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Abstract

Classical commutative algebra provides the underpinnings of classical
algebraic geometry. In this paper we will describe, without any proofs, a
theory for groups which parallels this commutative algebra and which, in
like fashion, is the basis of what we term algebraic geometry over groups.

1 Introduction

For some years now we have attempted to lay the foundations of a theory, which
we term algebraic geometry over groups, which bears a surprising similarity to
elementary algebraic geometry - hence its name. Here we survey some of the
ideas that we will describe in detail elsewhere, focussing our attention on the
ideal theory of finitely generated free G–groups (see [BMR2]). In particular we
will discuss here group-theoretic counterparts to algebraic sets, coordinate alge-
bras, the Zariski topology and various other notions such as zero-divisors, prime
ideals, the Lasker-Noether decomposition of ideals as intersections of prime ide-
als, the Noetherian condition, irreducibility and the Nullstellensatz. A number
of interesting concepts arise, focussing attention on some fascinating new as-
pects of infinite groups. The impetus for much of this work comes mainly from
the study of equations over groups.

2 G-groups

The central notion in this ideal theory is that of a G–group, where G is a group
that is fixed throughout. A group H is termed a G–group if it contains a desig-
nated copy of G, which we will for the most part identify with G. Notice that we
allow for the possibility that G = 1 and also that G = H; in particular G is itself
a G-group. Such G–groups form a category in the obvious way. A morphism
from one G–group H to a G–group H ′, here termed a G-homomorphism, is a
homomorphism from H to H ′ which is the identity on G. The kernels of these
morphims are termed ideals; they are simply the normal subgroups which meet
G in the identity. As noted above, G is itself a G–group and a G-homomorphism
from the G–group H to the G–group G can be viewed as a retraction of H onto
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its subgroup G, i.e., a homomorphism from H into itself which is the identity
on G. All of the everyday notions of group theory can be carried over, with a
little care, to the category of G-groups, including finitely generated and finitely
presented G–groups.

3 Morphisms and homological algebra

Let H be a G-group. Then we denote the group of all G-automorphisms of H
by AutG(H). In general there is no obvious way to view AutG(H) as a G–group
unless G is abelian and H has trivial center. At the opposite extreme if G itself
has trivial center, the center of the G–group H is an ideal of H as are all the
terms of the upper central series of H. The theory of nilpotent groups can then
be recast in the category of G-groups, where a G-group H is G-nilpotent if its
upper central series terminates after finitely many steps with an ideal I with
quotient H/I ∼= G, where ∼= is understood as a G–isomorphism. We will not
dwell any more on this side of the theory at this point, leaving it to the reader
to think further about the matter. However, before turning our attention to
a different aspect of the theory, we would like to indicate how one can intro-
duce some homological notions into the study of G–groups. With this in mind,
suppose that A is a given abelian group such that the automorphism group
Aut(A) of A contains a designated copy of G, i.e., it comes provided with the
structure of a G–group. Suppose furthermore, that H is a G–group. Then we
term A a G H–module if H comes equipped with a G–homomorphism into the
G-group Aut(A). Armed with this definition one can then develop the homo-
logical algebra of G–groups with the corresponding homology and cohomology
groups. This is a fascinating aspect of the general theory which we have still to
explore. It touches on extension theory and many other related topics. Finally
we remark that the theory of groups acting on trees also can be reworked from
this point of view, with applications to the struture theory of free G–groups
and related groups. Whether the notion of a G–group can help to provide a
reasonable description of the subgroups of finitely presented groups is another
topic worth considering further (cf., e.g., [HG]).

4 Products

In dealing with various products, it is sometimes useful to let the coefficient
group G vary. In particular, if Hi is a Gi-group for each i in some index set I,
then the unrestricted direct product

∏
i∈IHi can be viewed as a

∏
i∈IGi-group,

in the obvious way. If Hi is a G-group for each i, then we will sometimes think
of the unrestricted direct product P of the groups Hi as a G-group by taking
the designated copy of G in P to be the diagonal subgroup of the unrestricted
direct product of all of the copies of G in the various factors. In the case of,
say, the standard wreath product, if U is a G-group and if T is a G′-group, then
their (standard) wreath product A o T can be viewed as a G o G′-group in the
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obvious way again.

