Branch groups: groups that look like trees

Alejandra Garrido

University of Oxford
garridoangul@maths.ox.ac.uk

Group Theory International Webinar, 4 December 2014
Outline

1. Introduction

2. Self-similarity

3. Branch structure
Trees

Definition

\((m_n)_{n \geq 0}\) sequence of integers \(\geq 2\).

\(T\) is a rooted tree of type \((m_n)_n\) if \(T\) is a tree with root \(v_0\) of degree \(m_0\) s.t. every vertex at distance \(n \geq 1\) from \(v_0\) has degree \(m_n + 1\).

\(V_n\) = vertices at distance \(n\) from root
\(T_v\) is subtree rooted at \(v\)
Groups that act on infinite rooted trees

Came to prominence from 1980s.
Groups that act on infinite rooted trees

Came to prominence from 1980s.

- Used as counterexamples/solutions to open problems in group theory

- General Burnside Problem (Aleshin, Grigorchuk, Gupta–Sidki)
- Groups of intermediate word growth (Grigorchuk)
- Non-uniform exponential word growth (Wilson)
- Amenable but not elementary amenable groups (Grigorchuk)
- Filling gaps in subgroup growth spectrum (Segal)

Links with dynamics and fractals (first sense in which they look like trees)

Regular trees are self-similar/fractal. Many of these groups are also “self-similar”. Self-similar groups (=groups generated by automata) appear naturally as iterated monodromy groups of self-coverings of topological spaces and encode combinatorial information about the dynamics of these coverings (Nekrashevych).
Groups that act on infinite rooted trees

Came to prominence from 1980s.

- Used as counterexamples/solutions to open problems in group theory
 - General Burnside Problem (Aleshin, Grigorchuk, Gupta–Sidki)
 - Groups of intermediate word growth (Grigorchuk)
 - Non-uniform exponential word growth (Wilson)
 - Amenable but not elementary amenable groups (Grigorchuk)
 - Filling gaps in subgroup growth spectrum (Segal)

Links with dynamics and fractals (first sense in which they look like trees)

Regular trees are self-similar/fractal. Many of these groups are also self-similar. Self-similar groups (=groups generated by automata) appear naturally as iterated monodromy groups of self-coverings of topological spaces and encode combinatorial information about the dynamics of these coverings (Nekrashevych).
Groups that act on infinite rooted trees

Came to prominence from 1980s.

- Used as counterexamples/solutions to open problems in group theory
 - General Burnside Problem (Aleshin, Grigorchuk, Gupta–Sidki)
 - Groups of intermediate word growth (Grigorchuk)
 - Non-uniform exponential word growth (Wilson)
 - Amenable but not elementary amenable groups (Grigorchuk)
 - Filling gaps in subgroup growth spectrum (Segal)

- Links with dynamics and fractals (first sense in which they look like trees)
Groups that act on infinite rooted trees

Came to prominence from 1980s.

- Used as counterexamples/solutions to open problems in group theory
 - General Burnside Problem (Aleshin, Grigorchuk, Gupta–Sidki)
 - Groups of intermediate word growth (Grigorchuk)
 - Non-uniform exponential word growth (Wilson)
 - Amenable but not elementary amenable groups (Grigorchuk)
 - Filling gaps in subgroup growth spectrum (Segal)
- Links with dynamics and fractals (first sense in which they look like trees)
 Regular trees are self-similar/fractal. Many of these groups are also “self-similar”. Self-similar groups (=groups generated by automata) appear naturally as iterated monodromy groups of self-coverings of topological spaces and encode combinatorial information about the dynamics of these coverings (Nekrashevych).
Example: Gupta–Sidki p-groups

$$T = T(p), \ p = \text{odd prime}$$

$$a := (12 \ldots p) \text{ on } V_1$$

$$b := (a, a^{-1}, 1, \ldots, 1, b).$$
Example: Gupta–Sidki p-groups

$T = T(p), \ p = \text{odd prime}$

\[a := (12 \ldots p) \text{ on } V_1 \]
\[b := (a, a^{-1}, 1, \ldots, 1, b). \]

$G := \langle a, b \rangle$
Example: Gupta–Sidki p-groups

$T = T(p), \; p = \text{odd prime}$

$a := (12 \ldots p) \; \text{on} \; V_1$

$b := (a, a^{-1}, 1, \ldots, 1, b)$.

$G := \langle a, b \rangle$
1. Introduction

2. Self-similarity

3. Branch structure
For G acting faithfully on T:

$\text{St}_G(v) := \{g \in G : vg = v\}$ is the stabilizer of v;

$\text{St}_G(n) := \bigcap_{v \in V_n} \text{St}_G(v)$ is the nth level stabilizer.
Definition

For G acting faithfully on T:

$\text{St}_G(v) := \{ g \in G : vg = v \}$ is the stabilizer of v;

$\text{St}_G(n) := \bigcap_{v \in V_n} \text{St}_G(v)$ is the nth level stabilizer.

For any vertex v, for every $x \in \text{St}_G(v)$ we can assign a unique $x_v \in \text{Aut}(T_v)$ by restriction:

$$x_v := x|_{T_v}.$$
Definition

For G acting faithfully on T:

$\text{St}_G(v) := \{ g \in G : vg = v \}$ is the stabilizer of v;

$\text{St}_G(n) := \bigcap_{v \in V_n} \text{St}_G(v)$ is the nth level stabilizer.

For any vertex v, for every $x \in \text{St}_G(v)$ we can assign a unique $x_v \in \text{Aut}(T_v)$ by restriction:

$$x_v := x|_{T_v}.$$

If $v \in V_n$, identify T_v and $T(n)$ (tree rooted at level n).
For G acting faithfully on T:

$\text{St}_G(v) := \{g \in G : vg = v\}$ is the stabilizer of v;

$\text{St}_G(n) := \bigcap_{v \in V_n} \text{St}_G(v)$ is the nth level stabilizer.

For any vertex v, for every $x \in \text{St}_G(v)$ we can assign a unique $x_v \in \text{Aut}(T_v)$ by restriction:

$$x_v := x|_{T_v}.$$

If $v \in V_n$, identify T_v and $T(n)$ (tree rooted at level n). Then we have a homomorphism $\varphi_v : \text{St}(v) \to \text{Aut}(T(n))$, $x \mapsto x_v$.
Definition

For G acting faithfully on T:

\[
\text{St}_G(v) := \{g \in G : vg = v\}
\]
is the stabilizer of v;

\[
\text{St}_G(n) := \bigcap_{v \in V_n} \text{St}_G(v)
\]
is the nth level stabilizer.

For any vertex v, for every $x \in \text{St}_G(v)$ we can assign a unique $x_v \in \text{Aut}(T_v)$ by restriction:

\[
x_v := x|_{T_v}.
\]

If $v \in V_n$, identify T_v and $T_{(n)}$ (tree rooted at level n). Then we have a homomorphism $\varphi_v : \text{St}(v) \to \text{Aut}(T_{(n)}), x \mapsto x_v$.

