
is the ideal {1}.

Notice, that any group G is G-simple. New examples of G-simple groups come
surprisingly from nilpotent groups. Indeed, let H be a non–trivial nilpotent
group and G be the center of H; then H is G-simple. Observe, that an ideal M
of the G-group H is maximal if and only if H/M is G-simple.

We focus first on maximal ideals in G[X]. The following is an easy but
important lemma.

Lemma 17 If a = (a1, . . . , an) ∈ Gn, then the ideal IG(a) is a maximal ideal
of G[X], corresponding to the point a ∈ Gn.

Proof. Observe that

IG(a) = gpG[X]{x1a
−1
1 , . . . , xna−1

n }

and so the factor group
G[X]/IG(a) ' G

is G-simple; hence IG(a) is maximal.
In general, if H is a G-group and a ∈ Hn, then IH(a) is not necessarily a

maximal ideal of G[X] since every ideal of G[X] can be represented in this way
- all we have to do is to choose the G-group H suitably.

Lemma 18 Let Q be an ideal in G[X]. Then the following hold:

1. Q = IH(a), where a = (x1Q, . . . , xnQ) ∈ Hn with H = G[X]/Q;

2. If M is a maximal ideal in G[X] and a is a root of M in some G-group
H, then a is the only root of M in H and M = IH(a).

Proof. The first statement follows from the definition of the quotient G[X]/Q.
To prove the second one, it suffices to notice that if a ∈ VH(M) then M ⊆ IH(a)
and that VH(IH(a)) = {a}.
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So, in particular, every maximal ideal M in G[X] is of the form M = IH(a)
for some tuple a ∈ Hn, where H is a supergroup of G. However a need not lie
in Gn. This leads to the idea of replacing G by some “universal completion”,
say Ḡ, of G which contains a root of every ideal in G[X]. In classical algebraic
geometry such completions are, of course, just algebraically closed fields. In
2.4 we have introduced and studied ℵ0-universal groups in the categories SG

and DG which play a role similar to that of algebraically closed fields. For the
moment it suffices to mention only the following consequence of Theorem G1,
which we have mentioned in the introduction.

Corollary 5 Let G be an algebraically closed group. Then an ideal in G[X],
which is the normal closure of a finite set, is maximal if and only if it is of the
form IG(a), where a ∈ Gn.

As we remarked before, not all ideals of G[X] of the type IH(a), a ∈ Hn,
are maximal, since by Lemma 18 all ideals are of this form. Similarly, not all
maximal ideals in G[X] are of the form IG(a), a ∈ Gn. The following examples
illustrate some of the possibilities that can occur.

Example 5 Let H = 〈x1, . . . , xn; R〉 be a presentation of a finitely generated
simple group and let g be an element of H of infinite order. Let G be the subgroup
generated by g. Then H is a G-group. Let φ be the obvious G-homomorphism of
G[X] onto H. Then the kernel M of φ is an ideal of G[X] with G[X]/M ' H.
Since H is simple and hence G-simple, it follows that M is a maximal ideal in
G[X]. But G[X]/M is not isomorphic to G in the category of G-groups, which
means that M is not of the form IG(a) with a ∈ Gn.

Another example of this kind is the following one.

Example 6 Let F be a free group freely generated by c and d and let Q =
gpF [x]([c, d]x2). Then Q is an ideal of F [x], but no maximal ideal in F [x] con-
taining Q has any F -points and so it is never of the form IF (a), a ∈ F 1.

Proof. Put H = F [x]/Q. Then H is a free product with amalgamation of F
and the infinite cyclic group generated by x: H = F∗[c,d]=x2 < x >. Hence H is
an F -group and therefore Q is an ideal in F [x]. Consequently, Q is contained in
some maximal ideal M of F [x]. Since the equation [c, d] = x2 has no solutions
in F , M has no F -points.

We have seen that there are two different types of maximal ideals in G[X]:
ones that have G-points and those that do not. Following on the procedure in
ring theory we call ideals of the first type G-rational ideals or G-maximal ideals.
They play an important role in the next section.

The following corollary is a consequence of the remarks above.

Corollary 12 Let M be a maximal ideal in G[X], where G 6= 1. Then the
following conditions are equivalent:

1. M is G-maximal;

42



2. M = IG(a) for some a ∈ Gn;

3. M has a G-point;

4. G[X]/M ' G.

4.2 Radicals

In this section we introduce the notion of a radical ideal of an arbitrary G-group
which is the counterpart of the notion of a closed ideal in a free G-group G[X].

Let H be a G-group with G 6= 1.

