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Counting conjugacy classes

Let G be a group with finite generating set X .

I Denote by [g ] the conjugacy class of g ∈ G

and by |g |c the conjugacy

length of [g ], where |g |c is the length of the shortest h ∈ [g ], with respect

to X .

I The conjugacy growth function is then

σG ,X (n) := ]{[g ] ∈ G | |g |c = n}.
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Conjugacy growth in groups

I Guba-Sapir (2010): asymptotics of the conjugacy growth function for

BS(1, n), the Heisenberg group on two generators, diagram groups, some

HNN extensions.

I Conjecture (Guba-Sapir): most (excluding the Osin or Ivanov type

‘monsters’) groups of standard exponential growth should have

exponential conjugacy growth.

I Breuillard-Cornulier-Lubotzky-Meiri (2011): uniform exponential

conjugacy growth for f.g. linear (non virt. nilpotent) groups.

I Hull-Osin (2013): conjugacy growth not quasi-isometry invariant. Also, it

is possible to construct groups with a prescribed conjugacy growth

function.
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Conjugacy growth in geometry

A slight modification of the conjugacy growth function (including only the

non-powers) appears in geometry:

- counting the primitive closed geodesics of bounded length on a compact

manifold M of negative curvature and exponential volume growth gives, via

quasi-isometries, good (exponential) asymptotics for σ(n) for the fundamental

group of M (Margulis, . . . ).
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The conjugacy growth series

Let G be a group with finite generating set X .

I The conjugacy growth series of G with respect to X records the number of

conjugacy classes of every length. It is

σ̃(G ,X )(z) :=
∞∑
n=0

σ(G ,X )(n)zn,

where σ(G ,X )(n) is the number of conjugacy classes of length n.
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Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and only if

G is virtually cyclic.

⇒

Theorem (Antoĺın-C., 2015)

If G is non-elementary hyperbolic, then the conjugacy growth series is

transcendental.

⇐

Theorem (C., Hermiller, Holt, Rees, 2014)

Let G be a virtually cyclic group. Then the conjugacy growth series of G is

rational.

NB: Both results hold for all symmetric generating sets of G .
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Conjugacy representatives

In order to determine the conjugacy growth series, we need a set of minimal

length conjugacy representatives,

i.e. for each conjugacy class [g ] in G pick

exactly one word w ∈ X ∗ such that

1. π(w) ∈ [g ], where π : X ∗ → G the natural projection, and

2. l(w) = |π(w)| = |π(w)|c is of minimal length in [g ], where

I l(w) := word length of w ∈ X∗

I |g | = |g |X := the (group) length of g ∈ G with respect to X .
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Conjugacy growth series in virt. cyclic groups: Z, Z2 ∗ Z2

In Z the conjugacy growth series is the same as the standard one:

σ̃(Z,{1,−1})(z) = 1 + 2z + 2z2 + · · · =
1 + z

1− z
.

In Z2 ∗ Z2 a set of conjugacy representatives is 1, a, b, ab, abab, . . . , so

σ̃(Z2∗Z2,{a,b})(z) = 1 + 2z + z2 + z4 + z6 · · · =
1 + 2z − 2z3

1− z2
.

9 / 48



Conjugacy growth series in virt. cyclic groups: Z, Z2 ∗ Z2

In Z the conjugacy growth series is the same as the standard one:

σ̃(Z,{1,−1})(z) = 1 + 2z + 2z2 + · · · =
1 + z

1− z
.

In Z2 ∗ Z2 a set of conjugacy representatives is 1, a, b, ab, abab, . . . , so

σ̃(Z2∗Z2,{a,b})(z) = 1 + 2z + z2 + z4 + z6 · · · =
1 + 2z − 2z3

1− z2
.

9 / 48



Conjugacy growth series in free groups: F2 = 〈a, b〉

Set a < b < a−1 < b−1 and choose as conjugacy representative the smallest

shortlex rep. in each conjugacy class, so the language is

{a±k , b±k , ab, ab−1, ba−1, a−1b−1, a2b,��aba, · · · }

10 / 48



Asymptotics of conjugacy growth in the free group

Idea: take all cyclically reduced words of length n, whose number

is (2k − 1)n + 1 + (k − 1)[1 + (−1)n], and divide by n.