5 Domains

We need to introduce another central notion in this theory, that of a zero–divisor
and thence that of an integral domain.

Let H be a G-group. Then we term a non-trivial element x ∈ H a G-zero
divisor if there exists a non-trivial element y ∈ H such that

[x, g−1yg] = 1 for all g ∈ G.

Notice that if G = 1 then every non-trivial element of the G-group H is a G-zero
divisor. We term a G-group H a G-domain if it does not contain any G-zero
divisors; in the event that G = H we simply say that H is a domain.

We recall here that a subgroup M of a group H is malnormal if whenever
h ∈ H, h /∈ M , then h−1Mh ∩M = 1. A group H is termed a CSA-group if
every maximal abelian subgroup M of H is malnormal. If H is such a CSA-
group and G is a non-abelian subgroup of H, then H, viewed as a G-group, is
a G-domain. Notice that every torsion-free hyperbolic group is a CSA-group.
This demonstrates, together with the Theorems A1, A2 and A3 below, that
there is a plentiful supply of G-domains.

Theorem A1 If U is a G-domain and if T is a G′-domain, then the wreath
product U o T is a G oG′-domain.

Further domains can be constructed using amalgamated products.

Theorem A2 Let A and B be domains. Suppose that C is a subgroup of both
A and B satisfying the following condition:

(∗) if c ∈ C, c 6= 1, then either [c, A] 6⊆ C or [c,B] 6⊆ C.

Then the amalgamated free product H = A ∗C B is a domain.

Theorem A3 The free product, in the category of G-groups, of two G-domains
is a G-domain whenever G is a malnormal subgroup of each of the factors.

6 Free G-groups

It is not hard to identify the finitely generated free G–groups. They take the
form

G[X] = G[x1, . . . , xn] = G∗ < x1, . . . , xn >,

the free product of G and the free group F (X) freely generated by X =
{x1, ..., xn}. These G-groups can be likened to algebras over a unitary com-
mutative ring, more specially a field, with G playing the role of the coefficient
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ring. We view G[X] as a non–commutative analogue of a polynomial algebra
over a unitary commutative ring in finitely many commuting variables, and the
elements f ∈ G[X] as polynomials in the non-commuting variables x1, . . . , xn,
with coefficients in G. We use functional notation here,

f = f(x1, . . . , xn) = f(x1, . . . , xn, g1, . . . , gm) (1)

thereby expressing the fact that the word representing f in G[X] involves the
variables x1, . . . , xn and, as needed, the constants g1, . . . , gm ∈ G.

7 G-equationally Noetherian groups

Let H be a G–group and let f ∈ G[X]. We term

v = (a1, . . . , an) ∈ Hn (2)

a root of f if
f(v) = f(a1, . . . , an, g1, . . . , gm) = 1.

We sometimes say that f vanishes at v. If S is a subset of G[X] then v is said
to be a root of S if it is a root of every f ∈ S, i.e., S vanishes at v. In this event
we also say that v is an H-point of S. We denote the set of all roots of S by
VH(S). So

VH(S) = {v ∈ Hn | f(v) = 1 for all f ∈ S}.
Then a G-group H is called G-equationally Noetherian if for every n > 0 and
every subset S of G[x1, . . . , xn] there exists a finite subset S0 of S such that

VH(S) = VH(S0).

In the event that G = H we simply say that G is equationally Noetherian,
instead of G is G-equationally Noetherian. These G-equationally Noetherian
groups play an important part in the theory that we are developing.

The class of all G-equationally Noetherian groups is fairly extensive. This fol-
lows from the two theorems below.

Theorem B1 Let a G-group H be linear over a commutative, Noetherian,
unitary ring, e.g., a field. Then H is G-equationally Noetherian.

