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Counting conjugacy classes

Let G be a group with finite generating set X.

» Denote by [g] the conjugacy class of g € G and by |g|c the conjugacy
length of [g], where |g|c is the length of the shortest h € [g], with respect
to X.

» The conjugacy growth function is then

oex(n):=#{[g] € G| |g|lc = n}.
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Conjugacy growth in groups

» Guba-Sapir (2010): asymptotics of the conjugacy growth function for
BS(1, n), the Heisenberg group on two generators, diagram groups, some

HNN extensions.

» Conjecture (Guba-Sapir): most (excluding the Osin or Ivanov type
‘monsters’) groups of standard exponential growth should have

exponential conjugacy growth.

» Breuillard-Cornulier-Lubotzky-Meiri (2011): uniform exponential

conjugacy growth for f.g. linear (non virt. nilpotent) groups.

» Hull-Osin (2013): conjugacy growth not quasi-isometry invariant. Also, it
is possible to construct groups with a prescribed conjugacy growth

function.
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Conjugacy growth in geometry

A slight modification of the conjugacy growth function (including only the

non-powers) appears in geometry:

- counting the primitive closed geodesics of bounded length on a compact
manifold M of negative curvature and exponential volume growth gives, via
quasi-isometries, good (exponential) asymptotics for o(n) for the fundamental

group of M (Margulis, ...).



The conjugacy growth series

Let G be a group with finite generating set X.

» The conjugacy growth series of G with respect to X records the number of

conjugacy classes of every length. It is

oo

G(6.x)(2) =D o(ex(n)z",

n=0

where (¢ x)(n) is the number of conjugacy classes of length n.
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Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and only if

G is virtually cyclic.

=
Theorem (Antolin-C., 2015)

If G is non-elementary hyperbolic, then the conjugacy growth series is
transcendental.

P

Theorem (C., Hermiller, Holt, Rees, 2014)

Let G be a virtually cyclic group. Then the conjugacy growth series of G is

rational.

NB: Both results hold for all symmetric generating sets of G.
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Conjugacy representatives

In order to determine the conjugacy growth series, we need a set of minimal

length conjugacy representatives, i.e. for each conjugacy class [g] in G pick

exactly one word w € X™ such that
1. m(w) € [g], where w: X* — G the natural projection, and
2. I(w) = |r(w)| = |m(w)]|c is of minimal length in [g], where

> /(w) := word length of w € X*

> |g| = |g|x := the (group) length of g € G with respect to X.
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Conjugacy growth series in virt. cyclic groups: Z, Zy * Z;

In Z the conjugacy growth series is the same as the standard one:

_1+Z
T 11—z

E(Z’{l,_l})(z) =14+2z+ 222 + .-
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Conjugacy growth series in virt. cyclic groups: Z, Z; * Zo

In Z the conjugacy growth series is the same as the standard one:

~ 1
G, () = 14224227+ = 1 i— i
In Zy % Z» a set of conjugacy representatives is 1, a, b, ab, abab, . .., so
_1+2z- 273

Clazatasn(?) =14 224+ 242 42 =
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Conjugacy growth series in free groups: F, = (a, b)

Set a< b < a~! < b™! and choose as conjugacy representative the smallest

shortlex rep. in each conjugacy class, so the language is

{a** b** ab,ab ™ bat,a 'b ' a’b,abd, -}
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Asymptotics of conjugacy growth in the free group

Idea: take all cyclically reduced words of length n, whose number

is (2k —1)" 4+ 1+ (k — 1)[1 + (—1)"], and divide by n.
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Idea: take all cyclically reduced words of length n, whose number

is (2k —1)"4+ 1+ (k — 1)[1 + (—1)"], and divide by n.

Coornaert, 2005: For the free group F, the primitive (non-powers) conjugacy

growth function is given by

(2k _ 1)n+1 ehn
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Asymptotics of conjugacy growth in the free group

Idea: take all cyclically reduced words of length n, whose number

is (2k —1)"4+ 1+ (k — 1)[1 + (—1)"], and divide by n.