Definition 17 The Jacobson G-radical JG(H) of a G-group H is the inter-
section of all G-maximal ideals in H; if there are no such ideals, we define
JG(H) = H.

Similarly, we define the G-radical RadG(Q) of an arbitrary ideal Q in H as
follows.

Definition 18 Let Q be an ideal in a G-group H. Then the G-radical RadG(Q)
of Q is the intersection of all G-maximal ideals in H containing Q; if there are
no such ideals, we define RadG(Q) = H.

We term Q a G-radical ideal of H if RadG(Q) = Q.

Lemma 19 Let H be a G-group and let Q be an ideal in H. Then for an ideal
P of H the following conditions are equivalent:

1. P = RadG(Q);
2. P is the pre-image in H of JG(H/Q);
3. P is the smallest ideal in H such that P contains Q and the quotient

group H/P is G-separated by G.

The proof is easy and we leave it to the reader.

Proposition 13 Let G be a non-abelian torsion-free hyperbolic group. Then

JG(G[X]) = 1.

Proof. We proved in [BMR2] that the free G-group G[X] is G-discriminated by
G provided G is non-abelian and torsion-free hyperbolic.

Groups H with JG(H) = 1 are very important because of their close rela-
tionship to coordinate groups of algebraic sets over G. We will say more about
this in 5.1.

We will need the following generalization of the notion of G-radical.

Definition 19 Let H and K be G-groups. Then the Jacobson K-radical JK(H)
of H is the intersection of the kernels of all G-homomorphisms from H into K.

If Q is an ideal of H, then the K-radical RadK(Q) of Q in H is the pre-image
in H of JK(H/Q).

We term an ideal Q of H K-radical if Q = RadK(Q).
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Clearly, RadK(Q) is the smallest ideal P in H containing Q and such that H/P
is G-separated by K.

Lemma 20 The intersection of two K-radical ideals in a G-group H is a K-
radical ideal.

Proof. Let Q1 and Q2 are two arbitrary K-radical ideals in H. Clearly, every
non-trivial element of the group H/(Q1∩Q2) can be separated by the canonical
epimorphism either onto the group H/Q1 or to the group H/Q2. Both of these
groups are G-separated in K, therefore H/(Q1∩Q2) is G-separated in K. Hence
the ideal Q1 ∩Q2 is K-radical.

In the following lemma we describe radical ideals of the free G-group G[X].
We recall that an ideal Q of G[X] is K-closed if Q = IK(Y ) for some subset Y
of Kn (here K is an arbitrary G-group).

Proposition 14 Let Q be an ideal in G[X]. Then for an arbitrary G-group K
the following statements are equivalent:

1. Q is K-closed in G[X] ;

2. Q = RadK(Q);

3. G/Q is G-separated by K.

Proof. As we have already mentioned above, the equivalence of 2) and 3) is a
direct consequence of the definitions.

Now we prove that 1) implies 3). Let Q be a K-closed ideal in G[X]. Then
Q = IK(Y ) for some subset Y ⊆ Kn. Hence G[X]/Q = Γ(Y ) and the result
follows from Corollary 8, section 3.4.

To finish the proof it suffices to show that 3) implies 1). Suppose that
G[X]/Q is G-separated by K. We claim that IK(VK(Q)) = Q, which shows
that Q is K-closed. To this end, if φ is a G-homomorphism from G[X]/Q into
K, let φ(xiQ) = ai for each i = 1, . . . , n. If h(x1, . . . , xn) ∈ Q, then

1 = φ(Q) = φ(hQ) = h(a1, . . . , an).

It follows that VK(Q) 6= ∅. Now if f ∈ G[X] and if f /∈ Q, then we can find
a homomorphism θf : G[X]/Q −→ K such that θf (fQ) 6= 1. So if we put
bi = θf (xiQ), then b = (b1, . . . , bn) ∈ VK(Q) but f(b1, . . . , bn) = θf (fQ) 6=
1. It follows that we have proved that IK(VK(Q)) ⊆ Q and therefore that
IK(VK(Q)) = Q, as needed.

The next lemma provides another relationship between K-radical ideals of
G-groups and K-closed ideals in G[X].

Lemma 21 Let H be a G-group and η : G[X] → H be a G-epimorphism from
a the free G-group G[X] onto H. Then for any ideal Q in H and any G-group
K the following conditions are equivalent:

1. Q is K-radical in H;
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2. η−1(Q) is K-closed in G[X].

Proof. It follows from the appropriate isomorphism theorems that η−1(Q) is an
ideal in G[X] and

H/Q ' G[X]/η−1(Q).