A special case of this theorem was first proved by Roger Bryant [BR] in 1977
and another special case, that of free groups, by Victor Guba [GV] in 1986. It
follows, in particular, that G-groups which are either polycyclic (see [AL]) or
finitely generated and metabelian (see [RV1]) or free nilpotent or free metabelian
(seeBW), are G-equationally Noetherian. Not all G-equationally Noetherian G-
groups are linear.

Theorem B2 Let EG be the class of all G-equationally Noetherian groups. Then
the following hold:
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1. EG is closed under G-subgroups, finite direct products and ultrapowers;

2. EG is closed under G-universal (G-existential) equivalence, i.e., if H ∈ EG

and H ′ is G-universally equivalent (G-existentially equivalent) to H, then
H ′ ∈ EG;

3. EG is closed under G-separation, i.e., if H ∈ EG and H ′ is G-separated by
H, then H ′ ∈ EG.

(We briefly defer the definition of G–separation until 8.) Here two groups are
said to be G-universally equivalent if they satisfy the same G-universal sen-
tences. These are formulas of the type

∀x1 . . . ∀xn(
s∨

j=1

t∧

i=1

(uji(x̄, ḡij) = 1 & wij(x̄, f̄ij) 6= 1))

where x̄ = (x1, . . . , xn) is an n-tuple of variables, ḡij and f̄ij are arbitrary tuples
of elements (constants) from G.

It is not hard to construct examples of G-groups that are not G-equationally
Noetherian (see [BMRO]). We note also here two theorems proved in [BMRO],
namely that if a G–group H contains a G–equationally Noetherian G–subgroup
of finite index, then H itself is G–equationally Noetherian; and if Q is a finite
ideal of a G–equationally Noetherian G–group H, then H/Q is G–equationally
Noetherian. Finally, we remark, taking for granted here the notions to be in-
troduced in 13, that if G is an equationally Noetherian torsion-free hyperbolic
group and if A is an unitary associative ring with the appropriate properties,
then the completion GA is G-equationally Noetherian.

8 Separation and discrimination

We concern ourselves next with specific approximation techniques in groups and
rings. Two notions play an important part here, namely that of separation and
discrimination.

Let H be a G-group. Then we say that a family

D = {Di | i ∈ I}

of G-groups G-separates the G-group H, if for each non-trivial h ∈ H there exists
a group Di ∈ D and a G-homomorphism φ : H −→ Di such that φ(h) 6= 1.

Similarly, we say that D G-discriminates H, if for each finite subset
{h1, . . . , hn} of non-trivial elements of H there exists a Di ∈ D and a G-
homomorphism φ : H −→ Di such that φ(hj) 6= 1, j = 1, . . . , n.

If D consists of the singleton D, then we say that D separates H in the first
instance and that D discriminates H in the second. If G is the trivial group,
then the notions of separation and discrimination are often expressed in the

5



group-theoretical literature by saying, respectively, that H is residually D and
that H is fully residually D or H is ω-residually D.

The following two theorems are often useful.

Theorem C1 [BMR2] Let G be a domain. Then a G-group H is G-discriminated
by G if and only if H is a G-domain and H is G-separated by G.

Benjamin Baumslag introduced and exploited this idea in the case of free groups
[BB].

We say that the G-group H is locally G-discriminated by the G-group H ′ if
every finitely generated G-subgroup of H is G-discriminated by H ′.

Theorem C2 Let H and H ′ be G-groups and suppose that at least one of them
is G-equationally Noetherian. Then H is G-universally equivalent to H ′ if and
only if H is locally G-discriminated by H ′ and H ′ is locally G-discriminated by
H.

The idea to tie discrimination to universal equivalence is due to V. Remeslen-
nikov [RV1], who formulated and proved a version of Theorem C2 in the case
of free groups.

9 Ideals

As usual, the notion of a domain leads one to the notion of a prime ideal. An
ideal P of the G-group H is said to be a prime ideal if H/P is a G-domain.
Prime ideals are especially useful in describing the ideal structure of an arbitrary
G-equationally Noetherian G-domain H.