Definition

$G_v := \varphi_v(\text{St}_G(v))$ is the vertex section/projection of G at v.
We can think of G_v as a subgroup of $\text{Aut}(T)$ (after identifying T_v and T), but G_v is not necessarily a subgroup of G.

We say that G is self-similar if $G_v \leq G$ for every $v \in T$. It is fractal/self-replicating if $G_v = G$ for every $v \in T$.

Example. Gupta–Sidki p-group is fractal: $\text{St}(1) = \langle b, b^a, \ldots, b^{a^{p-1}} \rangle$ where $b = (a, a^{-1}, 1, \ldots, 1), b^a = (b, a, a^{-1}, 1, \ldots, 1), \ldots, b^{a^{p-1}} = (a^{-1}, 1, \ldots, 1, b, a)$.

Look at $v =$ left-most vertex in first level; then $\phi_v(b) = a, \phi_v(b^a) = b$, so $G_v = G$. Similarly for rest of first level. So we have $\text{St}(1)$ subdirect in $G \times p$.
We can think of G_v as a subgroup of $\text{Aut}(T)$ (after identifying T_v and T), but G_v is not necessarily a subgroup of G.

We say that G is self-similar if $G_v \leq G$ for every $v \in T$. It is fractal/self-replicating if $G_v = G$ for every $v \in T$.
We can think of G_v as a subgroup of Aut(T) (after identifying T_v and T), but G_v is not necessarily a subgroup of G.

We say that G is **self-similar** if $G_v \leq G$ for every $v \in T$. It is **fractal/self-replicating** if $G_v = G$ for every $v \in T$.

Example. Gupta–Sidki p-group is fractal:
We can think of \(G_v \) as a subgroup of \(\text{Aut}(T) \) (after identifying \(T_v \) and \(T \)), but \(G_v \) is not necessarily a subgroup of \(G \).

We say that \(G \) is **self-similar** if \(G_v \leq G \) for every \(v \in T \).

It is **fractal/self-replicating** if \(G_v = G \) for every \(v \in T \).

Example. Gupta–Sidki \(p \)-group is fractal: \(\text{St}(1) = \langle b, b^a, \ldots, b^{a^{p-1}} \rangle \) where

\[
\begin{align*}
b & = (a, a^{-1}, 1, \ldots, 1, b), \\
b^a & = (b, a, a^{-1}, 1, \ldots, 1), \\
\ldots, \\
b^{a^{p-1}} & = (a^{-1}, 1, \ldots, 1, b, a)
\end{align*}
\]
We can think of G_v as a subgroup of $\text{Aut}(T)$ (after identifying T_v and T), but G_v is not necessarily a subgroup of G.

We say that G is **self-similar** if $G_v \leq G$ for every $v \in T$.

It is **fractal/self-replicating** if $G_v = G$ for every $v \in T$.

Example. Gupta–Sidki p-group is fractal: $\text{St}(1) = \langle b, b^a, \ldots, b^{a^{p-1}} \rangle$ where

\[
\begin{align*}
b &= (a, a^{-1}, 1, \ldots, 1, b), \\
b^a &= (b, a, a^{-1}, 1, \ldots, 1), \\
\ldots, \\
b^{a^{p-1}} &= (a^{-1}, 1, \ldots, 1, b, a)
\end{align*}
\]

Look at $v =$left-most vertex in first level; then $\varphi_v(b) = a, \varphi_v(b^a) = b$, so $G_v = G$.

We can think of G_ν as a subgroup of $\text{Aut}(T)$ (after identifying T_ν and T), but G_ν is not necessarily a subgroup of G.

We say that G is **self-similar** if $G_\nu \leq G$ for every $\nu \in T$. It is **fractal/self-replicating** if $G_\nu = G$ for every $\nu \in T$.

Example. Gupta–Sidki p-group is fractal: $\text{St}(1) = \langle b, b^a, \ldots, b^{ap-1} \rangle$ where

\[
b = (a, a^{-1}, 1, \ldots, 1, b),
\]

\[
b^a = (b, a, a^{-1}, 1, \ldots, 1),
\]

\[\ldots,\]

\[
b^{ap-1} = (a^{-1}, 1, \ldots, 1, b, a)
\]

Look at $\nu =$left-most vertex in first level; then $\varphi_\nu(b) = a, \varphi_\nu(b^a) = b$, so $G_\nu = G$. Similarly for rest of first level.

Look at $\nu =$left-most vertex in first level; then $\varphi_\nu(b) = a, \varphi_\nu(b^a) = b$, so $G_\nu = G$. Similarly for rest of first level.
We can think of G_v as a subgroup of $\text{Aut}(T)$ (after identifying T_v and T), but G_v is not necessarily a subgroup of G.

We say that G is **self-similar** if $G_v \leq G$ for every $v \in T$.

It is **fractal/self-replicating** if $G_v = G$ for every $v \in T$.

Example. Gupta–Sidki p-group is fractal: $\text{St}(1) = \langle b, b^a, \ldots, b^{a^{p-1}} \rangle$ where

$$b = (a, a^{-1}, 1, \ldots, 1, b),$$
$$b^a = (b, a, a^{-1}, 1, \ldots, 1),$$
$$\ldots,$$
$$b^{a^{p-1}} = (a^{-1}, 1, \ldots, 1, b, a)$$

Look at $v =$left-most vertex in first level; then $\varphi_v(b) = a, \varphi_v(b^a) = b$, so $G_v = G$. Similarly for rest of first level. **So we have St(1) subdirect in $G \times p$.**
We can think of G_v as a subgroup of $\text{Aut}(T)$ (after identifying T_v and T), but G_v is not necessarily a subgroup of G.

We say that G is **self-similar** if $G_v \leq G$ for every $v \in T$. It is **fractal/self-replicating** if $G_v = G$ for every $v \in T$.

Example. Gupta–Sidki p-group is fractal: $\text{St}(1) = \langle b, b^a, \ldots, b^{ap^{-1}} \rangle$ where

\[
\begin{align*}
b &= (a, a^{-1}, 1, \ldots, 1, b), \\
b^a &= (b, a, a^{-1}, 1, \ldots, 1), \\
\ldots, \\
b^{ap^{-1}} &= (a^{-1}, 1, \ldots, 1, b, a)
\end{align*}
\]

Look at $v =$left-most vertex in first level; then $\varphi_v(b) = a, \varphi_v(b^a) = b$, so $G_v = G$. Similarly for rest of first level. **So we have St(1) subdirect in $G \times p$.** Rest of vertices follow from $\varphi_u = \varphi_w \circ \varphi_v$ for $u = vw$.
Self-similar results

Self-similarity/replication is very useful as it allows for length reduction arguments:

Write elements as words in generators, project using \(\phi \), usually get words of shorter length, still in \(G \).