Therefore G-separability of one of the groups above implies G-separability of
the other. The result then follows from Proposition 14.

The next proposition details the connection between the equationally Noethe-
rian condition and the ascending chain condition on radical ideals.

Proposition 15 Let H be a finitely generated G-group. Then H satisfies the
ascending chain condition on K-radical ideals for each G-equationally Noethe-
rian group K.

Proof. Let
Q1 ⊂ Q2 ⊂ . . . (17)

be a properly ascending chain of G-radical ideals in H. Let η : G[X] −→ H
be an epimorphism from a suitably chosen finitely generated free G-group G[X]
onto H. Observe, that if Q is a K-radical ideal in H then η−1(Q) is a K-radical
ideal in G[X]. Hence

η−1(Q1) ⊂ η−1(Q2) ⊂ . . . (18)

is a properly ascending chain of K-radical ideals in G[X]. Therefore the al-
gebraic sets defined by these ideals give rise to a properly descending chain of
algebraic sets in Kn:

VG(η−1(Q1)) ⊃ VG(η−1(Q2)) ⊃ . . . . (19)

Since K is G-equationally Noetherian, this chain terminates, and therefore so
do (18) and (17).

Notice that it follows directy from the definitions, that if H and K are
G-groups and Q is an ideal of H, then the following inclusions hold:

RadG(Q) ⊇ RadK(Q) ⊇ RadH/Q(Q) = Q.

But if the group K is G-separated by G (i.e., if K ∈ SG) then RadK(Q) =
RadG(Q).

We formulate next the following definition.

Definition 20 Let H be a G-group and let Q be an ideal of G[X]. Then a point
h = (h1, . . . , hn) ∈ Hn is termed a generic point of VH(Q) if

f ∈ I(VH(Q)) ⇐⇒ f(h) = 1.

We have already seen that the G-group G[X]/Q plays a special role here. The
following lemma is an amplification of the definition above and this remark. It
follows immediately from the definitions.
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Lemma 22 Let Q be an ideal of G[X]. For any G-group H containing the
group G[X]/Q the point h = (x1Q, . . . , xnQ) ∈ Hn is a generic point of VH(Q).

Proof. Notice, that h = (x1Q, . . . , xnQ) ∈ VH(Q). Now let f ∈ G[x1, . . . , xn].
Then f(x1Q, . . . , xnQ) = 1 in H if and only if f(x1Q, . . . , xnQ) = 1 in G[X]/Q
which is equivalent to f(x1, . . . , xn) ∈ Q. Therefore

f ∈ I(VH(Q)) ⇐⇒ f(h) = 1,

as desired.
Our next step is to define the G-nilradical of a G-group.

Definition 21 Let H be a G-group. The subgroup LG(H) of H generated by
all locally nilpotent ideals in H is termed the G-nilradical of H.

In the case where G = 1, L1(H) is usually refered to as the Hirsch-Plotkin
radical of H.

Clearly every element in LG(H) is a G-nilpotent element. Hence, if H has
no G-zero divisors then LG(H) = 1.

Proposition 16 Suppose that the Hirsch-Plotkin radical L1(G) of G is trivial.
Then for any G-group H, the G-nilradical LG(H) is an ideal in H which is
contained in every maximal ideal of H and therefore

JG(H) ⊇ LG(H).

Proof. If L1(G) = 1, then the intersection G∩LG(H) is normal locally nilpotent
subgroup of G, hence it is trivial. Consequently LG(H) is an ideal. Suppose now
that LG(H) 6⊆ M , for some maximal ideal M in the G-group H. Then there
exists an element c ∈ LG(H) such that c 6∈ M . Then gpH(c) is a locally nilpo-
tent, normal subgroup of H. Now MgpH(c)/M is a locally nilpotent, normal
subgroup of the G-group H/M . Hence it meets GM/M (which is isomorphic
to G) trivially. Therefore MgpH(c) meets G trivially and so is an ideal of H
which properly contains M , contradicting the maximality of M . This proves
the proposition.

Finally we have the

Proposition 17 Let H be a G-equationally Noetherian G-group. Then LG(H)
is a solvable subgroup of H.

Proof. An equationally Noetherian group is a CZ-group (see [WB] for defini-
tions). Therefore LG(H) is a locally nilpotent CZ-group. Hence it is solvable
[WB].

4.3 Irreducible and prime ideals

We recall here some of the definitions from the introduction.
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Definition 22 1. We term the ideal Q of H irreducible if Q = Q1∩Q2 implies
that either Q = Q1 or Q = Q2, for any ideals Q1 and Q2 of H.