An ideal Q of the G-group H is termed irreducible if Q = Q1 ∩ Q2 implies
that either Q = Q1 or Q = Q2, for any choice of the ideals Q1 and Q2 of H.
Irreducibility is important in dealing with ideals of a free G-group G[X]. In
the theory that we are developing here, we define, by analogy with the classical
case, the Jacobson G-radical JG(H) of the G-group H to be the intersection of
all maximal ideals of H with quotient G-isomorphic to G; if no such ideals exist,
we define JG(H) = H. Similarly, we define the G-radical RadG(Q) of an ideal
Q of a G-group H to be the pre-image in H of the Jacobson G-radical of H/Q,
i.e., the intersection of all the maximal ideals of H containing Q with quotient
G-isomorphic to G.

More generally, if K is any G-group, then we define the Jacobson K-radical
JK(H) of the G-group H to be the intersection of all ideals of H with quotient
G-embeddable into K; similarly we define the K-radical RadK(Q) of an ideal
Q of H to be the pre-image in H of the Jacobson K-radical of H/Q. Finally,
an ideal of a G-group is said to be a K-radical ideal if it coincides with its K-
radical.

A finitely generated G-group H is called a K-affine G-group if JK(H) = 1.
The K-affine groups will play an important role in the abstract characterization
of coordinate groups defined over K.
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10 The affine geometry of G-groups

Let
Hn = {(a1, . . . , an) | ai ∈ H}

be affine n-space over the G-group H and let S be a subset of G[X]. Then we
define, as in 7,

VH(S) = {v ∈ Hn | f(v) = 1, for all f ∈ S}

and term it the (affine) algebraic set over H defined by S.
We sometimes denote VH({s1, s2, . . .}) by VH(s1, s2, . . .).
The union of two algebraic sets in Hn is not necessarily an algebraic set.

We define a topology on Hn by taking as a sub-basis for the closed sets of this
topology, the algebraic sets in Hn. We term this topology the Zariski topology.
If H is a G-domain, then the union of two algebraic sets is again algebraic and
so in this case the closed sets in the Zariski topology consist entirely of algebraic
sets.

Given a G-group H, the algebraic sets over H can be viewed as the objects of
a category, where morphisms are defined by polynomial maps, i.e., if Y ⊆ Hn,
and Z ⊆ Hp are algebraic sets then a map φ : Y → Z is a morphism in this
category (or a polynomial map) if there exist f1, . . . , fp ∈ G[x1, . . . , xn] such
that for any (a1, . . . , an) ∈ Y

φ(a1, . . . , an) = (f1(a1, . . . , an), . . . , fp(a1, . . . , an)).

It turns out that this category is isomorphic to a sub-category of the category of
all G-groups. In order to explain more precisely what this sub-category consists
of we need to turn our attention to the ideals of algebraic sets.

11 Ideals of algebraic sets

Let H be a G-group, let n be a positive integer, let Hn affine n-space over H,
G[X] = G[x1, . . . , xn] and let Y ⊆ Hn. Then we define

IH(Y ) = {f ∈ G[X] | f(v) = 1 for all v ∈ Y }.

Suppose now that S is a non-empty subset of G[X] and that Y = V (S).
Every point y = (y1, . . . , yn) ∈ Hn defines a G-homomorphism φy of G[X] into
H, via evaluation, i.e., by definition, if f ∈ G[X], then φy(f) = f(y). It follows
that

IH(Y ) =
⋂

y∈Y

ker φy.

Hence IH(Y ) is an ideal of G[X] provided only that Y is non-empty. If Y = ∅
and G 6= 1, then I(Y ) = G[X] is not an ideal. We shall, notwithstanding the
inaccuracy, term I(Y ) the ideal of Y under all circumstances.
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In the event that Y is an algebraic set in Hn, then we define the coordinate
group Γ(Y ) of Y to be the G-group of all polynomial functions on Y . These are
the functions from Y into H which take the form

y 7→ f(y) (y ∈ Y ),

where f is a fixed element of G[x1, . . . , xn]. It is easy to see that

Γ(Y ) ∼= G[X]/I(Y ).

