From local to global conjugacy in relatively hyperbolic groups

Oleg Bogopolski

Webinar “GT” NY, 5.05.2016
Relative presentations

Let G be a group, $\mathbb{P} = \{P_\lambda\}_{\lambda \in \Lambda}$ a collection of subgroups of G, X a subset of G. We say that X is a relative generating set of G with respect to \mathbb{P} if

$$G = \langle \bigcup_{\lambda \in \Lambda} P_\lambda \cup X \rangle.$$

In this situation G can be regarded as a quotient group of

$$\overline{F} = \bigstar_{\lambda \in \Lambda} \tilde{P}_\lambda \ast F(X),$$

where \tilde{P}_λ is a copy of P_λ such that the union of all $\tilde{P}_\lambda \setminus \{1\}$ and X is disjoint.
Relative presentations

Let G be a group, $\mathbb{P} = \{P_\lambda\}_{\lambda \in \Lambda}$ a collection of subgroups of G, X a subset of G. We say that X is a relative generating set of G with respect to \mathbb{P} if

$$G = \langle (\bigcup_{\lambda \in \Lambda} P_\lambda) \cup X \rangle.$$

In this situation G can be regarded as a quotient group of

$$\bar{F} = (\bigstar_{\lambda \in \Lambda} \tilde{P}_\lambda) \bigstar F(X),$$

where \tilde{P}_λ is a copy of P_λ such that the union of all $\tilde{P}_\lambda \setminus \{1\}$ and X is disjoint. We will use the most useless presentation of \tilde{P}_λ:

$$\tilde{P}_\lambda = \langle \tilde{P}_\lambda \setminus \{1\} | \tilde{S}_\lambda \rangle,$$

where \tilde{S}_λ is the set of all words over the alphabet $\tilde{P}_\lambda \setminus \{1\}$ that represent 1 in the group \tilde{P}_λ. Denote

$$\tilde{\mathcal{P}} = \bigcup_{\lambda \in \Lambda} (\tilde{P}_\lambda \setminus \{1\}), \quad \tilde{\mathcal{S}} := \bigcup_{\lambda \in \Lambda} \tilde{S}_\lambda.$$
Relative presentations

Let G be a group, $\mathbb{P} = \{P_\lambda\}_{\lambda \in \Lambda}$ a collection of subgroups of G, X a subset of G. We say that X is a relative generating set of G with respect to \mathbb{P} if

$$G = \langle (\bigcup_{\lambda \in \Lambda} P_\lambda) \cup X \rangle.$$

In this situation G can be regarded as a quotient group of

$$\bar{F} = (\bigstar_{\lambda \in \Lambda} \tilde{P}_\lambda) \star F(X),$$

We will use the most useless presentation $\tilde{P}_\lambda = \langle \tilde{P}_\lambda \setminus \{1\} | \tilde{S}_\lambda \rangle$, and the sets \tilde{P} and \tilde{S} as above.
Relative presentations

Let G be a group, $\mathbb{P} = \{P_\lambda\}_{\lambda \in \Lambda}$ a collection of subgroups of G, X a subset of G. We say that X is a relative generating set of G with respect to \mathbb{P} if

$$G = \langle (\bigcup_{\lambda \in \Lambda} P_\lambda) \cup X \rangle.$$

In this situation G can be regarded as a quotient group of

$$\overline{F} = \left(\bigast_{\lambda \in \Lambda} \tilde{P}_\lambda \right) \ast F(X),$$

We will use the most useless presentation $\tilde{P}_\lambda = \langle \tilde{P}_\lambda \setminus \{1\} \mid \tilde{S}_\lambda \rangle$, and the sets $\tilde{\mathcal{P}}$ and \tilde{S} as above. Then \overline{F} has the presentation

$$\overline{F} = \langle \tilde{\mathcal{P}} \sqcup X \mid \tilde{S} \rangle$$

and G has a presentation (called relative with respect to \mathbb{P})

$$G = \langle \tilde{\mathcal{P}} \sqcup X \mid \tilde{S} \sqcup \mathcal{R} \rangle.$$
Finite relative presentations