2. An ideal Q of H is a prime ideal if H/Q is a G-domain.

The following proposition ties the irreducibility of algebraic sets with the irre-
ducibility of their ideals.

Proposition 18 Let H be a G-group. Then the following hold:

1. If Q is an irreducible H-closed ideal in G[X], then VH(Q) is an irreducible
closed set in Hn;

2. If H is a G-domain and Y is an irreducible closed set in Hn, then IH(Y )
is an irreducible H-closed ideal in G[X].

Proof. 1. Suppose that VH(Q) = Y1 ∪ Y2, where Y1 and Y2 are closed sets in
Hn. Then

Q = IH(VH(Q)) = IH(Y1 ∪ Y2) = IH(Y1) ∩ IH(Y2).

Consequently, by the irreducibility of Q, either Q = IH(Y1) or Q = IH(Y2). It
follows that either VH(Q) = VH(IH(Y1)) = Y1 or else VH(Q) = VH(IH(Y2)) =
Y2.

2. Suppose that IH(Y ) = Q1 ∩ Q2 is the intersection of two ideals Q1 and
Q2. Then by Lemma 6

Y = VH(IH(Y )) = VH(Q1 ∩Q2) = VH(Q1) ∪ VH(Q2)

(the last equality holds since H is a G-domain). Hence, by the irreducibility
of Y , either Y = VH(Q1) or else Y = VH(Q2). It suffices to consider the first
possibility. Then IH(Y ) = IH(VH(Q1)) ⊇ Q1 and therefore Q1 = IH(Y ). It
follows that IH(Y ) is irreducible. This completes the proof.

Proposition 19 Let H be a G-group. Then the following hold:

1. If Q is a prime ideal of H, then Q is irreducible.

2. If Q is an irreducible ideal of H which is K-radical for some G-domain
K, then Q is a prime ideal.

Proof. 1. Suppose that the prime ideal Q is not irreducible. Then we can write
Q = Q1 ∩Q2, where neither Q1 nor Q2 is contained in Q. Choose c1 ∈ Q1 −Q
and c2 ∈ Q2 −Q. Then modulo Q, [c1, c

g
2] ≡ 1 for every g ∈ G. But then c1Q

is a G-zero divisor in H/Q, which is impossible.
2. Since Q is K-closed in H,

Q =
⋂

φ∈HomG(H/Q,K)

kerφ,

where HomG(H/Q, K) is the set of all G-homomorphisms from H/Q into K.
Suppose that Q is not prime. Then there exist c1, c2 ∈ H−Q such that [c1, c

g
2] ∈
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Q, for every g ∈ G. Then [c1, c
g
2] ∈ kerφ for every φ ∈ HomG(H/Q,K). But

H/ kerφ is G-isomorphic to a G-subgroup of the G-domain K and so is itself a
G-domain. Therefore, either c1 ∈ Ker φ or else c1 ∈ Ker φ. Let Φi be the set
of all those φ ∈ HomG(H/Q, K) for which ci ∈ kerφ, i = 1, 2. Put

Qi =
⋂

φ∈Φi

kerφ, (i = 1, 2).

Then Q1 and Q2 are ideals in H and Q = Q1 ∩Q2. Since Q is irreducible, we
find that either Q = Q1 or Q = Q2, which implies that either c1 ∈ Q or c2 ∈ Q.
It follows that Q is a prime ideal in H.

Corollary 13 If H is a G-domain, then every irreducible H-closed ideal Q of
G[X] is prime.

Indeed, as we mentioned in the previous section every H-closed ideal of G[X]
is an H-radical ideal of G[X]. The result now follows from the lemma above.

The next proposition is useful.

Proposition 20 Let H be a G-group. If Q is an ideal of H, then Q is prime
and K-radical for some G-domain K if and only if H/Q is G-discriminated by
K.

Proof. By definition an ideal Q in H is K-radical if and only if G/Q is separated
by K. In this event if K is a G-domain then by Theorem C1 H/Q is G-
discriminated by K.

Now suppose that H/Q is G-discriminated by K and K is a G-domain. If
Q is not prime in H then H/Q has a pair of non-trivial elements c1 and c2 such
that [c1, c

g
2] = 1 for every g ∈ G. Since H/Q is G-discriminated by K there

exists a G-homomorphism φ : H/Q → K such that φ(c1) 6= 1 and φ(c2) 6= 1.
Since [φ(c1), φ(c2)g] = 1 for every g ∈ G, it follows that φ(c1) is a G-zero divisor
in K, which is impossible. This completes the proof of the proposition.

4.4 Some decomposition theorems for ideals

We are now in a position to prove Theorem E1.