The ideals IH(Y ) completely characterize the algebraic sets Y over H, i.e., for
any algebraic sets Y and Y ′ over H we have:

Y = Y ′ ⇐⇒ IH(Y ) = IH(Y ′).

Similarly, the algebraic sets Y are characterized by their coordinate groups Γ(Y ):

Y ∼= Y ′ ⇐⇒ Γ(Y ) ∼= Γ(Y ′);

here ∼= represents isomorphism in the appropriate category.
Amplifying the remark above, it turns out that if H is a G-group, then

the category of all algebraic sets over H is equivalent to the category of all
coordinate groups defined over H, which is exactly the category of all finitely
generated G-groups that are G-separated by H. The latter result comes from
the abstract description of coordinate groups. We need another notion from
commutative algebra in order to explain how this comes about.

The ideal Q of G[X] is called H-closed if Q = IH(Y ) for a suitable choice
of the subset Y of Hn. It is then not hard to see that the H-closed ideals of
G[X] are precisely the H-radical ideals of G[X]. Therefore, a finitely generated
G-group Γ is a coordinate group of an algebraic set Y ⊆ Hn (for a suitable n)
if and only if JH(Γ) = 1, which is equivalent to G-separation of Γ in H.

An elaboration of this approach yields some analogues of the Lasker-Noether
theorem, which we will describe in 18.

12 The Zariski topology of equationally Noethe-
rian groups.

In the event that the G-group H is G-equationally Noetherian, it turns out
(irrespective of the choice of n) that the Zariski topology satisfies the descending
chain condition on closed subsets of Hn, i.e., every properly descending chain of
closed subsets of Hn is finite. Indeed, we have the following important theorem.

Theorem D1 Let H be a G-group. Then for each integer n > 0, the Zariski
topology on Hn is Noetherian, i.e., satisfies the descending chain condition on
closed sets, if and only if H is G-equationally Noetherian.

This implies, in particular, that every closed subset of Hn is a finite union of
algebraic sets. As is the custom in topology, a closed set Y is termed irreducible
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if Y = Y1 ∪ Y2, where Y1 and Y2 are closed sets, implies that either Y = Y1 or
Y = Y2. So, by the remark above, every closed subset Y of Hn can be expressed
as a finite union of irreducible algebraic sets:

Y = Y1 ∪ . . . ∪ Yn.

These sets are usually referred to as the irreducible components of Y , which turn
out to be unique. This shifts the study of algebraic sets to their irreducible com-
ponents. It turns out that the irreducible ideals are the algebraic counterpart
to the irreducible algebraic sets. Indeed, let H be a G-domain; then a closed
subset Y ⊆ Hn is irreducible in the Zariski topology on Hn if and only if the
ideal IH(Y ) is an irreducible ideal in G[X].

An elaboration of this approach yields an important characterization of ir-
reducible algebraic sets in terms of their coordinate groups.

Theorem D2 Let H be a G-equationally Noetherian G-domain and let Y be
an algebraic set in Hn. Then the following conditions are equivalent:

1. Y is irreducible;

2. IH(Y ) is a prime ideal in G[X];

3. Γ(Y ) is a G-equationally Noetherian G-domain;

4. Γ(Y ) is G-discriminated by H.

In the event that G = H we can add one more equivalent condition to Theorem
D2, which establishes a surprising relationship between coordinate groups of
irreducible algebraic sets over G and finitely generated models of the universal
theory of the group G.

Theorem D3 Let G be an equationally Noetherian domain and let Y be an
algebraic set in Gn. Then the following conditions are equivalent:

1. Y is irreducible;

2. Γ(Y ) is G-universally equivalent to G.

Moreover, any finitely generated G-group which is G-universally equivalent to
G is the coordinate group of some irreducible algebraic set over G.