Example (Grigorchuk, 1984) solvable word problem for 'spinal type' branch groups by a fast universal branch algorithm (Grigorchuk–Wilson, 2000) solvable conjugacy problem for wide class of branch groups (with some self-replication) (Bartholdi, 2003) every f.g. branch group with solvable word problem has finite "endomorphic" presentation

Question: Is there a f.p. branch/self-similar group?
Self-similar results

Self-similarity/replication is very useful as it allows for length reduction arguments:

- write elements as words in generators,
- project using φ_v,
- usually get words of shorter length, still in G.

Example (Grigorchuk, 1984) solvable word problem for 'spinal type' branch groups by a fast universal branch algorithm (Grigorchuk–Wilson, 2000) solvable conjugacy problem for wide class of branch groups (with some self-replication) (Bartholdi, 2003) every f.g. branch group with solvable word problem has finite "endomorphic" presentation

Question: Is there a f.p. branch/self-similar group?
Self-similar results

Self-similarity/replication is very useful as it allows for length reduction arguments:

- write elements as words in generators,
- project using φ_v,
- usually get words of shorter length, still in G.

Example

- (Grigorchuk, 1984) solvable word problem for ‘spinal type’ branch groups by a fast universal branch algorithm
Self-similar results

Self-similarity/replication is very useful as it allows for length reduction arguments:

- write elements as words in generators,
- project using φ_v,
- usually get words of shorter length, still in G.

Example

- (Grigorchuk, 1984) solvable word problem for ‘spinal type’ branch groups by a fast universal branch algorithm
- (Grigorchuk–Wilson, 2000) solvable conjugacy problem for wide class of branch groups (with some self-replication)
Self-similar results

Self-similarity/replication is very useful as it allows for length reduction arguments:

- write elements as words in generators,
- project using φ_v,
- usually get words of shorter length, still in G.

Example

- (Grigorchuk, 1984) solvable word problem for ‘spinal type’ branch groups by a fast universal branch algorithm
- (Grigorchuk–Wilson, 2000) solvable conjugacy problem for wide class of branch groups (with some self-replication)
- (Bartholdi, 2003) every f.g. branch group with solvable word problem has finite “endomorphic” presentation
Self-similar results

Self-similarity/replication is very useful as it allows for length reduction arguments:

- write elements as words in generators,
- project using φ_v,
- usually get words of shorter length, still in G.

Example

- (Grigorchuk, 1984) solvable word problem for ‘spinal type’ branch groups by a fast universal branch algorithm
- (Grigorchuk–Wilson, 2000) solvable conjugacy problem for wide class of branch groups (with some self-replication)
- (Bartholdi, 2003) every f.g. branch group with solvable word problem has finite “endomorphic” presentation

Question: Is there a f.p. branch/self-similar group?
More self-similar results

Take this even further:

Theorem (G, 2013)

Let \(G \) be the Gupta–Sidki 3-group. If \(H \leq G \) is finitely generated and infinite then there exists \(v \in T \) with \(H_v = G \).

Cfr: Theorem (Grigorchuk–Wilson, 2001)

All infinite finitely generated subgroups of the Grigorchuk group \(\Gamma \) are commensurable with \(\Gamma \).
More self-similar results

Take this even further:

Theorem (G, 2013)

Let G be the Gupta–Sidki 3-group. If $H \leq G$ is finitely generated and infinite then there exists $v \in T$ with $H_v = G$.

This comes from (the proof of) an even stronger statement:

Theorem 1 (G, 2013)

If $H \leq G$ is finitely generated and infinite, then H is (abstractly) commensurable with G or $G \times G$.

Cfr: Theorem (Grigorchuk–Wilson, 2001) All infinite finitely generated subgroups of the Grigorchuk group Γ are commensurable with Γ.
More self-similar results

Take this even further:

Theorem (G, 2013)

Let G be the Gupta–Sidki 3-group. If $H \leq G$ is finitely generated and infinite then there exists $v \in T$ with $H_v = G$.

This comes from (the proof of) an even stronger statement:

Theorem 1 (G, 2013)

If $H \leq G$ is finitely generated and infinite, then H is (abstractly) commensurable with G or $G \times G$.

Cfr:

Theorem (Grigorchuk–Wilson, 2001)

All infinite finitely generated subgroups of the Grigorchuk group Γ are commensurable with Γ.
Sketch proof

\(G = \text{Gupta–Sidki 3-group} \)
Gupta–Sidki 3-group

Auxiliary theorem

Let \mathcal{X} be a class of subgroups of G satisfying

1. $1, G \in \mathcal{X}$
2. closed for finite index supergroups
3. if all first level projections of H are in \mathcal{X} then so is H.

Then \mathcal{X} contains all finitely generated subgroups of G.

Proof: By contradiction; length reduction argument.

Take $H \leq G$ finitely generated, $H/\in \mathcal{X}$ with "shortest" generating set.

Then $H/v/ \in \mathcal{X}$ for every v in first level, so $H/u/ \in \mathcal{X}$ for some u in second level.

Technical work, to get that H/u has a shorter generating set than H.

The "technical work" only works for $p = 3$; everything else works for all odd primes.

Alejandra Garrido (Oxford)
Groups that look like trees
GTI Webinar, Dec 2014
Sketch proof

$G =$Gupta–Sidki 3-group

Auxiliary theorem

Let \mathcal{X} be a class of subgroups of G satisfying

1. $1, G \in \mathcal{X}$
2. closed for finite index supergroups
3. if all first level projections of H are in \mathcal{X} then so is H.

Then \mathcal{X} contains all finitely generated subgroups of G.

Proof: By contradiction; length reduction argument.
Sketch proof

\[G = \text{Gupta–Sidki 3-group} \]

Auxiliary theorem

Let \(\mathcal{X} \) be a class of subgroups of \(G \) satisfying

1. \(1, G \in \mathcal{X} \)
2. closed for finite index supergroups
3. if all first level projections of \(H \) are in \(\mathcal{X} \) then so is \(H \).

Then \(\mathcal{X} \) contains all finitely generated subgroups of \(G \).

Proof: By contradiction; length reduction argument. Take \(H \leq G \) finitely generated, \(H \notin \mathcal{X} \) with “shortest” generating set.
Sketch proof

\(G = \text{Gupta–Sidki 3-group} \)

Auxiliary theorem

Let \(\mathcal{X} \) be a class of subgroups of \(G \) satisfying

1. \(1, G \in \mathcal{X} \)
2. closed for finite index supergroups
3. if all first level projections of \(H \) are in \(\mathcal{X} \) then so is \(H \).

Then \(\mathcal{X} \) contains all finitely generated subgroups of \(G \).

Proof: By contradiction; length reduction argument. Take \(H \leq G \) finitely generated, \(H \notin \mathcal{X} \) with “shortest” generating set. Then \(H_v \notin \mathcal{X} \) for every \(v \) in first level, so \(H_u \notin \mathcal{X} \) for some \(u \) in second level.
Sketch proof

\[G = \text{Gupta–Sidki 3-group} \]

Auxiliary theorem

Let \(\mathcal{X} \) be a class of subgroups of \(G \) satisfying

1. \(1, G \in \mathcal{X} \)
2. closed for finite index supergroups
3. if all first level projections of \(H \) are in \(\mathcal{X} \) then so is \(H \).