Coornaert, 2005: For the free group Fk , the primitive (non-powers) conjugacy

growth function is given by

σp(n) ∼ (2k − 1)n+1

2(k − 1)n
= C

ehn

n
,

where C = 2k−1
2(k−1)

, h = log(2k − 1).

In general, when powers are included, one cannot divide by n.
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The conjugacy growth series in free groups

• Rivin (2000, 2010): the conjugacy growth series of Fk is not rational:

σ̃(z) =

∫ z

0

H(t)

t
dt, where

H(x) = 1 + (k − 1)
x2

(1− x2)2
+
∞∑
d=1

φ(d)

(
1

1− (2k − 1)xd
− 1

)
.
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Free products of finite groups

Theorem (C. - Hermiller, 2012)

For A, B finite groups with generating sets XA = A \ 1A, XB = B \ 1B ,

and A ∗ B with generating set X = XA ∪ XB .

Then σ̃(A ∗ B,X ) is rational iff A = B = Z/2Z, i.e. A ∗ B = D∞.
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Rational, algebraic, transcendental

A generating function f (z) is

I rational if there exist polynomials P(z), Q(z) with integer coefficients

such that f (z) = P(z)
Q(z)

;

I algebraic if there exists a polynomial P(x , y) with integer coefficients such

that P(z , f (z)) = 0;

I transcendental otherwise.
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Rivin’s conjecture ⇒

If G is non-elementary hyperbolic, then the conjugacy growth series σ̃ is not

rational.

Proof. (Antoĺın-C., 2015)

• Recall: σ(n) := ]{[g ] ∈ G | |g |c = n} is the strict conjugacy growth.

• Let φ(n) := ]{[g ] ∈ G | |g |c ≤ n} be the cumulative conjugacy growth.
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Theorem [AC] (Conjugacy bounds based on Coornaert and Knieper).

Let G be a non-elementary word hyperbolic group. Then there are positive

constants A,B and n0 such that

A
ehn

n
≤ φ(n) ≤ B

ehn

n

for all n ≥ n0, where h is the growth rate of G , i.e. ehn = |Ball(n)|.

MESSAGE:.

The number of conjugacy classes in the ball of radius n is asymptotically the

number of elements in the ball of radius n divided by n.
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Suppose there are positive constants A,B, h and an integer n0 ≥ 0 s.t.

A
ehn

n
≤ an ≤ B

ehn

n

for all n ≥ n0. Then the power series
∑∞

i=0 anz
n is not algebraic.
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Bounds for the conjugacy growth

Let φp(n) := ]{primitive [g ] ∈ G | |g |c ≤ n} be the primitive cumulative

conjugacy growth.

Theorem.(Coornaert and Knieper, GAFA 2002)

Let G be a non-elementary word hyperbolic. Then there are positive constants

A and n0 such that for all n ≥ n0

A
ehn

n
≤ φp(n).

Theorem.(Coornaert and Knieper, IJAC 2004)

Let G be a torsion-free non-elementary word hyperbolic group. Then there are

positive constants B and n1 such that for all n ≥ n1

φp(n) ≤ B
ehn

n
.
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Rivin’s conjecture ⇒ : Proof

1. Drop torsion requirement from upper bound of Coornaert and Knieper:

(i) use the fact that there exists m <∞ such that all finite subgroups F ≤ G

satisfy |F | ≤ m.

(ii) most (≥ n
m

) cyclic permutations of a primitive conjugacy representative of

length n correspond to different elements of length n in G .

2. Find conjugacy growth upper bound for all conjugacy classes, i.e. include

the non-primitive classes in the count.

�
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Next steps: generalize

1. Rivin’s conjecture for relatively hyperbolic groups?

(a) we need sharp bounds for the standard growth function [Yang]
√

(b) we need sharp bounds for the conjugacy growth function.