13 Exponential groups

As we noted in the discussion above, any G-group which is G-separated by a
G-equationally Noetherian group is again G-equationally Noetherian. A rich
collection of such groups arises for various choices of G from certain torsion-
free abelian groups. In order to explain, let A be an additively written abelian
group. We term A unitary if it comes equipped with a distinguished non-zero
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element, which we denote by 1. Such unitary abelian groups can be likened to
topological spaces with base points. Distinguishing a non-zero element in an
additively written abelian group amounts simply to the specification of one of
its cyclic subgroups, with a specific choice of generator. A typical example of a
unitary abelian group is the additive group A+ of a unitary ring A with the ring
identity as the distinguished element. Unitary abelian groups form a category
where morphisms are the unitary homomorphisms (i.e., homomorphisms which
map 1 to 1) and the subobjects are unitary subgroups (subgroups containing the
distinguished element 1). A group H is termed an A-group if it comes equipped
with a function H ×A → H:

(h, α) 7→ hα

satisfying the following conditions for arbitrary g, h ∈ H and α, β ∈ A:

h1 = h, hα+β = hαhβ , g−1hαg = (g−1hg)α,

and if g and h commute,
(gh)α = gαhα.

In the event that A is a unitary ring we assume also that

hαβ = (hα)β

We shall simply refer to such A-groups, in all of their incarnations, as exponential
groups. The most important of these exponential groups for our purposes here
are those where A is the ring of polynomials Z[x] of integral polynomials in
the variable x, introduced by R.C. Lyndon in [LRC1], [LRC2], in a successful
attempt to parametrise the set of all solutions of equations in a single variable
over a free group. It turns out, in particular, that if A satisfies some separation
conditions and if, for example, G is a torsion-free hyperbolic group, then GA

is G–separated by G [BMR2]. This holds true also in the special case where
A = Z[x] and G = F , a free group. Since a free group F is F -equationally
Noetherian, it follows that FZ[x] is F -equationally Noetherian.

FZ[x] can be constructed from F by means of iterated amalgamated products,
starting with F and using free abelian groups repeatedly as a second factor.
Consequently the structure of the finitely generated subgroups of FZ[x] can be
extracted by using the Bass-Serre theory of groups acting on trees. However
it seems likely that a more precise understanding of these subgroups will have
a bearing on a deeper understanding of the elementary theory of non-abelian
finitely generated free groups.

The Z[x]-structure of FZ[x] is also interesting in its own right. Whether the
Z[x]-subgroups which are closed under centralisers are free as Z[x]-groups is an
intriguing question - this is true of the 2-generator Z[x]-subgroups.
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14 Dimension

There are two natural notions of dimension of algebraic sets, the usual topo-
logical one and another that comes out of the Noether normalisation theorem,
involving transcendence degree. The notion of transcendence degree can be car-
ried over to this algebraic geometry over groups. Here we find that there is an
analogue for G–groups of the Grushko-Neumann theorem [GIA], [NBH] on the
minimal number of generators of a free product as well as a theorem of Wagner
[WDH], which is concerned with free quotients of free G–groups. Both of them
play a role here.

15 Generic points, local rings and completions

Most of the elementary notions associated with algebraic geometry seem to have
analogues in algebraic geometry over groups, in particular generic points, local
rings and completions. Derivations into group algebras and the analogue of a
tangent space are topics that we hope to pursue in due course. We refer the
reader to the book by R. Hartshorne [HR] for a general discussion of algebraic
geometry and the terms used here.

16 Curves and one-relator groups

Let now J be a group defined by a single defining relation

J =< x1, . . . , xn; r = 1 >,

where r is cyclically reduced and involves all of the generators listed. Let G
be the subgroup generated by any proper subset of the given generators of J ,
which is free by Magnus’ Freiheitssatz (see e.g., [MKS]). Then we can think
of J as a one-relator G–group and HomG(J, T ) can be thought of as a curve
in Tn, irrespective of how we choose the G–group T . It is a fascinating idea
to explore one-relator groups from this perspective. The geometric properties
of these curves and the relevance to the structure of the groups involved are
yet another interesting area of study. Whether this point of view will have an
impact on the isomorphism problem for one-relator groups, in particular, is still
to be determined.