Then \(\mathcal{X} \) contains all finitely generated subgroups of \(G \).

Proof: By contradiction; length reduction argument. Take \(H \leq G \) finitely generated, \(H \notin \mathcal{X} \) with “shortest” generating set. Then \(H_v \notin \mathcal{X} \) for every \(v \) in first level, so \(H_u \notin \mathcal{X} \) for some \(u \) in second level. Technical work, to get that \(H_u \) has a shorter generating set than \(H \).
Sketch proof

\(G = \text{Gupta–Sidki 3-group} \)

Auxiliary theorem

Let \(\mathcal{X} \) be a class of subgroups of \(G \) satisfying:

1. \(1, G \in \mathcal{X} \)
2. closed for finite index supergroups
3. if all first level projections of \(H \) are in \(\mathcal{X} \) then so is \(H \).

Then \(\mathcal{X} \) contains all finitely generated subgroups of \(G \).

Proof: By contradiction; length reduction argument. Take \(H \leq G \) finitely generated, \(H \notin \mathcal{X} \) with “shortest” generating set. Then \(H_v \notin \mathcal{X} \) for every \(v \) in first level, so \(H_u \notin \mathcal{X} \) for some \(u \) in second level. Technical work, to get that \(H_u \) has a shorter generating set than \(H \).

The “technical work” only works for \(p = 3 \); everything else works for all odd primes.
Auxiliary Theorem

Let \mathcal{X} be a class of subgroups of G satisfying

1. $1, G \in \mathcal{X}$
2. closed for finite index supergroups
3. if all first level projections of H are in \mathcal{X} then so is H.

Then \mathcal{X} contains all finitely generated subgroups of G.

1 & 2: easy
3: H is subdirect product of its projections H_1, H_2, H_3.
Each H_i is commensurable with G or $G \times G$.

Now, use fact that each finite index subgroup of G contains some $\text{St}(n)$ (congruence subgroup property, more to follow) and $\text{St}(n)$ is subdirect in $G \times 3^n$.
Reduce to H subdirect in $H_1 \times G \times k$, of finite index because G is just infinite.
Finish using fact that $G \times i$ and $G \times j$ are commensurable if $i \equiv j \mod 2$.

Alejandra Garrido (Oxford) Groups that look like trees GTI Webinar, Dec 2014 12 / 26
Auxiliary Theorem

Let \mathcal{X} be a class of subgroups of G satisfying

1. $1, G \in \mathcal{X}$
2. closed for finite index supergroups
3. if all first level projections of H are in \mathcal{X} then so is H.

Then \mathcal{X} contains all finitely generated subgroups of G.

So suffices to show that $\mathcal{C}(\text{:=subgroups of } G \text{ which are finite, or commensurable with } G \text{ or } G \times G)$ satisfies 3 conditions in Auxiliary Theorem.
Auxiliary Theorem

Let \mathcal{X} be a class of subgroups of G satisfying

1. $G \in \mathcal{X}$
2. closed for finite index supergroups
3. if all first level projections of H are in \mathcal{X} then so is H.

Then \mathcal{X} contains all finitely generated subgroups of G.

So suffices to show that $C(\text{:=subgroups of } G \text{ which are finite, or commensurable with } G \text{ or } G \times G)$ satisfies 3 conditions in Auxiliary Theorem. 1 & 2: easy
Auxiliary Theorem

Let \mathcal{X} be a class of subgroups of G satisfying

1. $G \in \mathcal{X}$
2. closed for finite index supergroups
3. if all first level projections of H are in \mathcal{X} then so is H.

Then \mathcal{X} contains all finitely generated subgroups of G.

So suffices to show that $\mathcal{C}(:=\text{subgroups of } G \text{ which are finite, or commensurable with } G \text{ or } G \times G)$ satisfies 3 conditions in Auxiliary Theorem. 1 & 2: easy
3: H is subdirect product of its projections H_1, H_2, H_3.
Auxiliary Theorem

Let \mathcal{X} be a class of subgroups of G satisfying

1. $1, G \in \mathcal{X}$
2. closed for finite index supergroups
3. if all first level projections of H are in \mathcal{X} then so is H.

Then \mathcal{X} contains all finitely generated subgroups of G.

So suffices to show that $\mathcal{C}(:=\text{subgroups of } G \text{ which are finite, or commensurable with } G \text{ or } G \times G)$ satisfies 3 conditions in Auxiliary Theorem. 1 & 2: easy

3. H is subdirect product of its projections H_1, H_2, H_3. Each H_i is commensurable with G or $G \times G$.

Alejandra Garrido (Oxford)
Groups that look like trees
GTI Webinar, Dec 2014
Auxiliary Theorem

Let \mathcal{X} be a class of subgroups of G satisfying

1. $1, G \in \mathcal{X}$
2. closed for finite index supergroups
3. if all first level projections of H are in \mathcal{X} then so is H.

Then \mathcal{X} contains all finitely generated subgroups of G.

So suffices to show that $\mathcal{C}(\text{subgroups of } G \text{ which are finite, or commensurable with } G \text{ or } G \times G)$ satisfies 3 conditions in Auxiliary Theorem. 1 & 2: easy

3: H is subdirect product of its projections H_1, H_2, H_3. Each H_i is commensurable with G or $G \times G$. Now, use fact that each finite index subgroup of G contains some $\text{St}(n)$ (congruence subgroup property, more to follow)
Auxiliary Theorem

Let \mathcal{X} be a class of subgroups of G satisfying

1. $1, G \in \mathcal{X}$
2. closed for finite index supergroups
3. if all first level projections of H are in \mathcal{X} then so is H.

Then \mathcal{X} contains all finitely generated subgroups of G.

So suffices to show that $\mathcal{C}(:=\text{subgroups of } G \text{ which are finite, or commensurable with } G \text{ or } G \times G)$ satisfies 3 conditions in Auxiliary Theorem. 1 & 2: easy

3: H is subdirect product of its projections H_1, H_2, H_3. Each H_i is commensurable with G or $G \times G$. Now, use fact that each finite index subgroup of G contains some $\text{St}(n)$ (congruence subgroup property, more to follow) and $\text{St}(n)$ is subdirect in $G^{\times 3^n}$.
Auxiliary Theorem

Let \mathcal{X} be a class of subgroups of G satisfying

1. $1, G \in \mathcal{X}$
2. closed for finite index supergroups
3. if all first level projections of H are in \mathcal{X} then so is H.

Then \mathcal{X} contains all finitely generated subgroups of G.