2. Rivin’s conjecture for acylindrically hyperbolic groups:

Is the conjugacy growth series of a f.g. acylindrically hyperbolic group

transcendental?
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Conjugacy representatives in acylindrically hyperbolic groups
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Formal languages and the Chomsky hierarchy

Let X be a finite alphabet. A formal language over X is a set L ⊂ X∗ of words.

regular

unambiguous

context-free

context-free

context-sensitive

recursively enumerable
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Formal languages and their algebraic complexity

Let L ⊂ X ∗ be a language.

I The growth function fL : N→ N of L is:

fL(n) = ]{w ∈ L | w of length n}.

I The growth series of L is

SL(z) =
∞∑
n=0

fL(n)zn.

Theorem

I Regular languages have RATIONAL growth series.

I Unambiguous context-free languages have ALGEBRAIC growth series.

(Chomsky-Schützenberger)
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Consequences of the Rivin conjecture

Corollary. [AC]

Let G be a non-elementary hyperbolic group, X a finite generating set and Lc

any set of minimal length representatives of conjugacy classes.

Then Lc is not regular.

By Chomsky-Schüzenberger, Lc is not unambiguous context-free (UCF).
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Acylindrically hyperbolic groups

Main Theorem [AC, 2015]

Let G be an acylindrically hyperbolic group, X any finite generating set, and Lc

be a set containing one minimal length representative of each conjugacy class.

Then Lc is not unambiguous context-free, so not regular.

25 / 48



Acylindrically hyperbolic groups

Main Theorem [AC, 2015]

Let G be an acylindrically hyperbolic group, X any finite generating set, and

Lc be a set containing one minimal length representative of each primitive

conjugacy class/commensurating class.

Then Lc is not unambiguous context-free, so not regular.
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Examples of acylindrically hyperbolic groups

(Dahmani, Guirardel, Osin, Hamenstädt, Bowditch, Fujiwara, Minasyan ...)

I relatively hyperbolic groups,

I all but finitely many mapping class groups of punctured closed surfaces,

I Out(Fn) for n ≥ 2,

I directly indecomposable right-angled Artin groups,

I one-relator groups with at least 3 generators,

I most 3-manifold groups,

I lots of groups acting on trees,

I C ′( 1
6
) small cancellation groups.
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Acylindrically hyperbolic groups: definition 1

An action ◦ of a group G on a metric space (S, d) is called acylindrical if for

every ε > 0 there exist R ≥ 0 and N ≥ 0 such that for every two points

x , y ∈ S with d(x , y) ≥ R there are at most N elements of G satisfying

d(x , g ◦ x) ≤ ε and d(y , g ◦ y) ≤ ε.

A group G is called acylindrically hyperbolic if it admits a non-elementary

acylindrical action on a hyperbolic space, where non-elementary is equivalent to

G being non-virtually cyclic and the action having unbounded orbits.
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Acylindrically hyperbolic groups: definition 2

A group is acylindrically hyperbolic if and only if it has a non-degenerate

hyperbolically embedded subgroup in the sense of Dahmani, Guirardel and Osin.

Properties of a hyperbolically embedded subgroup:

I finitely generated,

I Morse (for any λ ≥ 1, c ≥ 0 there exists κ = κ(λ, c) s. t. every

(λ, c)-quasi-geodesic in Γ(G ,X ) with end points in H lies in the

κ-neighborhood of H),

I almost malnormal,

I quasi-isometrically embedded.
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Main Theorem: Conjugacy representatives in an acylindrically hyperbolic

group G are not regular (not UCF).