Theorem E1 Let H be a G-equationally Noetherian G-domain. Then each H-
closed ideal in G[X] is the intersection of finitely many prime H-closed ideals,
none of which is contained in any one of the others and this representaion is
unique up to order. Consequently, distinct irredundant intersections of prime
H-closed ideals define distinct H-closed ideals.

Proof. Let Q be an H-closed ideal in G[X]. Let Y = VH(Q). Since H is a G-
equationally Noetherian G-domain, Y can be decomposed uniquely into a finite
union of irreducible algebraic sets:

Y = Y1 ∪ . . . ∪ Ym.
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This gives rise to the decomposition

Q = I(Y ) = I(Y1) ∩ . . . ∩ I(Ym).

By Proposition 18, each of the I(Yj) is irreducible. Now by Corollary 13 each
of the ideals I(Yj) is prime. That proves the existence of the irredundant de-
composition of Q. Moreover, if Q = Q1 ∩ . . . ∩ Qk is a decomposition of Q as
an intersection of irreducible H-closed ideals, none of which is contained in any
one of the other, then

Y = VH(Q) = VH(Q1) ∪ . . . ∪ VH(Qk)

is an irredundant decomposition of Y into irreducible closed sets. It follows that
k = m and that the VH(Qj) are simply a rearrangement of the Y` and hence that
the Qj are simply the I(Y`), in a possibly different order. To finish the proof it
suffices to notice that the intersection of two (or finitely many) H-radical ideals
is again H-radical - this was proved in Section 4.2, Lemma 20.

Theorem E1 has a counterpart for the ideals of finitely generated G-groups.

Theorem E2 Let H be a finitely generated G-group and let K be a G-equationally
Noetherian G-domain. Then each K-radical ideal in H is a finite irredundant
intersection of prime K-radical ideals. Moreover, this representaion is unique
up to order. Furthermore, distinct irredundant intersections of prime K-radical
ideals define distinct K-radical ideals.

Proof. Let Q be a K-radical ideal in H. Then JK(H/Q) = 1. The group H/Q
is finitely generated as a G-group, so we can express H/Q as a factor group of
a finitely generated free G-group G[X], say,

H/Q = G[X]/P.

Since JK(G[X]/P ) = JK(H/Q) = 1, the ideal P is K-radical. By Proposition
14 from 4.2 the ideal P is K-closed in G[X]. Hence, by Theorem E1, P can be
expressed as a finite intersection of prime K-closed ideals in G[X]:

P = P1 ∩ . . . Pm.

We claim that each such prime decomposition of P in G[X] gives rise to a prime
decomposition of Q in H. Indeed, let Qi be the pre-image of the ideal Pi/P in
H with respect to the canonical G-epimorphism

H → H/Q ' G[X]/P.

Then Qi is K-radical and prime in H. Observe, that

Q = Q1 ∩ . . . ∩Qm.

Similarly, each prime decomposition of Q in H gives rise to a prime decomposi-
tion of P in G[X]. The uniqueness of the decomposition follows from Theorem
E1.

In the case K = G we have the following corollary

49



Corollary 14 Let G be an equationally Noetherian domain and let H be a
finitely generated G-group. Then each G-radical ideal in H is a finite irre-
dundant intersection of prime G-radical ideals. Moreover, this representaion is
unique up to order. Furthermore, distinct irredundant intersections of prime
G-radical ideals define distinct G-radical ideals.

5 Coordinate groups

5.1 Abstract characterization of coordinate groups

In this section we describe coordinate groups in purely group-theoretic terms.

Proposition 21 Let H be a finitely generated G-group. If JK(H) = 1 for
some G-group K, then H is G-isomorphic to the coordinate group Γ(Y ) of some
algebraic set Y ⊆ Kn defined over G. Conversely, every coordinate group Γ(Y )
of an algebraic set Y ⊆ Kn defined over G, is a finitely generated G-group with
JK(Γ(Y )) = 1.

Proof. Suppose that H is a finitely generated G-group with JK(H) = 1, where
K is a given G-group. We express H as a factor group of a finitely G-generated
G-free group G[X]:

H ' G[X]/Q.

Thus JK(G[X]/Q) = 1, i.e., RadK(Q) = Q. Consequently by Proposition 14
from 4.2 Q is K-closed in G[X] and so H is isomorphic to the coordinate group
of the algebraic set VK(Q) defined over G.