The relative presentation

\[G = \langle \tilde{P} \sqcup X \mid \tilde{S} \sqcup R \rangle \]

can be briefly written as

\[G = \langle X, \mathbb{P} \mid \mathcal{R} \rangle. \]

This relative presentation is called finite if \(X \) and \(\mathcal{R} \) are finite.
Finite relative presentations

The relative presentation

\[G = \langle \tilde{P} \sqcup X \mid \tilde{S} \sqcup R \rangle \]

can be briefly written as

\[G = \langle X, P \mid R \rangle. \]

This relative presentation is called finite if \(X \) and \(R \) are finite.

Example. Consider the amalgamated product

\[G = H_1 \ast_{K}^{\alpha} H_2. \]

With \(P = \{ H_1, H_2 \} \), there is the following relative presentation

\[G = \langle \emptyset, P \mid k = \alpha(k) \ (k \in K) \rangle. \]

It can be chosen finite if \(K \) is finitely generated.
Relative isoperimetric functions

Suppose that G has a relative presentation

$$G = \langle X, (P_\lambda)_{\lambda \in \Lambda} \mid R \rangle. \quad (1)$$

Then G is a quotient of

$$\overline{F} = \left(\bigast_{\lambda \in \Lambda} \tilde{P}_\lambda \right) \ast F(X)$$

If a word $W \in (X \cup \tilde{P})^*$ represents 1 in G, there exists an expression

$$W = \overline{F} \prod_{i=1}^{k} f_i^{-1} R_i f_i, \quad \text{where} \quad R_i \in R, \ f_i \in \overline{F} \quad (2)$$

The smallest possible number k in a representation of type (2) is denoted $\text{Area}_{rel}(W)$.
Relative isoperimetric functions

Suppose that G has a relative presentation

$$G = \langle X, (P_\lambda)_{\lambda \in \Lambda} \mid R \rangle. \quad (1)$$

Then G is a quotient of

$$\overline{F} = (\bigast_{\lambda \in \Lambda} \tilde{P}_\lambda) \ast F(X)$$

If a word $W \in (X \cup \tilde{P})^*$ represents 1 in G, there exists an expression

$$W \equiv \prod_{i=1}^{k} f_i^{-1} R_i f_i, \quad \text{where} \quad R_i \in R, \ f_i \in \overline{F} \quad (2)$$

The smallest possible number k in a representation of type (2) is denoted $Area^{rel}(W)$.

A function $f : \mathbb{N} \to \mathbb{N}$ is called a relative isoperimetric function of (1) if for any $n \in \mathbb{N}$ and for any word $W \in (X \cup \tilde{P})^*$ of length $|W| \leq n$ representing the trivial element of the group G, we have

$$Area^{rel}(W) \leq f(n).$$
Relative Dehn functions

The smallest relative isoperimetric function of the relative presentation

\[G = \langle X, \mathbb{P} \mid \mathcal{R} \rangle. \] (1)

is called the relative Dehn function of \(G \) with respect to \(\{ P_\lambda \}_{\lambda \in \Lambda} \) and is denoted by \(\delta_{\text{rel}} \left(G, \mathbb{P} \right) \).
Relative Dehn functions

The smallest relative isoperimetric function of the relative presentation

\[G = \langle X, \mathbb{P} | \mathcal{R} \rangle. \]

(1)

is called the relative Dehn function of \(G \) with respect to \(\{ P_\lambda \}_{\lambda \in \Lambda} \) and is denoted by \(\delta^{\text{rel}}(G, \mathbb{P}) \).