Coornaert, 2005: For the free group F, the primitive (non-powers) conjugacy

growth function is given by

(2k — 1)+t ehn
7p() 20k—1n "~ n’

where C = %, h = log(2k — 1).

In general, when powers are included, one cannot divide by n.
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The conjugacy growth series in free groups

e Rivin (2000, 2010): the conjugacy growth series of Fj is not rational:

o z):/ Mdt, where
0 t

H(x) =1+ (k —1) +Z¢(d <71)Xd—1).
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Free products of finite groups

Theorem (C. - Hermiller, 2012)

For A, B finite groups with generating sets Xa = A\ 14, Xz = B\ 13,

and A x B with generating set X = X4 U Xg.
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Free products of finite groups

Theorem (C. - Hermiller, 2012)

For A, B finite groups with generating sets Xa = A\ 14, Xz = B\ 13,

and A x B with generating set X = X4 U Xg.

Then (A« B, X) is rational iff A= B =Z7/2Z, i.e. Ax B = Ds.
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Rational, algebraic, transcendental

A generating function f(z) is

> rational if there exist polynomials P(z), Q(z) with integer coefficients

P(z).
Q)

such that f(z) =

> algebraic if there exists a polynomial P(x,y) with integer coefficients such
that P(z,f(z)) =0;

» transcendental otherwise.
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Rivin's conjecture =

If G is non-elementary hyperbolic, then the conjugacy growth series & is not

rational.

15 /48



Rivin's conjecture =

If G is non-elementary hyperbolic, then the conjugacy growth series & is not

rational.

Proof. (Antolin-C., 2015)

e Recall: o(n) := t{[g] € G | |g|c = n} is the strict conjugacy growth.

o Let ¢(n) :=#{[g] € G | |glc < n} be the cumulative conjugacy growth.

15 /48



Theorem [AC] (Conjugacy bounds based on Coornaert and Knieper).

Let G be a non-elementary word hyperbolic group. Then there are positive

constants A, B and ng such that

hn hn

AS— < ¢(n) < BE

n n

for all n > ng, where h is the growth rate of G, i.e. " = |Ball(n)|.
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Theorem [AC] (Conjugacy bounds based on Coornaert and Knieper).

Let G be a non-elementary word hyperbolic group. Then there are positive
constants A, B and ng such that
hn hn

AS— < ¢(n) < BE

n n

for all n > ng, where h is the growth rate of G, i.e. " = |Ball(n)|.

MESSAGE:.

The number of conjugacy classes in the ball of radius n is asymptotically the

number of elements in the ball of radius n divided by n.
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Theorem [AC] (Conjugacy bounds based on Coornaert and Knieper).

Let G be a non-elementary word hyperbolic group. Then there are positive

constants A, B and ng such that

hn hn

AS— < ¢(n) < BE

n n

for all n > ng, where h is the growth rate of G, i.e. " = |Ball(n)|.

Lemma (Flajolet: Trancendence of series based on bounds).

Suppose there are positive constants A, B, h and an integer np > 0 s.t.

n

for all n > ng. Then the power series Z?ﬁo anz" is not algebraic.



Bounds for the conjugacy growth

Let ¢p(n) := #{primitive [g] € G | |g|c < n} be the primitive cumulative

conjugacy growth.
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Bounds for the conjugacy growth

Let ¢p(n) := #{primitive [g] € G | |g|c < n} be the primitive cumulative

conjugacy growth.

Theorem.(Coornaert and Knieper, GAFA 2002)
Let G be a non-elementary word hyperbolic. Then there are positive constants

A and ng such that for all n > ng

ehn

A

< ¢p(n).

n
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Bounds for the conjugacy growth

Let ¢p(n) := #{primitive [g] € G | |g|c < n} be the primitive cumulative

conjugacy growth.

Theorem.(Coornaert and Knieper, GAFA 2002)
Let G be a non-elementary word hyperbolic. Then there are positive constants

A and ng such that for all n > ng

ehn

A

< ¢p(n).

n

Theorem.(Coornaert and Knieper, 1JAC 2004)
Let G be a torsion-free non-elementary word hyperbolic group. Then there are

positive constants B and n; such that for all n > ny

hn
dp(n) < BeT.