So suffices to show that $\mathcal{C}(:=\text{subgroups of } G \text{ which are finite, or commensurable with } G \text{ or } G \times G)$ satisfies 3 conditions in Auxiliary Theorem. 1 & 2: easy

3: H is subdirect product of its projections H_1, H_2, H_3. Each H_i is commensurable with G or $G \times G$. Now, use fact that each finite index subgroup of G contains some $\text{St}(n)$ (congruence subgroup property, more to follow) and $\text{St}(n)$ is subdirect in $G^{\times 3^n}$. Reduce to H subdirect in $H_1 \times G^{\times k}$,
Auxiliary Theorem

Let \mathcal{X} be a class of subgroups of G satisfying

1. $G \in \mathcal{X}$
2. closed for finite index supergroups
3. if all first level projections of H are in \mathcal{X} then so is H.

Then \mathcal{X} contains all finitely generated subgroups of G.

So suffices to show that $\mathcal{C}(\text{:=subgroups of } G \text{ which are finite, or commensurable with } G \text{ or } G \times G)$ satisfies 3 conditions in Auxiliary Theorem. 1 & 2: easy

3: H is subdirect product of its projections H_1, H_2, H_3. Each H_i is commensurable with G or $G \times G$. Now, use fact that each finite index subgroup of G contains some $\text{St}(n)$ (congruence subgroup property, more to follow) and $\text{St}(n)$ is subdirect in $G^{\times 3^n}$. Reduce to H subdirect in $H_1 \times G^{\times k}$, of finite index because G is just infinite.
Auxiliary Theorem

Let \mathcal{X} be a class of subgroups of G satisfying

1. $1, G \in \mathcal{X}$
2. closed for finite index supergroups
3. if all first level projections of H are in \mathcal{X} then so is H.

Then \mathcal{X} contains all finitely generated subgroups of G.

So suffices to show that \mathcal{C} (subgroups of G which are finite, or commensurable with G or $G \times G$) satisfies 3 conditions in Auxiliary Theorem. 1 & 2: easy

3. H is subdirect product of its projections H_1, H_2, H_3. Each H_i is commensurable with G or $G \times G$. Now, use fact that each finite index subgroup of G contains some $\text{St}(n)$ (congruence subgroup property, more to follow) and $\text{St}(n)$ is subdirect in $G^\times 3^n$. Reduce to H subdirect in $H_1 \times G^\times k$, of finite index because G is just infinite. Finish using fact that $G^\times i$ and $G^\times j$ are commensurable if $i \equiv j \mod 2$.
Similarly, use Auxiliary Theorem and Theorem 1 to prove

Theorem (G, 2013)

G is subgroup separable (LERF), i.e., all finitely generated subgroups are an intersection of finite index subgroups.
Similarly, use Auxiliary Theorem and Theorem 1 to prove

Theorem (G, 2013)

G is subgroup separable (LERF), i.e., all finitely generated subgroups are an intersection of finite index subgroups.

Remains to show that G and $G \times G$ are not commensurable.
Similarly, use Auxiliary Theorem and Theorem 1 to prove

Theorem (G, 2013)

G is subgroup separable (LERF), i.e., all finitely generated subgroups are an intersection of finite index subgroups.

Remains to show that G and $G \times G$ are not commensurable. Idea: write subgroups of finite index as subdirect products; look at the number of factors. Need to know about normal subgroups of subgroups of finite index.
Similarly, use Auxiliary Theorem and Theorem 1 to prove

Theorem (G, 2013)

G is subgroup separable (LERF), i.e., all finitely generated subgroups are an intersection of finite index subgroups.

Remains to show that *G* and *G* × *G* are not commensurable. Idea: write subgroups of finite index as subdirect products; look at the number of factors. Need to know about normal subgroups of subgroups of finite index. Second way in which these groups look like trees...
1. Introduction

2. Self-similarity

3. Branch structure
T = rooted tree of type $(m_n)_n$. G acts faithfully on T.

Definition

$rst_G(v) := \{ g \in G : g \text{ fixes all vertices outside } T_v \}$ is the rigid stabilizer of $v \in T$.

$rst_G(n) := \prod_{v \in V_n} rst_G(v)$ is the rigid stabilizer of level n.

T_v
Definition

G acts as a branch group on T iff for every n:

1. G acts transitively on V_n (‘acts level-transitively on T’)
2. $|G : \text{rst}_G(n)| < \infty$

Examples

- For all n, $A = \text{Aut}(T)$ acts transitively on V_n with kernel $\text{rst}_A(n)$.
- Gupta–Sidki p-groups
- Grigorchuk groups
- Aleshin group
Branch group: definition

Definition

G acts as a branch group on T iff for every n:

1. G acts transitively on V_n (‘acts level-transitively on T’)
2. $|G : \text{rst}_G(n)| < \infty$

Definition

G is branch if it acts faithfully as a branch group on some T.
Definition

G acts as a branch group on T iff for every n:

1. G acts transitively on V_n (‘acts level-transitively on T’)
2. $|G : \text{rst}_G(n)| < \infty$

Definition

G is branch if it acts faithfully as a branch group on some T.

Examples

- For all n, $A = \text{Aut}(T)$ acts transitively on V_n with kernel $\text{rst}_A(n)$.
- Gupta–Sidki p-groups
- Grigorchuk groups
- Aleshin group
Key lemma (Grigorchuk)

If G is branch and $1 \neq K \triangleleft G$ then $\text{rst}_G(n)' \leq K$ for some n.

Theorem 2 (G–Wilson, 2014)

Let G branch, $1 \neq K \triangleleft H \leq f G$. For all n sufficiently large, $K \cap \text{rst}_G(n)' = \text{rst}_G(X)'$ where X is a union of orbits of H at level n.

We can use this to give an isomorphism invariant for H:
Subgroups of branch groups

Key lemma (Grigorchuk)
If G is branch and $1 \neq K \triangleleft G$ then $\text{rst}_G(n)' \leq K$ for some n.

Theorem 2 (G–Wilson, 2014)
Let G branch, $1 \neq K \triangleleft H \leq_f G$. For all n sufficiently large,

$$K \cap \text{rst}_G(n)' = \text{rst}_G(X)'$$

where X is a union of orbits of H at level n.

Alejandra Garrido (Oxford)
Groups that look like trees
GTI Webinar, Dec 2014
Subgroups of branch groups

Key lemma (Grigorchuk)
If G is branch and $1 \neq K \triangleleft G$ then $\text{rst}_G(n)' \leq K$ for some n.

Theorem 2 (G–Wilson, 2014)
Let G branch, $1 \neq K \triangleleft H \leq_f G$. For all n sufficiently large,

$$K \cap \text{rst}_G(n)' = \text{rst}_G(X)'$$

where X is a union of orbits of H at level n.

We can use this to give an isomorphism invariant for H:
Theorem 2 (G–Wilson, 2014)

Let G branch, $1 \neq K \triangleleft H \leq_f G$. For all n sufficiently large,

$$K \cap \text{rst}_G(n)' = \text{rst}_G(X)'$$

where X is a union of orbits of H at level n.
Theorem 2 (G–Wilson, 2014)

Let G branch, $1 \not= K \triangleleft H \leq_f G$. For all n sufficiently large,

$$K \cap \text{rst}_G(n)' = \text{rst}_G(X)'$$

where X is a union of orbits of H at level n.