- For finite relative presentations, \(\delta^{\text{rel}} \) is not always well-defined, i.e. it can be infinite for certain values of the argument:

The group \(G = \mathbb{Z} \times \mathbb{Z} = \langle a, b | [a, b] = 1 \rangle \) has a relative presentation with \(X = \{ b \} \) and \(P = \langle a \rangle \):

\[G = \langle \{ b \}, P | [a, b] = 1 \rangle \]

The word \(W_n = [a^n, b] \) has length 4 as a word over \(\{ b \} \cup P \), but its area equals to \(n \).
Equivalence of Dehn functions

Proposition. Let

\[\langle X_1, (P_\lambda)_{\lambda \in \Lambda} | R_1 \rangle \]

and

\[\langle X_2, (P_\lambda)_{\lambda \in \Lambda} | R_2 \rangle \]

be two finite relative presentations of the same group \(G \) with respect to a fixed collection of subgroups \((P_\lambda)_{\lambda \in \Lambda} \), and let \(\delta_1 \) and \(\delta_2 \) be the corresponding relative Dehn functions. Suppose that \(\delta_1 \) is well-defined, i.e. \(\delta_1 \) is finite for every \(n \). Then \(\delta_2 \) is well-defined and \(\delta_1 \sim \delta_2 \).
Relatively hyperbolic groups

Definition. (Osin) Let G be a group, $\mathbb{P} = (P_\lambda)_{\lambda \in \Lambda}$ a collection of subgroups of G. The group G is called **hyperbolic relative to** \mathbb{P}, if

1. G is finitely presented with respect to \mathbb{P} and
2. The relative Dehn function $\delta_{G,\mathbb{P}}$ is linear.

In this situation we also say that (G, \mathbb{P}) is **relatively hyperbolic** and that \mathbb{P} is a **peripheral structure** for G.
Relatively hyperbolic groups

Definition. (Osin) Let G be a group, $\mathcal{P} = (P_\lambda)_{\lambda \in \Lambda}$ a collection of subgroups of G. The group G is called **hyperbolic relative to** \mathcal{P}, if

1. G is finitely presented with respect to \mathcal{P} and
2. The relative Dehn function $\delta^\text{rel}_{(G,\mathcal{P})}$ is linear.

In this situation we also say that (G, \mathcal{P}) is **relatively hyperbolic** and that \mathcal{P} is a **peripheral structure** for G.

Remark. Conditions (1)\&(2) are equivalent to conditions (1)\&(3):

3. The relative Dehn function $\delta^\text{rel}_{(G,\mathcal{P})}$ is well-defined and the Cayley graph $\Gamma(G, X \cup \mathcal{P})$ is a hyperbolic metric space.
The main difficulty and the resulting assumption

Difficulty: The space $\Gamma(G, X \cup P)$ is hyperbolic, but is not locally finite if X or P is infinite.

Assumption. The group G is generated by a finite set X and (G, P) is relatively hyperbolic.

Notation. There are two distance functions on $\Gamma(G, X \cup P)$, $\text{dist}_{X \cup P}$ and dist_X. So, we use notation $|AB|_{X \cup P}$ and $|AB|_X$. We use **blue** color to draw geodesic lines with respect to X.
Theorem. (Osin) For any triple \((G, \mathbb{P}, X)\) satisfying the above assumption, there exists a constant \(\nu > 0\) with the following property.

Let \(\Delta\) be a triangle whose sides \(p, q, r\) are geodesics in \(\Gamma(G, X \cup \mathbb{P})\). Then for any vertex \(v\) on \(p\), there exists a vertex \(u\) on the union \(q \cup r\) such that

\[
dist_X(u, v) < \nu.
\]
Parabolic, hyperbolic and loxodromic elements

Let \((G, (P_{\lambda})_{\lambda \in \Lambda})\) be relatively hyperbolic. An element \(g \in G\) is called

- **parabolic** if it is conjugate into one of the subgroups \(P_{\lambda}, \lambda \in \Lambda\)
- **hyperbolic** if it is not parabolic
- **loxodromic** if it is hyperbolic and has infinite order.
Properties of loxodromic elements

Suppose that \((G, \mathbb{P}, X)\) satisfies the above assumption.