Rivin's conjecture = : Proof

1. Drop torsion requirement from upper bound of Coornaert and Knieper:

(i) use the fact that there exists m < oo such that all finite subgroups F < G
satisfy |F| < m.
(i) most (> Z) cyclic permutations of a primitive conjugacy representative of

length n correspond to different elements of length nin G.
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Rivin's conjecture = : Proof

1. Drop torsion requirement from upper bound of Coornaert and Knieper:

(i) use the fact that there exists m < oo such that all finite subgroups F < G
satisfy |F| < m.
(i) most (> Z) cyclic permutations of a primitive conjugacy representative of

length n correspond to different elements of length nin G.

2. Find conjugacy growth upper bound for all conjugacy classes, i.e. include

the non-primitive classes in the count.

19/48



Next steps: generalize

1. Rivin's conjecture for relatively hyperbolic groups?
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Next steps: generalize

1. Rivin's conjecture for relatively hyperbolic groups?
(a) we need sharp bounds for the standard growth function [Yang] /

(b) we need sharp bounds for the conjugacy growth function.

2. Rivin’s conjecture for acylindrically hyperbolic groups:

Is the conjugacy growth series of a f.g. acylindrically hyperbolic group

transcendental?



Conjugacy representatives in acylindrically hyperbolic groups



Formal languages and the Chomsky hierarchy

Let X be a finite alphabet. A formal language over X is a set L C X* of words.
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Formal languages and the Chomsky hierarchy

Let X be a finite alphabet. A formal language over X is a set L C X* of words.

regular

unambiguous

N

~_ context-free ¢
N .

context-free

context-sensitive

recursively enumerable
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Formal languages and their algebraic complexity
Let L C X* be a language.

> The growth function f; : N — N of L is:

fi(n) = t{w € L | w of length n}.

> The growth series of L is

23 /48



Formal languages and their algebraic complexity
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fi(n) = t{w € L | w of length n}.

> The growth series of L is

Theorem

> Regular languages have RATIONAL growth series.

23 /48



Formal languages and their algebraic complexity
Let L C X* be a language.

> The growth function f; : N — N of L is:
fi(n) = t{w € L | w of length n}.

> The growth series of L is

Theorem

> Regular languages have RATIONAL growth series.

» Unambiguous context-free languages have ALGEBRAIC growth series.

(Chomsky-Schiitzenberger)
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Consequences of the Rivin conjecture

Corollary. [AC]

Let G be a non-elementary hyperbolic group, X a finite generating set and L.

any set of minimal length representatives of conjugacy classes.

Then L. is not regular.
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Consequences of the Rivin conjecture

Corollary. [AC]

Let G be a non-elementary hyperbolic group, X a finite generating set and L.

any set of minimal length representatives of conjugacy classes.

Then L. is not regular.

By Chomsky-Schiizenberger, L. is not unambiguous context-free (UCF).
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Acylindrically hyperbolic groups

Main Theorem [AC, 2015]

Let G be an acylindrically hyperbolic group, X any finite generating set, and L.

be a set containing one minimal length representative of each conjugacy class.

Then L is not unambiguous context-free, so not regular.
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Acylindrically hyperbolic groups

Main Theorem [AC, 2015]

Let G be an acylindrically hyperbolic group, X any finite generating set, and
L. be a set containing one minimal length representative of each primitive

conjugacy class/commensurating class.

Then L. is not unambiguous context-free, so not regular.



Examples of acylindrically hyperbolic groups

(Dahmani, Guirardel, Osin, Hamenstidt, Bowditch, Fujiwara, Minasyan ...)

v

relatively hyperbolic groups,

all but finitely many mapping class groups of punctured closed surfaces,
Out(F,) for n > 2,

directly indecomposable right-angled Artin groups,

one-relator groups with at least 3 generators,

most 3-manifold groups,

lots of groups acting on trees,

et H
C’() small cancellation groups.
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Acylindrically hyperbolic groups: definition 1

An action o of a group G on a metric space (S, d) is called acylindrical if for
every € > 0 there exist R > 0 and N > 0 such that for every two points

x,y € S with d(x,y) > R there are at most N elements of G satisfying

d(x,gox)<e and d(y,goy) <e.
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Acylindrically hyperbolic groups: definition 1

An action o of a group G on a metric space (S, d) is called acylindrical if for
every € > 0 there exist R > 0 and N > 0 such that for every two points

x,y € S with d(x,y) > R there are at most N elements of G satisfying

d(x,gox)<e and d(y,goy) <e.