$b(H) :=$ maximum number of infinite normal subgroups of H that generate their direct product.
Finite index subgroups of branch groups

Theorem 2 (G–Wilson, 2014)

Let G branch, $1 \neq K \triangleleft H \leq_{f} G$. For all n sufficiently large,

$$K \cap \text{rst}_{G}(n)' = \text{rst}_{G}(X)'$$

where X is a union of orbits of H at level n.

$b(H) :=$ maximum number of infinite normal subgroups of H that generate their direct product. By Theorem 2, $b(H) \leq$ maximum number of orbits of H on any layer of T.
Theorem 2 (G–Wilson, 2014)

Let G branch, $1 \neq K \triangleleft H \leq_f G$. For all n sufficiently large,

$$K \cap \text{rst}_G(n)' = \text{rst}_G(X)'$$

where X is a union of orbits of H at level n.

$b(H) := \text{maximum number of infinite normal subgroups of } H \text{ that generate their direct product.}$ By Theorem 2, $b(H) \leq \text{maximum number of orbits of } H \text{ on any layer of } T$. The number of H-orbits on any layer is bounded (by $|G:H|$).

Say $V_n = X_1 \sqcup \ldots \sqcup X_r$, each X_i an H-orbit.

Then $\text{rst}_G(X_i)' \triangleleft H$ and $\text{rst}_G(n)' = \prod \text{rst}_G(X_i)' \triangleleft H$.

Finite index subgroups of branch groups

Theorem 2 (G–Wilson, 2014)

Let G branch, $1 \neq K \triangleleft H \leq_f G$. For all n sufficiently large,

$$K \cap \text{rst}_G(n)' = \text{rst}_G(X)'$$

where X is a union of orbits of H at level n.

$b(H) :=$ maximum number of infinite normal subgroups of H that generate their direct product. By Theorem 2, $b(H) \leq$ maximum number of orbits of H on any layer of T. The number of H-orbits on any layer is bounded (by $|G : H|$).

Say $V_n = X_1 \sqcup \ldots \sqcup X_r$, each X_i an H-orbit.

Then $\text{rst}_G(X_i)' \triangleleft H$ and $\text{rst}_G(n)' = \prod \text{rst}_G(X_i)' \triangleleft H$.

Corollary

$b(H) =$ maximum number of orbits of H on any layer of T.
How it all fits together

\(b(H) \) behaves well under direct products

Let \(H \leq_f H_1 \times \ldots \times H_r \) be subdirect; \(b(H_i) \) finite. Then \(b(H) = b(H_1) + \ldots + b(H_r) \).
How it all fits together

b(H) behaves well under direct products

Let $H \leq_f H_1 \times \ldots \times H_r$ be subdirect; $b(H_i)$ finite. Then $b(H) = b(H_1) + \ldots + b(H_r)$.

Easy lemma

Let $H \leq_f G$ act like a p-group on every layer of the p-regular tree. Then $b(H) \equiv 1 \mod p - 1$.
How it all fits together

b(H) behaves well under direct products

Let $H \leq_f H_1 \times \ldots \times H_r$ be subdirect; $b(H_i)$ finite.
Then $b(H) = b(H_1) + \ldots + b(H_r)$.

Easy lemma

Let $H \leq_f G$ act like a p-group on every layer of the p-regular tree.
Then $b(H) \equiv 1 \mod p - 1$.

Corollary

Let Γ_1, Γ_2 be direct products of n_1, n_2 branch groups acting like p-groups on every layer of the p-regular tree.
If Γ_1 and Γ_2 are commensurable, then $n_1 \equiv n_2 \mod p - 1$.
How it all fits together

b(H) behaves well under direct products

Let $H \leq_f H_1 \times \ldots \times H_r$ be subdirect; $b(H_i)$ finite. Then $b(H) = b(H_1) + \ldots + b(H_r)$.

Easy lemma

Let $H \leq_f G$ act like a p-group on every layer of the p-regular tree. Then $b(H) \equiv 1 \pmod{p-1}$.

Corollary

Let Γ_1, Γ_2 be direct products of n_1, n_2 branch groups acting like p-groups on every layer of the p-regular tree. If Γ_1 and Γ_2 are commensurable, then $n_1 \equiv n_2 \pmod{p-1}$.

So the Gupta–Sidki 3-group has 3 commensurability classes of f.g. subgroups.
Old idea of Wilson for classification of just infinite groups (a group is just non-P if it is not P but all its proper quotients are P).
Old idea of Wilson for classification of just infinite groups (a group is just non-P if it is not P but all its proper quotients are P). One of the classes is that of just infinite branch groups.
Old idea of Wilson for classification of just infinite groups (a group is just non-P if it is not P but all its proper quotients are P). One of the classes is that of just infinite branch groups.

- Look at subnormal subgroups with finitely many conjugates of just infinite groups
Old idea of Wilson for classification of just infinite groups (a group is just non-P if it is not P but all its proper quotients are P). One of the classes is that of just infinite branch groups.

- Look at subnormal subgroups with finitely many conjugates of just infinite groups
- quotient by commensurability
Old idea of Wilson for classification of just infinite groups (a group is just non-P if it is not P but all its proper quotients are P). One of the classes is that of just infinite branch groups.

- Look at subnormal subgroups with finitely many conjugates of just infinite groups
- Quotient by commensurability
- Obtain structure lattice.
Old idea of Wilson for classification of just infinite groups (a group is just non-P if it is not P but all its proper quotients are P). One of the classes is that of just infinite branch groups.

- Look at subnormal subgroups with finitely many conjugates of just infinite groups
- quotient by commensurability
- obtain structure lattice.

 Turns out we only need to look at subgroups with finitely many conjugates.
\[L(G) := \{ K \mid K \triangleleft H \leq_f G \} \]
Structure lattice

\[L(G) := \{ K \mid K \triangleleft H \leq_f G \} \]

By Key Lemma, all branch groups are just non-(virtually abelian).
Structure lattice

\[L(G) := \{ K \mid K \triangleleft H \leq_{f} G \} \]

By Key Lemma, all branch groups are just non-(virtually abelian).

\[K_1 \sim K_2 \text{ iff } K_1/(K_1 \cap K_2), K_2/(K_1 \cap K_2) \text{ are virtually abelian.} \]
\(L(G) := \{ K \mid K \triangleleft H \leq_f G \} \)

By Key Lemma, all branch groups are just non-(virtually abelian).

\(K_1 \sim K_2 \iff \frac{K_1}{(K_1 \cap K_2)}, \frac{K_2}{(K_1 \cap K_2)} \) are virtually abelian.