Theorem (Osin) For any loxodromic element \(g \in G\), there exist \(\lambda > 0, \sigma \geq 0\) such that for any \(n \in \mathbb{Z}\) holds

\[|g^n|_{X \cup \mathbb{P}} \geq \lambda |n| - \sigma. \]
Properties of loxodromic elements

Suppose that \((G, \mathcal{P}, X)\) satisfies the above assumption.

Theorem (Osin) For any loxodromic element \(g \in G\), there exist \(\lambda > 0, \sigma \geq 0\) such that for any \(n \in \mathbb{Z}\) holds

\[
|g^n|_{X \cup \mathcal{P}} \geq \lambda |n| - \sigma.
\]

Recall that a subgroup of a group is called *elementary* if it contains a cyclic subgroup of finite index.

Theorem. (Osin) Every loxodromic element \(g \in G\) is contained in a unique maximal elementary subgroup, namely in

\[
E_G(g) = \{f \in G \mid f^{-1}g^n f = g^{\pm n} \text{ for some } n \in \mathbb{N}\}.
\]
Relatively quasiconvex subgroups

Definition. Let G be a group generated by a finite set X, $\mathbb{P} = \{P_\lambda\}_{\lambda \in \Lambda}$ a collection of subgroups of G. A subgroup H of G is called relatively quasiconvex with respect to \mathbb{P} if there exists $\epsilon > 0$ such that the following condition holds. Let h_1, h_2 be two elements of H and p an arbitrary geodesic path from h_1 to h_2 in $\Gamma(G, X \cup \mathbb{P})$. Then for any vertex $v \in p$, there exists a vertex $u \in H$ such that

$$\text{dist}_X(v, u) \leq \epsilon.$$
Lemma. For every loxodromic element $b \in G$, there exists $\tau > 0$ such that the following holds. Let m be a natural number and $[A, B]$ a geodesic segment in $\Gamma(G, X \cup \mathcal{P})$ connecting 1 and b^m. Then the Hausdorff distance (induced by the $dist_X$-metric) between the sets $[A, B]$ and $\{b^i \mid 0 \leq i \leq m\}$ is at most τ.
Main theorem

Theorem 1. (BB) Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups $\mathbb{P} = \{P_1, \ldots, P_m\}$. Let H_1, H_2 be subgroups of G such that

- H_1 is relatively quasiconvex with respect to \mathbb{P} and
- H_2 has a loxodromic element.

Suppose that H_2 is elementwise conjugate into H_1. Then there exists a finite index subgroup of H_2 which is conjugate into H_1.
Main theorem

Theorem 1. (BB) Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups $\mathbb{P} = \{P_1, \ldots, P_m\}$. Let H_1, H_2 be subgroups of G such that

- H_1 is relatively quasiconvex with respect to \mathbb{P} and
- H_2 has a loxodromic element.

Suppose that H_2 is elementwise conjugate into H_1. Then there exists a finite index subgroup of H_2 which is conjugate into H_1.

The length of the conjugator w.r.t. a finite generating set X of G can be bounded in terms of $|X|, \epsilon_1, \text{dist}_X(1, b)$, where ϵ_1 is a quasi-convexity constant of H_1, and b is a loxodromic element of H_2.
Main theorem

Theorem 1. (BB) Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups $\mathbb{P} = \{P_1, \ldots, P_m\}$. Let H_1, H_2 be subgroups of G such that
- H_1 is relatively quasiconvex with respect to \mathbb{P} and
- H_2 has a loxodromic element.

Suppose that H_2 is elementwise conjugate into H_1. Then there exists a finite index subgroup of H_2 which is conjugate into H_1.

The length of the conjugator w.r.t. a finite generating set X of G can be bounded in terms of $|X|$, ϵ_1, $\text{dist}_X(1, b)$, where ϵ_1 is a quasi-convexity constant of H_1, and b is a loxodromic element of H_2.