Let Γ(Y ) be the coordinate group of some algebraic set Y ⊆ Kn. So Γ(Y ) ∼=
H = G[X]/Q, where Q = IK(Y ). Again by Proposition 14 from 4.2 Q =
RadK(Q), hence

JK(Γ(Y )) = JK(G[X]/Q) = 1,

as desired.
Proposition 21 demonstartes again the role of the category SG in algebraic

geometry over groups, in particularly, the importance of ℵ0-universal groups
from SG.

Corollary 15 Let H be a G-group. Then the coordinate groups of algebraic
sets in Hn defined over G are exactly the n-generator G-groups which are G-
separated by H.

In the event that H = G this corollary shows that the coordinate groups of
algebraic sets over G are exactly the finitely generated G-groups in the category
SG; in particular, they are exactly the finitely generated G-subgroups of the
unrestricted direct power Gℵ0(I) of I copies of G (see 2.4 for details) provided
that the set of indices I is sufficiently large.

In [BMR2] we gave a large number of examples of finitely generated groups
in SG; here it is worthwhile to record on such example.
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Corollary 16 If G is a non-abelian torsion-free hyperbolic group, then G[x1, . . . , xn]
is the coordinate group of the algebraic set Gn.

Proof. By Proposition 13 JG(G[X]) = 1 for any non-abelian torsion-free hyper-
bolic group G. So the desired result follows from Corollary 15.

It follows also from Corollary 15 that if G satisfies a non-trivial identity,
or, more generally, a G-identity, then G[X] is never the coordinate group of an
algebraic set in Gn.

Finally, on combining Theorem B2 with Proposition 21 we obtain the fol-
lowing proposition.

Proposition 22 Let H be a G-equationally Noetherian G-group. Then for ev-
ery algebraic set Y ⊆ Hn the coordinate group Γ(Y ) is G-equationally Noethe-
rian.

5.2 Coordinate groups of irreducible varieties

In this section we give several useful characterizations of irreducible algebraic
sets in terms of their ideals and also their coordinate groups.

Theorem D2 Let H be a G-equationally Noetherian G-domain and Y be an
algebraic set in Hn. Then the following conditions are equivalent:

1. Y is irreducible;

2. IH(Y ) is a prime ideal in G[X];

3. Γ(Y ) is a G-equationally Noetherian G-domain;

4. Γ(Y ) is G-discriminated by H.

Proof. The equivalence of 1) and 2) follows from Propositions 18 and 19 (Section
4.3).

The equivalence of 2) and 3) is a consequence of the definition of a prime
ideal and Proposition 22 (Section 5.1).

4) is equivalent to 1) by Proposition 21 (Section 5.1), Theorem C1 (Section
2.3), and Theorem B2 (Section 2.2).

Theorem D2 provides a useful way of proving irreducibility of algebraic sets,
as we see from the following proposition.

Proposition 23 Let G be an equationally Noetherian non-abelian torsion-free
hyperbolic group. If a finitely generated group H given by the presentation

H = 〈x1, . . . , xn; S〉

(so S is a subset of the the free group, freely generated by X) is discriminated
by G, then VG(S) is an irreducible algebraic set.
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Proof. Let Q = gpG[X](S) be the normal closure of S in G[X]. Then

G[X]/Q ' G ∗H.

We proved in [BMR2] that, under the above assumptions, the free product G∗H
is G-discriminated by G. It follows that Q = RadG(Q) and hence that G[X]/Q
is the coordinate group of the algebraic set VG(S). So, by Theorem D2 this
algebraic set VG(S) is irreducible.

There are numerous examples of groups that are discriminated by free groups
in [BB] and [BG]. In [BMR1] and [BMR2] we described several constructions
which provide groups discriminated by a given torsion-free hyperbolic group.
Here we mention a few typical examples. The orientable surface groups

〈x1, y1, . . . , xn, yn; [x1, y1] . . . [xn, yn] = 1〉
are discriminated by a free group, whenever n ≥ 1, while the non-orientable
surface groups

〈x1, . . . , xn; x2
1 . . . x2

n = 1〉
are discriminated by a free group whenever n > 3. It follows that all of these
groups are separated by every non-abelian torsion-free hyperbolic group G, since
every non–abelian, torsion–free group contains a non-abelian free subgroup.
These results together with Proposition 23 imply the following

Proposition 24 Let S = {[x1, y1] . . . [xn, yn]} or let S = {x2
1 . . . x2

n}(n 6= 3).
Then for any equationally Noetherian non-abelian torsion-free hyperbolic group
G the algebraic set VG(S) is irreducible.

Proof. The orientable case and the non-orientable case for n > 3 both follow
immediately from the discussion above. So we left to consider only the cases
when S is either {x2

1}, or {x2
1x

2
2}.