\(L := L(G)/\sim \) is a lattice:

\[[K_1] \wedge [K_2] = [K_1 \cap K_2], \]

\[[K_1] \vee [K_2] = [\langle K_1, K_2 \rangle], \] order induced by subgroup inclusion.
Structure lattice

\[L(G) := \{K \mid K \triangleleft H \leq_f G\} \]

By Key Lemma, all branch groups are just non-(virtually abelian).

\[K_1 \sim K_2 \text{ iff } K_1/(K_1 \cap K_2), \ K_2/(K_1 \cap K_2) \text{ are virtually abelian.} \]

\[\mathcal{L} := L(G)/\sim \text{ is a lattice: } [K_1] \wedge [K_2] = [K_1 \cap K_2], \]
\[[K_1] \vee [K_2] = [\langle K_1, K_2 \rangle], \text{ order induced by subgroup inclusion.} \]

Definition

\(\mathcal{L} \) is the **structure lattice** of \(G \).
Structure lattice

\[L(G) := \{ K \mid K \triangleleft H \leq_f G \} \]

By Key Lemma, all branch groups are just non-(virtually abelian).

\(K_1 \sim K_2 \) iff \(K_1/(K_1 \cap K_2), K_2/(K_1 \cap K_2) \) are virtually abelian.

\[\mathcal{L} := L(G)/\sim \text{ is a lattice: } [K_1] \wedge [K_2] = [K_1 \cap K_2], \]
\[[K_1] \vee [K_2] = [\langle K_1, K_2 \rangle], \text{ order induced by subgroup inclusion.} \]

Definition

\(\mathcal{L} \) is the **structure lattice** of \(G \).

Conjugation by \(G \) induces a well-defined action of \(G \) on \(\mathcal{L} \).
Structure lattice

\[L(G) := \{ K \mid K \triangleleft H \leq_f G \} \]

By Key Lemma, all branch groups are just non-(virtually abelian).
\[K_1 \sim K_2 \text{ iff } K_1/(K_1 \cap K_2), K_2/(K_1 \cap K_2) \text{ are virtually abelian.} \]

\[\mathcal{L} := L(G)/\sim \text{ is a lattice: } [K_1] \land [K_2] = [K_1 \cap K_2], \]
\[[K_1] \lor [K_2] = [\langle K_1, K_2 \rangle], \text{ order induced by subgroup inclusion.} \]

Definition

\[\mathcal{L} \text{ is the structure lattice of } G. \]

Conjugation by \(G \) induces a well-defined action of \(G \) on \(\mathcal{L} \).
So, reformulating, we have

Theorem 2

Every element of \(\mathcal{L} \) has as a representative some \(\text{rst}(X) \) where \(X \) is an \(H \)-orbit for some \(H \leq_f G \).
By analogy with the classical case of linear algebraic groups, we have

Definition

A group G acting faithfully on a rooted tree has the **congruence subgroup property (CSP)** if for every $H \leq_{f} G$ there is some n with $\text{St}(n) \leq H$.

Example: Gupta–Sidki p-groups (used in proof of Theorem 1).

Question (Bartholdi–Siegenthaler–Zalesskii, 2012)

For a branch group, does having CSP depend on the chosen branch action?

No!

Theorem 3 (G, 2014)

Whether a branch group has CSP or not is independent of the branch action.
Application: Congruence subgroup property

By analogy with the classical case of linear algebraic groups, we have

Definition

A group G acting faithfully on a rooted tree has the **congruence subgroup property (CSP)** if for every $H \leq_f G$ there is some n with $\text{St}(n) \leq H$.

Example: Gupta–Sidki p-groups (used in proof of Theorem 1).
By analogy with the classical case of linear algebraic groups, we have

Definition

A group G acting faithfully on a rooted tree has the congruence subgroup property (CSP) if for every $H \leq_f G$ there is some n with $\text{St}(n) \leq H$.

Example: Gupta–Sidki p-groups (used in proof of Theorem 1).

Question (Bartholdi–Siegenthaler–Zalesskii, 2012)

For a branch group, does having CSP depend on the chosen branch action?
By analogy with the classical case of linear algebraic groups, we have

Definition

A group G acting faithfully on a rooted tree has the **congruence subgroup property (CSP)** if for every $H \leq_f G$ there is some n with $St(n) \leq H$.

Example: Gupta–Sidki p-groups (used in proof of Theorem 1).

Question (Bartholdi–Siegenthaler–Zalesskii, 2012)

For a branch group, does having CSP depend on the chosen branch action?

No!
By analogy with the classical case of linear algebraic groups, we have

Definition

A group G acting faithfully on a rooted tree has the **congruence subgroup property (CSP)** if for every $H \leq_f G$ there is some n with $\text{St}(n) \leq H$.

Example: Gupta–Sidki p-groups (used in proof of Theorem 1).

Question (Bartholdi–Siegenthaler–Zalesskii, 2012)

For a branch group, does having CSP depend on the chosen branch action?

No!

Theorem 3 (G, 2014)

Whether a branch group has CSP or not is independent of the branch action.
Theorem 2

Every element of \mathcal{L} has as a representative some $\text{rst}(X)$ where X is an H-orbit for some $H \leq_f G$.
Theorem 2

Every element of \mathcal{L} has as a representative some $\text{rst}(X)$ where X is an H-orbit for some $H \leq_f G$.

In particular, for any branch action $\rho : G \to \text{Aut}(T_\rho)$ and any $[K] \in \mathcal{L}$ there exists $v \in T_\rho$ with $[K] \geq [\text{rst}_\rho(v)]$.
Proof ingredients

Theorem 2

Every element of \mathcal{L} has as a representative some $\text{rst}(X)$ where X is an H-orbit for some $H \leq_f G$.

In particular, for any branch action $\rho : G \to \text{Aut}(T_\rho)$ and any $[K] \in \mathcal{L}$ there exists $v \in T_\rho$ with $[K] \geq [\text{rst}_\rho(v)]$.

Lemma

If G acts as a branch group on T then T embeds G-equivariantly in \mathcal{L}: $v \mapsto [\text{rst}_G(v)]$.
Proof

To show that having CSP is independent of the branch action, we need to show that given two branch actions $\sigma : G \rightarrow \text{Aut}(T_\sigma)$ and $\rho : G \rightarrow \text{Aut}(T_\rho)$ every $\text{St}_\sigma(n)$ contains some $\text{St}_\rho(m)$ and vice-versa.

Let $u \in T_\sigma$ of level n. By the above, there is some $v \in T_\rho$ (call its level m) such that $\text{rst}_\sigma(u) \geq \text{rst}_\rho(v)$. Now, if $x \in \text{St}_\rho(m)$, we have $1 \neq \text{rst}_\rho(v) \leq \text{rst}_\sigma(u) \land \text{rst}_\sigma(u) = \text{rst}_\sigma(ux) \cap \text{rst}_\sigma(u)$, so $\text{rst}_\sigma(ux) = \text{rst}_\sigma(u)$.