17 Lie and associative rings

The theory that we have developed for groups carries over also to lie and asso-
ciative rings. The equation theoretic aspects of lie rings are much less developed
than the corresponding theory for groups. The nature of lie rings which are dis-
criminated by a free lie ring is unresolved, whether free lie rings are equationally
noetherian is undecided and so on. The general theory is itself intriguing and
worthy of development. And the focus on tangent spaces alluded to above brings
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in to play associative rings in the form of the integral group ring of free and
related groups.

18 Decomposition theorems

The categorical equivalence, described above, between algebraic sets over the
G-group H and the finitely generated G-groups which are G-separated by H,
leads to an analogue of a theorem often attributed to Lasker and Noether.

Theorem E1 Let H be a G-equationally Noetherian G-domain. Then each H-
closed ideal in G[X] is the intersection of finitely many prime H-closed ideals,
none of which is contained in any one of the others, and this representaion
is unique up to order. Conversely distinct irredundant intersections of prime
H-closed ideals define distinct H-closed ideals.

Theorem E1 has a counterpart for ideals of arbitrary finitely generated G-groups.

Theorem E2 Let H be a finitely generated G-group and let K be a G-equationally
Noetherian G-domain. Then each K-radical ideal in H is a finite irredundant
intersection of prime K-radical ideals. Moreover, this representaion is unique
up to order. Furthermore, distinct irredundant intersections of prime K-radical
ideals define distinct K-radical ideals.

Theorems E1 and E2 lead to several interesting consequences.

Theorem F1 Let H be a G-equationally Noetherian G-domain. If Y is any
algebraic set in Hn, then the coordinate group Γ(Y ) is a subgroup of a direct
product of finitely many G-groups, each of which is G-discriminated by H.

Theorem F2 Let H be a non-abelian equationally Noetherian torsion-free hy-
perbolic group (here G = 1). Then every finitely generated group E which is
separated by H is a subdirect product of finitely many finitely generated groups,
each of which is discriminated by H.

Theorem F2 plays a very useful part in the proof that finitely generated groups
which are discriminated by a free group are finitely related [KM1], [KM2].

19 The Nullstellensatz

We need next a variation of the notion of an algebraically closed group, which
is due to W.R. Scott [SWR]. Here a non-trivial G-group H is termed G-
algebraically closed if every finite set of equations and inequations of the form

f = 1 and f 6= 1 (f ∈ G[x1, . . . , xn])
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that can be satisfied in some G-group containing H, can also be satisfied in H.
This class of G-groups will play a part in the discussion that follows. Notice, in
the event that G = H we have the standard notion of algebraically closed group
due to W.R. Scott.

Hilbert’s classical Nullstellensatz is often formulated for ideals of polynomial
algebras over algebraically closed fields. One such formulation asserts that every
proper ideal in the polynomial ring K[x1, . . . , xn] over an algebraically closed
field K, has a root in K. It is easy to prove an analogous result for G-groups
(notice that this includes the case where G = H, below).

Theorem G1 Let H be a G-algebraically closed G-group. Then every ideal in
G[X], which can be generated as a normal subgroup by finitely many elements,
has a root in H.

Another form of the Nullstellensatz for polynomial rings can be expressed as
follows. Suppose that S is a finite set of polynomials in K[x1, . . . , xn] and that
a polynomial f vanishes at all of the zeroes of S; then some power of f lies in the
ideal generated by S. With this in mind, we introduce the following definition.

Definition 1 Let H be a G-group and let S be a subset of G[x1, . . . , xn] . Then
we say that S satisfies the Nullstellensatz over H if

I(VH(S)) = gpG[X](S),

where here gpG[X](S) denotes the normal closure in G[X] of S.

It follows, as in the classical case, that an ideal in G[X] satisfies the Nullstel-
lensatz if and only if it is H-radical. Notice that in the event that VH(S) is
non-empty, then gpG[X](S) is actually the ideal of the G-group G[X] generated
by S, i.e., the smallest ideal of G[X] containing S.

The following version of the Nullstellensatz then holds.

Theorem G2 Let H be a G-group and suppose that H is G-algebraically closed.
Then every finite subset S of G[x1, . . . , xn] with VH(S) 6= ∅, satisfies the Null-
stellensatz; indeed, I(VH(S)) = gpG[X](S).