If S = {x2
1}, it is easy to see that

RadG(S) = gpG[X](x1)

and consequently G[X]/RadG(S) ' G. Hence VG(S) is irreducible by Theorem
D2.

Similarly, if S = {x2
1x

2
2}, then

RadG(S) = gpG[X](x1x
−1
2 ).

Indeed, G is commutative transitive, therefore for any solution x1 = u, x2 = v
of S = 1 in G the elements u and v commute, therefore (uv)2 = 1 and hence
uv = 1. In this event,

G[X]/RadG(S) ' G∗ < x1 >

is G-discriminated by G and the desired conclusion follows from Theorem D2.
Notice, that if the group G in Proposition 24 is free, then the conlusion

also holds in the non-orientable case with n = 3. This follows from a result of
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Schutzenberger [SM] which states that if x1 = u, x2 = v, x3 = w is a solution
of the equation x2

1x
2
2x

2
3 = 1 in a free group F , then the elements u, v, w all

commute. Hence
RadF (x2

1x
2
2x

2
3) = gpF [X](x1x2x3)

and the group
F [X]/RadF (x2

1x
2
2x

2
3) ' F ∗ F (x1, x2)

is discriminated by F .
In the event that G = H we can add one more equivalent condition to

Theorem D2, which establishes a surprising relationship between coordinate
groups of irreducible algebraic sets over G and finitely generated models of the
universal theory of the group G.

Theorem D3 Let G be an equationally Noetherian domain and Y be an alge-
braic set in Gn. Then the following conditions are equivalent:

1. Y is irreducible;

2. Γ(Y ) is G-universally equivalent to G.

Moreover, any finitely generated G-group which is G-universally equivalent to
G is the coordinate group of some irreducible algebraic set over G.

Proof. The equivalence of 1) and 2) follows from Theorem D2 above and The-
orem C2 (Section 2.3).

To prove, under either of these conditions, that any finitely generated G-
group which is G-universally equivalent to G is the coordinate group of some
irreducible algebraic set over G, consider a finitely generated G-group H which
is G-universally equivalent to G. Then by Theorem C2, H is G-discriminated
by G. Hence by Corollary 15 from Section 5.1 the group H is the coordinate
group of some algebraic set over G. So the desired conclusion follows from the
equivalence of 1) and 2) above.

5.3 Decomposition theorems

Theorem F1 Let H be a G-equationally Noetherian G-domain. If Y is any
algebraic set in Hn, then the coordinate group Γ(Y ) is a subgroup of a direct
product of finitely many G-groups, each of which is G-discriminated by H.

The proof follows from Proposition 12 and Theorem 5 of Section 3.6.
We come now to the proof of Theorem F2.

Theorem F2 Let H be a non-abelian equationally Noetherian torsion-free hy-
perbolic group. Then every finitely generated group E which is separated by H
is a subdirect product of finitely many finitely generated groups, each of which
is discriminated by H.
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Proof. Let E be a finitely generated group that is separated by a non-abelian
equationally Noetherian torsion-free hyperbolic group H. Let

E =< x1, . . . , xn; f1, f2, . . . >

be a presentation of E on finitely many generators x1, . . . , xn and possibly
infinitely many defining relators f1, f2, . . . . Then we can think of the set
S = {f1, f2, . . .} of defining relators of E as a subset of the free H-group H[X].
Observe that if gpF (S) is the normal closure of S in F =< x1, . . . , xn >, then

I(VH(S)) ∩ F = gpF (S).

Indeed, if f ∈ F and f /∈ gpF (S), then there is a homomorphism φ from F into
H, which factors through E (i.e., gpF (S) is in the kernel of φ) such that φ(f) 6= 1.
This homomorphism φ can be extended to a H-homomorphism, again denoted
by φ, from H[X] into the H-group H. If we put φ(xi) = ai (i = 1, . . . , n),
then f does not vanish at a = (a1, . . . , an) although a = (a1, . . . , an) ∈ VH(S).
Hence f /∈ I(VH(S)). Therefore E embeds in Γ(Y ), where Y = VH(S). But
H is an equationally Noetherian domain. So, by Theorem F1, we find that
E is embeddable in a direct product of finitely many finitely generated H-
groups, each of which is H-discriminated by H. Since every hyperbolic group,
in particular H, is finitely generated it follows that every finitely generated
H-groups is finitely generated as an abstract group.

Corollary 17 Every finitely generated group that is separated by a free group
is a subdirect product of finitely many finitely generated groups which are dis-
criminated by free groups.