Hence $x \in \text{St}_\sigma(u)$. To finish, use transitivity of G on all levels of T_ρ and T_σ to get $x \in \bigcap g \in G \text{St}_\sigma(ug) = \text{St}_\sigma(n)$.
Proof

To show that having CSP is independent of the branch action, we need to show that given two branch actions \(\sigma : G \to \text{Aut}(T_\sigma) \) and \(\rho : G \to \text{Aut}(T_\rho) \) every \(\text{St}_\sigma(n) \) contains some \(\text{St}_\rho(m) \) and vice-versa.

- Take \(u \in T_\sigma \) of level \(n \).

\[r^\text{st}_\sigma(u) \geq r^\text{st}_\rho(v) \] where \(v \) is some element in \(T_\rho \) of level \(m \) such that \(u \) and \(v \) have the same level.

Now, if \(x \in \text{St}_\rho(m) \), we have

\[1 \neq r^\text{st}_\rho(v) \leq r^\text{st}_\sigma(u) \]

\[x \land r^\text{st}_\sigma(u) = r^\text{st}_\sigma(ux) \cap r^\text{st}_\sigma(u) \]

Hence \(x \in \text{St}_\sigma(u) \).

To finish, use transitivity of \(G \) on all levels of \(T_\rho \) and \(T_\sigma \) to get

\[x \in \bigcap_{g \in G} \text{St}_\sigma(ug) = \text{St}_\sigma(n) \].
Proof

To show that having CSP is independent of the branch action, we need to show that given two branch actions $\sigma : G \to \text{Aut}(T_\sigma)$ and $\rho : G \to \text{Aut}(T_\rho)$ every $\text{St}_\sigma(n)$ contains some $\text{St}_\rho(m)$ and vice-versa.

- Take $u \in T_\sigma$ of level n.
- By the above, there is some $v \in T_\rho$ (call its level m) such that $[\text{rst}_\sigma(u)] \geq [\text{rst}_\rho(v)]$.
Proof

To show that having CSP is independent of the branch action, we need to show that given two branch actions \(\sigma : G \to \text{Aut}(T_\sigma) \) and \(\rho : G \to \text{Aut}(T_\rho) \) every \(\text{St}_\sigma(n) \) contains some \(\text{St}_\rho(m) \) and vice-versa.

- Take \(u \in T_\sigma \) of level \(n \).
- By the above, there is some \(v \in T_\rho \) (call its level \(m \)) such that \(\text{rst}_\sigma(u) \geq \text{rst}_\rho(v) \).
- Now, if \(x \in \text{St}_\rho(m) \), we have

\[
1 \neq \text{rst}_\rho(v) \leq \text{rst}_\sigma(u)^x \land \text{rst}_\sigma(u) = \text{rst}_\sigma(ux) \cap \text{rst}_\sigma(u),
\]

so \(\text{rst}_\sigma(ux) = \text{rst}_\sigma(u) \).
Proof

To show that having CSP is independent of the branch action, we need to show that given two branch actions $\sigma : G \to \text{Aut}(T_\sigma)$ and $\rho : G \to \text{Aut}(T_\rho)$ every $\text{St}_\sigma(n)$ contains some $\text{St}_\rho(m)$ and vice-versa.

- Take $u \in T_\sigma$ of level n.
- By the above, there is some $v \in T_\rho$ (call its level m) such that $[\text{rst}_\sigma(u)] \geq [\text{rst}_\rho(v)]$.
- Now, if $x \in \text{St}_\rho(m)$, we have
 \[1 \neq [\text{rst}_\rho(v)] \leq [\text{rst}_\sigma(u)]^x \land [\text{rst}_\sigma(u)] = [\text{rst}_\sigma(ux) \cap \text{rst}_\sigma(u)], \]

 so $\text{rst}_\sigma(ux) = \text{rst}_\sigma(u)$.
- Hence $x \in \text{St}_\sigma(u)$.

Alejandra Garrido (Oxford)
Groups that look like trees
GTI Webinar, Dec 2014
24 / 26
Proof

To show that having CSP is independent of the branch action, we need to show that given two branch actions $\sigma : G \to \text{Aut}(T_\sigma)$ and $\rho : G \to \text{Aut}(T_\rho)$ every $\text{St}_\sigma(n)$ contains some $\text{St}_\rho(m)$ and vice-versa.

- Take $u \in T_\sigma$ of level n.
- By the above, there is some $v \in T_\rho$ (call its level m) such that $[\text{rst}_\sigma(u)] \geq [\text{rst}_\rho(v)]$.
- Now, if $x \in \text{St}_\rho(m)$, we have
 \[
 1 \neq [\text{rst}_\rho(v)] \leq [\text{rst}_\sigma(u)]^x \land [\text{rst}_\sigma(u)] = [\text{rst}_\sigma(ux) \cap \text{rst}_\sigma(u)],
 \]
 so $\text{rst}_\sigma(ux) = \text{rst}_\sigma(u)$.
- Hence $x \in \text{St}_\sigma(u)$.
- To finish, use transitivity of G on all levels of T_ρ and T_σ to get
To show that having CSP is independent of the branch action, we need to show that given two branch actions $\sigma : G \to \text{Aut}(T_\sigma)$ and $\rho : G \to \text{Aut}(T_\rho)$ every $\text{St}_\sigma(n)$ contains some $\text{St}_\rho(m)$ and vice-versa.

- Take $u \in T_\sigma$ of level n.
- By the above, there is some $v \in T_\rho$ (call its level m) such that $[\text{rst}_\sigma(u)] \geq [\text{rst}_\rho(v)]$.
- Now, if $x \in \text{St}_\rho(m)$, we have

$$1 \neq [\text{rst}_\rho(v)] \leq [\text{rst}_\sigma(u)]^x \land [\text{rst}_\sigma(u)] = [\text{rst}_\sigma(ux) \cap \text{rst}_\sigma(u)],$$

so $\text{rst}_\sigma(ux) = \text{rst}_\sigma(u)$.
- Hence $x \in \text{St}_\sigma(u)$.
- To finish, use transitivity of G on all levels of T_ρ and T_σ to get
- $x \in \bigcap_{g \in G} \text{St}_\sigma(ug) = \text{St}_\sigma(n)$.
Two ways in which groups acting on trees can “look” like trees:
Two ways in which groups acting on trees can “look” like trees:

- Self-similarity/replication
 - strong replication in some examples: Gupta–Sidki 3-group ($p > 3$?), Grigorchuk group

Applications to commensurability and congruence subgroup problem.
Two ways in which groups acting on trees can “look” like trees:

- Self-similarity/replication
 - strong replication in some examples: Gupta–Sidki 3-group ($p > 3$?), Grigorchuk group
- subgroup structure of branch groups “detects” all trees on which group acts as branch group
 - Applications to commensurability and congruence subgroup problem.
Two ways in which groups acting on trees can “look” like trees:

- Self-similarity/replication
 - strong replication in some examples: Gupta–Sidki 3-group ($p > 3$?), Grigorchuk group
- subgroup structure of branch groups “detects” all trees on which group acts as branch group
 - Applications to commensurability and congruence subgroup problem.

Q How many “different” branch actions can a given group have? On what trees?
Thank you for your attention :)