Remark. Passage to a finite index subgroup of H_2 cannot be avoided:

\[
\begin{align*}
F_2 & \supseteq H_2 & \supseteq H_1 \\
\downarrow & \quad \downarrow & \quad \downarrow \\
A_4 & \supseteq K & \supseteq \mathbb{Z}_2
\end{align*}
\]
Corollaries

Theorem. (Dahmani and, alternatively Alibegović) Limit groups are hyperbolic relative to a collection of representatives of conjugacy classes of maximal noncyclic abelian subgroups.

Corollary 1. Let G be a limit group and let H_1 and H_2 be subgroups of G, where H_1 is finitely generated. Suppose that H_2 is elementwise conjugate into H_1. Then there exists a finite index subgroup of H_2 which is conjugate into H_1. The index depends only on H_1. The length of the conjugator with respect to a fixed generating system X of G depends only on H_1 and $m = \begin{cases} \min_{g \in \text{hyp}(H_2)} \text{dist}(1, g) & \text{if } \text{hyp}(H_2) \neq \emptyset, \\ \min_{g \in H_2 \setminus \{1\}} \text{dist}(1, g) & \text{otherwise}. \end{cases}$ Here $\text{hyp}(H_2)$ denotes the set of hyperbolic elements of H_2.
Corollaries

Theorem. (Dahmani and, alternatively Alibegović) Limit groups are hyperbolic relative to a collection of representatives of conjugacy classes of maximal noncyclic abelian subgroups.

Corollary 1. Let G be a limit group and let H_1 and H_2 be subgroups of G, where H_1 is finitely generated. Suppose that H_2 is elementwise conjugate into H_1. Then there exists a finite index subgroup of H_2 which is conjugate into H_1.
Theorem. (Dahmani and, alternatively Alibegović) Limit groups are hyperbolic relative to a collection of representatives of conjugacy classes of maximal noncyclic abelian subgroups.

Corollary 1. Let G be a limit group and let H_1 and H_2 be subgroups of G, where H_1 is finitely generated. Suppose that H_2 is elementwise conjugate into H_1. Then there exists a finite index subgroup of H_2 which is conjugate into H_1.

The index depends only on H_1. The length of the conjugator with respect to a fixed generating system X of G depends only on H_1 and

$$m = \begin{cases}
\min_{g \in \text{hyp}(H_2)} \text{dist}_X(1, g) & \text{if } \text{hyp}(H_2) \neq \emptyset, \\
\min_{g \in H_2 \setminus \{1\}} \text{dist}_X(1, g) & \text{otherwise}.
\end{cases}$$

Here $\text{hyp}(H_2)$ denotes the set of hyperbolic elements of H_2.
Definition. (BG) A group G is called \textbf{subgroup conjugacy separable} (abbreviated as SCS) if any two finitely generated and non-conjugate subgroups of G remain non-conjugate in some finite quotient of G. An into-conjugacy version of SCS is abbreviated by SICS.
Corollaries

Definition. (BG) A group G is called **subgroup conjugacy separable** (abbreviated as SCS) if any two finitely generated and non-conjugate subgroups of G remain non-conjugate in some finite quotient of G. An into-conjugacy version of SCS is abbreviated by SICS.

Corollary 2. (BB, alternatively Zalesski and Chagas) Limit groups are SICS and SCS.
Theorem 1. (BB) Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups $\mathbb{P} = \{P_1, \ldots, P_m\}$. Let H_1, H_2 be subgroups of G such that

- H_1 is relatively quasiconvex with respect to \mathbb{P} and
- H_2 has a loxodromic element.

Suppose that H_2 is elementwise conjugate into H_1. Then there exists a finite index subgroup of H_2 which is conjugate into H_1.