Idea of proof:

(1) use the fact that conjugacy representatives in hyperbolic groups are not

regular (not UCF),

(2) there is a hyperbolic subgroup H that hyperbolically embeds in G ,

(3) conjugators of conjugacy geodesics can be uniformly bounded∗, and

(4) transform the language (1) for H into a language of conjugacy reps in G

via regular operations using (3).
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BCD: Bounded Conjugacy Diagrams

A group (G ,X ) satisfies K -(BCD) if there is a constant K > 0 such that for

any pair of cyclic geodesic words U and V over X representing conjugate

elements either

(a) max{|U|, |V |} ≤ K ,

or

(b) there is a word C over X , |C | ≤ K , with CU ′C−1 =G V ′, where U ′ and

V ′ are cyclic shifts of U and V .

BCD appears in Bridson & Haefliger’s book Metric spaces of non-positive

curvature; they show that hyperbolic groups have BCD.
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Short conjugator of U and V after cyclic permutations
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Relative BCD

Let H be a subgroup of a group G and X a finite generating set of G .

We say that (G ,X ) has BCD relative to H if there is a K ≥ 0 such that for any

conjugacy geodesic U conjugate to an element in H we can find g ∈ BX (K)

and a cyclic permutation U ′ of U so that U ′ =G g−1Vg , where V ∈ H.
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Result 1 (about languages)

Suppose G is finitely generated by X and H 6 G is a hyperbolic group,

quasi-isometrically embedded in G , almost malnormal and Morse. (∗)

Suppose ∃ K > 0 such that G has K -BCD relative to H. (∗∗)

Then any language of conjugacy representatives in G is not regular (UCF).
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Result 2 (about AH groups)

Let G be a finitely generated acylindrically hyperbolic group and X any finite

symmetric generating set.

There exist

I (DGO) a virtually free group H that is hyperbolically embedded in G , and

I K ≥ 0 such that G has K -BCD relative to H.

Remark: In other words, acylindrically hyperbolic groups satisfy the conditions

(∗) and (∗∗) in Result 1.
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Result 1 (about languages)

G = 〈X 〉

Suppose

(∗) H 6 G is hyperbolic, qi embedded in G , almost malnormal and Morse.

(∗∗) G has BCD relative to H.

Then any language of conjugacy representatives in G is not regular (UCF).
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Result 1: idea of proof

0. Remove all torsion conjugacy classes (finitely many) from the discussion.

0’. Today assume torsion-free G .
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Sketch of proof - Step 1: strengthen the BCD condition

Construct a generating set Y for H s.t. to every conjugacy geodesic U over X ,

U ∈ HG , we can associate a conj. geod. V over Y , where V = g−1Ug and

(a) the length of the conjugator g is uniformly bounded, and

(b) U and V ‘fellow travel’.

Remarks:

(1) Call such a pair (U,V ) a BCD pair.

(2) The fellow traveler property is non-standard, as U and V are words over

different alphabets.
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Step 1: The formal setup

Let G be generated by Z ; all distances are wrt to Z .

Let B := (X ∪ $)× (Y ∪ $) and suppose there are maps

X 7→ G ,Y 7→ G with $ 7→ 1G .

Def. A pair (U,V ) ∈ B∗ is a BCD pair with constant K if V = g−1Ug ,

(a) |g |Z ≤ K ,

(b) U and V synchronously K -fellow travel wrt Z .

39 / 48



Step 1: The formal setup

Let G be generated by Z ; all distances are wrt to Z .

Let B := (X ∪ $)× (Y ∪ $) and suppose there are maps

X 7→ G ,Y 7→ G with $ 7→ 1G .

Def. A pair (U,V ) ∈ B∗ is a BCD pair with constant K if V = g−1Ug ,

(a) |g |Z ≤ K ,

(b) U and V synchronously K -fellow travel wrt Z .

39 / 48



Step 1: The formal setup

Let G be generated by Z ; all distances are wrt to Z .

Let B := (X ∪ $)× (Y ∪ $) and suppose there are maps

X 7→ G ,Y 7→ G with $ 7→ 1G .

Def. A pair (U,V ) ∈ B∗ is a BCD pair with constant K if V = g−1Ug ,

(a) |g |Z ≤ K ,

(b) U and V synchronously K -fellow travel wrt Z .

39 / 48



Sketch of proof

Lemma.