A group G is called acylindrically hyperbolic if it admits a non-elementary
acylindrical action on a hyperbolic space, where non-elementary is equivalent to

G being non-virtually cyclic and the action having unbounded orbits.



Acylindrically hyperbolic groups: definition 2

A group is acylindrically hyperbolic if and only if it has a non-degenerate

hyperbolically embedded subgroup in the sense of Dahmani, Guirardel and Osin.

Properties of a hyperbolically embedded subgroup:

> finitely generated,

> Morse (for any A > 1, ¢ > 0 there exists k = k(\, ¢) s. t. every
(A, ¢)-quasi-geodesic in (G, X) with end points in H lies in the
k-neighborhood of H),

» almost malnormal,

> quasi-isometrically embedded.

29 /48



Main Theorem: Conjugacy representatives in an acylindrically hyperbolic

group G are not regular (not UCF).

Idea of proof:
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Main Theorem: Conjugacy representatives in an acylindrically hyperbolic

group G are not regular (not UCF).

Idea of proof:

(1) use the fact that conjugacy representatives in hyperbolic groups are not

regular (not UCF),
(2) there is a hyperbolic subgroup H that hyperbolically embeds in G,
(3) conjugators of conjugacy geodesics can be uniformly bounded”, and

(4) transform the language (1) for H into a language of conjugacy reps in G

via regular operations using (3).



BCD: Bounded Conjugacy Diagrams

A group (G, X) satisfies K-(BCD) if there is a constant K > 0 such that for
any pair of cyclic geodesic words U and V over X representing conjugate

elements either
(a) max{|UL,|V]} < K,
or

b) there is a word C over X, |C| < K, with CU'C~! =¢ V’, where U’ and
(
V' are cyclic shifts of U and V.
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BCD: Bounded Conjugacy Diagrams

A group (G, X) satisfies K-(BCD) if there is a constant K > 0 such that for
any pair of cyclic geodesic words U and V over X representing conjugate

elements either
(a) max{|U], IV1} < K.
or
(b) there is a word C over X, |C| < K, with CU'C™! =¢ V', where U’ and

V' are cyclic shifts of U and V.

BCD appears in Bridson & Haefliger's book Metric spaces of non-positive

curvature; they show that hyperbolic groups have BCD.
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Short conjugator of U and V after cyclic permutations



Relative BCD

Let H be a subgroup of a group G and X a finite generating set of G.
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Relative BCD

Let H be a subgroup of a group G and X a finite generating set of G.

We say that (G, X) has BCD relative to H if there is a K > 0 such that for any
conjugacy geodesic U conjugate to an element in H we can find g € Bx(K)

and a cyclic permutation U’ of U so that U’ =¢ g~ ' Vg, where V € H.

33/48



Result 1 (about languages)

Suppose G is finitely generated by X and H < G is a hyperbolic group,

quasi-isometrically embedded in G, almost malnormal and Morse. (x)
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Result 1 (about languages)

Suppose G is finitely generated by X and H < G is a hyperbolic group,

quasi-isometrically embedded in G, almost malnormal and Morse. (x)

Suppose 3 K > 0 such that G has K-BCD relative to H. ()

Then any language of conjugacy representatives in G is not regular (UCF).

34 /48



Result 2 (about AH groups)

Let G be a finitely generated acylindrically hyperbolic group and X any finite

symmetric generating set.
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Result 2 (about AH groups)

Let G be a finitely generated acylindrically hyperbolic group and X any finite

symmetric generating set.

There exist

» (DGO) a virtually free group H that is hyperbolically embedded in G, and

» K > 0 such that G has K-BCD relative to H.