The length of the conjugator w.r.t. a finite generating set X of G can be bounded in terms of $|X|, \epsilon_1, dist_X(1, b)$, where ϵ_1 is a quasiconvexity constant of H_1, and b is a loxodromic element of H_2.
First steps of the proof

Take a loxodromic element $b \in H_2$ and an arbitrary $a \in H_2$. There exists $z_n \in G$ such that $z_n^{-1}(b^n a)z_n \in H_1$:
First steps of the proof

Take a loxodromic element \(b \in H_2 \) and an arbitrary \(a \in H_2 \). There exists \(z_n \in G \) such that \(z_n^{-1}(b^n a)z_n \in H_1 \):

How to avoid large “cancellations” between the blue and red lines?
Change of the conjugator z_n

\[
z_n^{-1}(b^n a)z_n = x_n^{-1} c (b^k ab^\ell) c x_n
\]
Change of the conjugator

Notation: For $u, v \in G$ and $c > 0$, we write $u \cdot_c v$ if

$$|uv| \geq |u| + |v| - 2c.$$
Change of the conjugator

Notation: For $u, v \in G$ and $c > 0$, we write $u \cdot_c v$ if

$$|uv| \geq |u| + |v| - 2c.$$

Lemma. Given two elements $a, b \in G$, where b is loxodromic, there exists a constant $c = c(a, b) > 0$ such that for all $n \in \mathbb{N}$ and $z_n \in G$

$$z_n^{-1}(b^n a)z_n = x_n^{-1}_{c} \cdot (b^k ab^\ell)_{c} \cdot x_n$$

for some $x_n \in G$ and $k, \ell \in \mathbb{N}$ with $n = k + \ell$.
Proof of Theorem

\[\begin{align*}
K &= 1 \\
n &= \frac{1}{N} \\
A &= x_n \\
B &= b^k \\
C &= a \\
D &= b^l \\
E &= x_n \\
F &= N = h_n
\end{align*} \]
Proof of Theorem

\[a^n b^k b^l = 1 \]

\[N = h_n \]

\[K = 1 \]
Proof of Theorem
For all sufficiently large k and every vertex P in the middle third of the waved line AB, there exists a vertex $R \in [A, D]$ such that $\text{dist}_X(P, R) < \mu(b)$.
For all sufficiently large k and every vertex P in the middle third of the waved line AB, there exists a vertex $R \in [A, D]$ such that

$$\text{dist}_X(P, R) < \mu(b).$$
Proof of Lemma 1

Let \(P_i \) and \(S_i \) be the relevant labels. Then

\[
\begin{align*}
\text{Label} & (P_i S_i) = G \quad b_k a b_k i = b_k j a b_k j = a - 1 b_k i - k j = b_l j - l i.
\end{align*}
\]

Hence \(a \in E \) \(G \), a contradiction.
Proof of Lemma 1

Label\left([P_iS_i]\right) = b^{k_i}a^{l_i}.
Proof of Lemma 1

Label([P_i; S_i]) = \frac{b^{k_i} a b^{l_i}}{G}.

Repetition of labels: \ b^{k_i} a b^{l_i} = b^{k_j} a b^{l_j}
\ a^{−1} b^{k_i−k_j} a = b^{l_j−l_i}
Hence \ a \in E_G(b), \ a \ contradiction.
Proof of Theorem
Proof of Theorem

\[\text{Diagram:}\]

- Points: A, B, C, D
- Lines: AB, BC, AC, BD
- Arrows: A → B, B → C
- Points labeled: \(x_n \), \(b^s \), \(g \), \(g \)
- Representations: \(K = 1 \), \(N = h_n \), \(H_1 \)

\[\text{Text:}\]

- \(A \) to \(B \) to \(C \) to \(D \)
- \(x_n \) at each point
- \(b^s \) and \(g \) in diagram

\[\text{Math:}\]