6 The Nullstellensatz

Hilbert’s Nullstellensatz holds over an algebraically closed field K and it has
various equivalent formulations. One of them asserts that every proper ideal in
the polynomial ring K[X] has a root in K. A similar result holds for G-groups.

Theorem G1 Let H be a G-algebraically closed G-group. Then every ideal in
G[X] whichis the normal closure of a finite set, has a root in Hn.

Proof. Let Q be an ideal in G[X] which is the normal closure of the finite set
S. Then G[X]/Q is a G-group and S has a root in H. Since G is algebraically
closed, S has a root in G.

One of the consequences of Theorem G1 is the following result which, as in
the classical case, shows that there exists a one-to-one correspondence between
finitely generated ideals in G[X] and points in the affine space Gn.

Theorem 6 Let G be an algebraically closed group. Then an ideal Q in G[X],
which is the normal closure in G[X] of a finite set, is maximal if and only if it
is of the form I(a), where a ∈ Gn.
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Proof. Suppose that Q is a maximal ideal in G[X] and that Q is the normal
closure of a finite set. Since Q has a root a in Gn, Q = I(a). The converse
follows on appealing to Lemma 18 (Section 4.1).

Another classical form of the Nullstellensatz describes the closed ideals I
in the ring of polynomials K[X] over an algebraically closed field K as radical
ideals. We recall that an ideal I of K[X] is a radical ideal if f ∈ I whenever
fn ∈ I (f ∈ K[X]). A similar result holds also for G-algebraically closed groups.
In order to formulate it, we introduce the following definition.

Definition 23 Let H be a G-group and let S be a subset of G[X]. Then we say
that S satisfies the Nullstellensatz over H if

I(VH(S)) = gpG[X](S).

In particular, an ideal Q in G[X] satisfies the Nullstellensatz if and only if Q is
H-radical.

Theorem G2 Let H be a G-group and suppose that H is G-algebraically closed.
Then every finite subset S of G[x1, . . . , xn] with VH(S) 6= ∅, satisfies the Null-
stellensatz.

Proof. Observe that if Q = gpG[X](S) in G[X], then Q is an ideal of G[X] since,
by hypothesis, VH(S) 6= ∅. Consequently the quotient group K = G[X]/Q is a
G-group.

Now suppose that S = {f1, . . . , fk} and that f 6∈ Q. Let H ′ = H ∗G K
be the free product of H and K amalgamating G. Then H ′ is a G-group
and if bi = xiQ, we find that fj(b1, . . . , bn) = 1 for j = 1, . . . , k but that
f(b1, . . . , bn) 6= 1. Since H is G-algebraically closed and is a G-subgroup of H ′,
there exist elements a1, . . . , an in H such that fj(a1, . . . , an) = 1 for j = 1, . . . , k
but that f(a1, . . . , an) 6= 1. Put v = (a1, . . . , an) ∈ Hn. Then v ∈ VH(S) and
f(v) 6= 1. Therefore f 6∈ I(VH(S)). It follows that I(VH(S)) ⊆ Q and hence
that I(VH(S)) = Q.

The next simple but useful result follows immediately from Proposition 14
(Section 4.2).

Proposition 25 Suppose that H is a G-group and that VH(S) 6= ∅, where S is
a subset of G[x1, . . . , xn]Ṫhen S satisfies the Nullstellensatz over H if and only
if G[X]/gpG[X](S) is G-separated by H.

The problem of the description of systems of equations which satisfy the
Nullstellensatz, for example, over a non-abelian free group is, in general, a
difficult one. Here we discuss only the standard quadratic equations, without
coefficients. The orientable one of genus n takes the form

[x1, y1] . . . [xn, yn] = 1

while the non-orientable one of genus n takes the form

x2
1 . . . x2

n = 1.
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Theorem 7 Let S = [x1, y1] . . . [xn, yn] or S = x2
1 . . . x2

n (in the latter case
n > 3). Then S satisfies the Nullstellensatz over any torsion-free non-abelian
hyperbolic group G.

Proof. Let G be a torsion-free non-abelian hyperbolic group. Let Q be the
normal closure gpG[X](S) of S in G[X]. Then

G[X]/Q ' G ∗ F/gpF (S),

where here F is the free group on X. We have proved in Section 5.3 that the
group G ∗ F/gpF (S) is G-discriminated by G. Consequently, S satisfies the
Nullstellensatz over G, as desired.

Notice that in the case of a non-abelian free group F , O. Kharlampovich
and A. Myasnikov [KM] have described the radical of an arbitrary quadratic
equation (with coefficients) over F ; in particular, they give a description of the
quadratic equations over F that satisfy the Nullstellensatz.
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