Let K ≥ 0. The following set is a regular language:

M = {(U,V ) ∈ B∗ | (U,V ) is a BCD pair with constant K}.

Step 1. Associate to each conjugacy geodesic U (over X ) some V (over Y )

such that (U,V ) is a BCD pair.

This is not a map, since there might be more

than one V for each U.
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Step 2. Build a well-defined map ∆ such that ∆(U) = V .

Standard Lemma.

The set M1 = {(V1,V2) ∈ (Y $ × Y $)∗ | V1 <lex V2} is regular.

Lemma. The language

M2 = {(U,V ) ∈ B∗ | V ≡ min
≤lex

(V ′ | (U,V ′) is a BCD pair)}

is regular.

Define the map ∆ by ∆(U) = V , where V is such that (U,V ) ∈M2.
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Step 3

We picked V , the lexicographically least word conjugate to U among the BCD

pairs (U,V ) with fixed U. By definition V is unique and conjugate to U.

Let L be a language of conjugacy representatives for G and define

R := ∆(L ∩ HG ) ⊆ H.

Corollary. If L is regular (UCF) then R is regular (UCF).
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Step 3

Finally, use the malnormality of H:

hH = hG ∩ H.

By construction R contains an H-representative of each G -conjugacy class. By

malnormality R contains exactly one representative of each H-conjugacy class.

=⇒ R is a language of conjugacy representatives for the hyperbolic group H.
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Conclusion

So if L (= the conjugacy reps for G) were UCF, then R (= the conjugacy

reps. for H) would be UCF.

This contradicts Rivin’s conjecture, because H is hyperbolic.

Thus conjugacy

representatives in acylindrically hyperbolic groups cannot be unambiguous

context-free. �

Question: What type of language are they?
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Thank you!
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Rivin’s conjecture ⇐

Theorem (C., Hermiller, Holt, Rees, 2014)

Let G be a virtually cyclic group. Then for all generating sets of G the

language of shortlex conjugacy representatives ConjSL is regular and hence the

conjugacy growth series is rational.

Proof: We may assume that G is infinite.

I ∃H E G , H = 〈x〉 ∼= Z, with G/H finite.

I Let C := CG (H) be the centralizer of H in G .

I The conjugation action of G on H defines a map G → Aut(Z) with kernel

C and so |G : C | ≤ 2.

I For g ∈ G \ C , we have gxg−1 = x−1 ⇒ x−1gx = gx2, and hence the

coset Hg is either a single conjugacy class in 〈H, g〉 (if G ∼= Z ) or the

union [g ] ∪ [gx ] (because gxk = x−1(gxk−2)x).
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I So G \ C consists of finitely many conjugacy classes of G .

I Since |ConjSL ∩ (G \ C)| <∞, to prove regularity of ConjSL it is enough

to show that ConjSL ∩ C is regular.

I For g ∈ C , |G : CG (g)| <∞, so C is a union of infinitely many finite

conjugacy classes.

I Let T be a transversal of H in G .

I Then for each c ∈ C , the conjugacy class of c is {t−1ct | t ∈ T}, and

hence any word w with π(w) = c is in ConjSL ⇔ there does not exist

t ∈ T for which t−1wt has a representative v with v <sl w .

I G hyperbolic =⇒

L1(t) := {(u, v) : u, v ∈ Geo, π(v) = π(t−1ut)}

is regular for any t ∈ T , as is the set Geo.
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I Any word w with π(w) = c is in ConjSL if and only if there does not exist

t ∈ T for which t−1wt has a representative v with v <sl w .

I G hyperbolic =⇒

L1(t) := {(u, v) : u, v ∈ Geo, π(v) = π(t−1ut)}

is regular for any t ∈ T , as is the set Geo.

I So ConjSL ∩ C is the intersection of π−1(C) with

Geo \ ∪t∈T ({u ∈ Geo : ∃v ∈ Geo such that (u, v) ∈ L1(t), v <sl u}).

I |G : C | finite implies that π−1(C) is regular, so ConjSL ∩ C is also regular.

�
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