- \(K = 1 \)
- \(N = h_n \)
- \(H_1 \)
Proof of Theorem
Proof of Theorem
Proof of Theorem

\[K = 1 \quad N = h_n \]

\[H_1 \]
Proof of Theorem
Proof of Theorem

\[K = 1 \quad N = h_n \]

\[A \quad B \quad C \quad D \]

\[x_n \quad g \quad g \quad g \quad g \quad g \quad x_n \]

\[H_1 \]
Proof of Theorem
Proof of Theorem

$$K = 1, N = h_n$$

$$A, B, C, D$$

$$x_n, A, B, C, D, H_1$$

$$g, g, g, g, g, g, g$$

$$b^s, b^s, b^s, b^s, b^s, b^s, b^s$$

$$a, C$$
Proof of Theorem

\[K = 1 \quad N = h_n \]
Proof of Theorem

\[K = 1 \]

\[N = h_n \]

\[H_1 \]
Proof of Theorem

\[g^{-1} b^p a b^q g \in H_1, \quad |g| \chi \leq f_1(b), \quad 0 \leq p, q < s \leq f_2(b) \]
Proof of Theorem

\[g^{-1} b^p a b^q g \in H_1, \]

where \(|g|_X, p, q\) are bounded in terms of \(b\).
Proof of Theorem

\[g^{-1} b^p a b^q g \in H_1, \quad \text{where } |g|_X, p, q \text{ are bounded in terms of } b. \]

\[a \in z^{-1} H_1 z \cdot b^t, \quad \text{where } |z|_X \text{ and } t \text{ are bounded in terms of } b. \]
Proof of Theorem

\[g^{-1}b^pab^qg \in H_1, \quad \text{where } |g|_X, p, q \text{ are bounded in terms of } b. \]

\[a \in z^{-1}H_1z \cdot b^t, \quad \text{where } |z|_X \text{ and } t \text{ are bounded in terms of } b. \]

\[H_2 \subseteq \bigcup_{(z,t)\in M} z^{-1}H_1z \cdot b^t \cup E_G(b). \]

\[H_2 = \bigcup_{(z,t)\in M} (z^{-1}H_1z \cap H_2) \cdot b^t \cup (E_G(b) \cap H_2). \]
Proof of Theorem

\[g^{-1}b^pab^qg \in H_1, \quad \text{where } |g|_X, p, q \text{ are bounded in terms of } b. \]

\[a \in z^{-1}H_1z \cdot b^t, \quad \text{where } |z|_X \text{ and } t \text{ are bounded in terms of } b. \]

\[H_2 \subseteq \bigcup_{(z,t) \in M} z^{-1}H_1z \cdot b^t \bigcup E_G(b). \]

\[H_2 = \bigcup_{(z,t) \in M} (z^{-1}H_1z \cap H_2) \cdot b^t \bigcup (E_G(b) \cap H_2). \]

Theorem. (B.H. Neumann) If a group \(G \) is covered by a finite number of some cosets of subgroups of \(G \), then among these subgroups, there is a subgroup of finite index in \(G \).
Proof of Theorem

\[g^{-1} b^p a b^q g \in H_1, \quad \text{where} \ |g|_X, p, q \text{ are bounded in terms of} \ b. \]

\[a \in z^{-1} H_1 z \cdot b^t, \quad \text{where} \ |z|_X \text{ and} \ t \text{ are bounded in terms of} \ b. \]

\[H_2 \subseteq \bigcup_{(z,t)\in M} z^{-1} H_1 z \cdot b^t \cup E_G(b). \]

\[H_2 = \bigcup_{(z,t)\in M} (z^{-1} H_1 z \cap H_2) \cdot b^t \cup (E_G(b) \cap H_2). \]

Theorem. (B.H. Neumann) If a group \(G \) is covered by a finite number of some cosets of subgroups of \(G \), then among these subgroups, there is a subgroup of finite index in \(G \).

Thus, one of the following subgroups has finite index in \(H_2 \):
- \(z^{-1} H_1 z \cap H_2 \)
- \(E_G(b) \cap H_2 \)
THANK YOU!