Remark: In other words, acylindrically hyperbolic groups satisfy the conditions

(*) and (*x) in Result 1.
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Result 1 (about languages)

G =(X)

Suppose

(*x) H < G is hyperbolic, qi embedded in G, almost malnormal and Morse.

(*%) G has BCD relative to H.

Then any language of conjugacy representatives in G is not regular (UCF).
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Result 1: idea of proof

0. Remove all torsion conjugacy classes (finitely many) from the discussion.

0'. Today assume torsion-free G.
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Sketch of proof - Step 1: strengthen the BCD condition

Construct a generating set Y for H s.t. to every conjugacy geodesic U over X,

U € H®, we can associate a conj. geod. V over Y, where V = g~ *Ug and

(a) the length of the conjugator g is uniformly bounded, and

(b) U and V ‘fellow travel'.
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Sketch of proof - Step 1: strengthen the BCD condition

Construct a generating set Y for H s.t. to every conjugacy geodesic U over X,

U € H®, we can associate a conj. geod. V over Y, where V = g~ *Ug and

(a) the length of the conjugator g is uniformly bounded, and

(b) U and V ‘fellow travel'.

Remarks:

(1) Call such a pair (U, V) a BCD pair.

(2) The fellow traveler property is non-standard, as U and V are words over

different alphabets.



Step 1: The formal setup

Let G be generated by Z; all distances are wrt to Z.
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Step 1: The formal setup

Let G be generated by Z; all distances are wrt to Z.

Let B:= (X US$) x (Y U$) and suppose there are maps
X G,Y — G with $ — 1¢.

Def. A pair (U, V) € B* is a BCD pair with constant K if V = g7'Ug,

(a) lglz < K,

(b) U and V synchronously K-fellow travel wrt Z.
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Step 1: The formal setup

Let G be generated by Z; all distances are wrt to Z.

Let B:= (X US$) x (Y U$) and suppose there are maps
X G,Y — G with $ — 1¢.

Def. A pair (U, V) € B* is a BCD pair with constant K if V = g7'Ug,

(a) lglz < K,

(b) U and V synchronously K-fellow travel wrt Z.
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Sketch of proof

Lemma.

Let K > 0. The following set is a regular language:

M={(U,V)e B*| (U,V)is a BCD pair with constant K}.

Step 1. Associate to each conjugacy geodesic U (over X) some V (over Y)

such that (U, V) is a BCD pair.



Sketch of proof

Lemma.

Let K > 0. The following set is a regular language:

M={(U,V)e B*| (U,V)is a BCD pair with constant K}.

Step 1. Associate to each conjugacy geodesic U (over X) some V (over Y)
such that (U, V) is a BCD pair. This is not a map, since there might be more

than one V for each U.



Step 2. Build a well-defined map A such that A(U) = V.
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Step 2. Build a well-defined map A such that A(U) = V.

Standard Lemma.

The set My = {(V4, Vo) € (Y® x Y®)" | Vi <iex Vi) is regular.

Lemma. The language
M ={(U,V)eB"|V= n<1in(V' | (U, V') is a BCD pair)}
=lex

is regular.

Define the map A by A(U) = V, where V is such that (U, V) € Mo.



Step 3

We picked V/, the lexicographically least word conjugate to U among the BCD

pairs (U, V) with fixed U. By definition V is unique and conjugate to U.
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Step 3

We picked V/, the lexicographically least word conjugate to U among the BCD

pairs (U, V) with fixed U. By definition V is unique and conjugate to U.

Let £ be a language of conjugacy representatives for G and define

R = A(LNH®) C H.

Corollary. If £ is regular (UCF) then R is regular (UCF).



Step 3

Finally, use the malnormality of H:

A =K N H.
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Step 3

Finally, use the malnormality of H:

A =K N H.

By construction R contains an H-representative of each G-conjugacy class. By

malnormality R contains exactly one representative of each H-conjugacy class.

= R is a language of conjugacy representatives for the hyperbolic group H.



Conclusion

So if £ (= the conjugacy reps for G) were UCF, then R (= the conjugacy
reps. for H) would be UCF.