There is a simple criterion for determining whether a given set satisfies the
Nullstellensatz. Indeed, suppose that H is a G-group and that VH(S) 6= ∅,
where S is a subset of G[x1, . . . , xn] . Then S satisfies the Nullstellensatz over
H if and only if G[X]/gpG[X](S) is G-separated by H. Notice, that if the group
H is torsion-free and a set S ⊆ G[X] satisfies the Nullstellensatz over H, then
the ideal Q = gpG[X](S) is isolated in G[X], i.e., fn ∈ Q implies f ∈ Q (for any
f ∈ G[X]).

It is not easy to determine which systems of equations, e.g., over a free group,
satisfy the Nullstellensatz.
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20 Connections with representation theory

The set Hom(J, T ) of all homomorphisms of a finitely generated group J into
a group T has long been of interest in group theory. If J is a finite group
and T is the group of all invertible n × n matrices over the field C of complex
numbers, then the study of Hom(J, T ) turns into the representation theory of
finite groups. If T is an algebraic group over C, then Hom(J, T ) is an affine
algebraic set, the geometric nature of which lends itself to an application of
the Bass-Serre theory of groups acting on trees, with deep implications on the
structure of the fundamental groups of three dimensional manifolds.

The algebraic geometry over groups that we develop here can be viewed
also as a contribution to the general representation theory of finitely generated
groups. In order to explain, we work now in the category of G-groups, where G
is a fixed group; notice that in the event that G = 1, this is simply the category
of all groups.

Now let J be a finitely generated G–group, equipped with a finite generating
set {x1, . . . , xn}, and let T be an arbitrarily chosen G–group. Express J as a
G–quotient group of the finitely generated free G-group F = G[x1, . . . , xn]:

J ∼= F/Q.

Then we have seen that the set HomG(J, T ) of G-homomorphims from J into
T can be parametrized by the roots of Q in Tn and hence carries with it the
Zariski topology. Observe that if the Nullstellensatz applies to Q, then the
coordinate group of this space can be identified with J , which explains its im-
portance here. It is not hard to see that HomG(J, T ) is independent of the
choice of generating set, i.e., the algebraic sets obtained are isomorphic in the
sense that we have already discussed. So HomG(J, T ) is a topological invariant
of the G-group J , which we refer to as the space of all representations of J in T .
The group InnG(T ) of G-inner automorphisms of T , i.e., those inner automor-
phisms of T which commute element-wise with G, induce homeomorphisms of
HomG(J, T ) and so we can form the quotient space of Hom(J, T ) by InnG(T ),
which we term the space of inequivalent representations of J in T . This is a
finer invariant than Hom(J, T ), akin to the space of inequivalent representations
or characters of representations of a finite group. In the event that J and T
are algorithmically tractable and satisfy various finiteness conditions it is inter-
esting to ask whether these spaces can be described in finite terms and, if so,
whether they are computable and how they can be used to provide information
about J , assuming complete knowledge of T . The obvious questions involving
the various algebro-geometric properties of HomG(J, T ) arise, in particular for
finitely generated metabelian groups. Whether this touches on the isomorphism
problem for such groups remains to be seen.

21 Some unanswered questions

We record, finally, some unanswered questions, which seem interesting to us.
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1. Let the G-group H be hyperbolic. Is H G-equationally Noetherian?

2. If G is G-equationally Noetherian, is G[x1, . . . , xn] also G-equationally
Noetherian?

3. Are there some natural conditions which ensure that an extension of one
equationally Noetherian group by another equationally group is equation-
ally Noetherian (here G = 1)?

4. Are parafree groups (i.e., residually nilpotent groups with the same lower
central quotients as some fixed free group) equationally noetherian?

Question 3 is an analogue of the corresponding well-known theorem con-
cerned with extensions of algebraic groups. One can formulate, in the context
of algebraic geometry over groups, analogous notions including the analogue of
a lie group.

22 Related work

We refer the reader to the paper [BMR1] for references to related work and to
a full account of the subject matter being reported on here.
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