This contradicts Rivin's conjecture, because H is hyperbolic.
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Conclusion

So if £ (= the conjugacy reps for G) were UCF, then R (= the conjugacy
reps. for H) would be UCF.

This contradicts Rivin's conjecture, because H is hyperbolic. Thus conjugacy
representatives in acylindrically hyperbolic groups cannot be unambiguous

context-free.

Question: What type of language are they?



Thank you!



Rivin's conjecture <

Theorem (C., Hermiller, Holt, Rees, 2014)

Let G be a virtually cyclic group. Then for all generating sets of G the
language of shortlex conjugacy representatives ConjSL is regular and hence the

conjugacy growth series is rational.

Proof: We may assume that G is infinite.
» JH G, H = {x) 2 Z, with G/H finite.
> Let C := Cg(H) be the centralizer of H in G.
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Rivin's conjecture <

Theorem (C., Hermiller, Holt, Rees, 2014)

Let G be a virtually cyclic group. Then for all generating sets of G the
language of shortlex conjugacy representatives ConjSL is regular and hence the

conjugacy growth series is rational.

Proof: We may assume that G is infinite.

v

IH <G, H=(x) = Z, with G/H finite.

v

Let C := C¢(H) be the centralizer of H in G.
» The conjugation action of G on H defines a map G — Aut(Z) with kernel
Candso |G: C|<2.

v

For g € G\ C, we have gxg7! = x™' = x7'gx = gx°, and hence the
coset Hg is either a single conjugacy class in (H, g) (if G 2 Z ) or the

union [g] U [gx] (because gx* = x~!(gx*"?)x).
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Let C := C¢(H) be the centralizer of H in G.
» The conjugation action of G on H defines a map G — Aut(Z) with kernel
Candso |G: C|<2.

v
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» So G\ C consists of finitely many conjugacy classes of G.
» Since |ConjSLN (G \ C)| < oo, to prove regularity of ConjSL it is enough

to show that ConjSL N C is regular.



» So G\ C consists of finitely many conjugacy classes of G.

» Since |ConjSLN (G \ C)| < oo, to prove regularity of ConjSL it is enough
to show that ConjSL N C is regular.

» For g€ C, |G : Cs(g)| < 00, so C is a union of infinitely many finite

conjugacy classes.



So G\ C consists of finitely many conjugacy classes of G.

Since |ConjSLN (G \ C)| < oo, to prove regularity of ConjSL it is enough
to show that ConjSL N C is regular.

For g € C, |G : Cs(g)| < o0, so C is a union of infinitely many finite
conjugacy classes.

Let T be a transversal of H in G.

Then for each ¢ € C, the conjugacy class of c is {t*ct | t € T}, and
hence any word w with m(w) = c is in ConjSL < there does not exist

t € T for which t~'wt has a representative v with v <g w.



So G\ C consists of finitely many conjugacy classes of G.
Since |ConjSLN (G \ C)| < oo, to prove regularity of ConjSL it is enough

to show that ConjSL N C is regular.

For g € C, |G : Cs(g)| < o0, so C is a union of infinitely many finite
conjugacy classes.

Let T be a transversal of H in G.

Then for each ¢ € C, the conjugacy class of c is {t*ct | t € T}, and
hence any word w with m(w) = c is in ConjSL < there does not exist
t € T for which t~'wt has a representative v with v <g w.
G hyperbolic =

Li(t) :={(u,v) : u,v € Geo, m(v)=m(t 'ut)}

is regular for any t € T, as is the set Geo.



v

v

v

Any word w with m(w) = c is in ConjSL if and only if there does not exist

t € T for which t~'wt has a representative v with v <g w.

G hyperbolic =
Li(t) :== {(u,v) : u,v € Geo, w(v)=m(t "ut)}

is regular for any t € T, as is the set Geo.

So ConjSL N C is the intersection of 77!(C) with

Geo \ UreT({u € Geo : Av € Geo such that (u,v) € Li(t), v <g u}).

|G : C| finite implies that 77 *(C) is regular, so ConjSL N C is also regular.



