Knapsack problems in products of groups

Andrey Nikolaev
(Stevens Institute of Technology)

Group Theory Webinar, November 13, 2014

Based on joint work with E.Frenkel and A.Ushakov
Basic idea:

Take a classic algorithmic problem from computer science (traveling salesman, Post correspondence, knapsack, ...) and translate it into group-theoretic setting.
Let A be an alphabet, $|A| \geq 2$.

The classic Post correspondence problem (PCP)

Given a finite set of pairs $(g_1, h_1), \ldots, (g_k, h_k)$ of elements of A^* determine if there is a non-empty word $w(x_1, \ldots, x_k) \in X^*$ such that $w(g_1, \ldots, g_k) = w(h_1, \ldots, h_k)$ in A^*.
Example: Post correspondence problem

Matching dominoes: top = bottom

<table>
<thead>
<tr>
<th>g_{i_1}</th>
<th>g_{i_2}</th>
<th>g_{i_3}</th>
<th>...</th>
<th>g_{i_n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{i_1}</td>
<td>h_{i_2}</td>
<td>h_{i_3}</td>
<td>...</td>
<td>h_{i_n}</td>
</tr>
</tbody>
</table>

Decidable if number of pairs is $k \leq 3$. Undecidable if $k \geq 7$. Unknown if $4 \leq k \leq 6$.
Example: Post correspondence problem

Matching dominoes: top = bottom

<table>
<thead>
<tr>
<th>g_{i_1}</th>
<th>g_{i_2}</th>
<th>g_{i_3}</th>
<th>\cdots</th>
<th>g_{i_n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{i_1}</td>
<td>h_{i_2}</td>
<td>h_{i_3}</td>
<td>\cdots</td>
<td>h_{i_n}</td>
</tr>
</tbody>
</table>

Decidable if number of pairs is $k \leq 3$. Undecidable if $k \geq 7$. Unknown if $4 \leq k \leq 6$.
Translating **PCP** to groups:

$$A^* \Rightarrow \text{f.g. group } G,$$
words $$g_i, h_i \Rightarrow \text{group elements } g_i, h_i \text{ given as words in generators},$$
word $$w \Rightarrow \text{group word},$$
right?

The above is trivial:
(a) $$w = xx^{-1}$$. Only allow non-trivial reduced words.
(b) $$G$$ abelian, $$w = [x, y]$$. Only allow words that are not identities of $$G$$.
Translating \textbf{PCP} to groups:

$A^* \rightsquigarrow$ f.g. group $G,$
words $g_i, h_i \rightsquigarrow$ group elements g_i, h_i given as words in generators,
word $w \rightsquigarrow$ group word,
right?

The above is trivial:
(a) $w = xx^{-1}$. Only allow non-trivial reduced words.
(b) G abelian, $w = [x, y]$. Only allow words that are not identities of $G.$
Translating **PCP** to groups:

\[A^* \rightsquigarrow \text{f.g. group } G, \]
words \(g_i, h_i \rightsquigarrow \text{group elements } g_i, h_i \) given as words in generators, word \(w \rightsquigarrow \text{group word}, \)
right?

The above is trivial:
(a) \(w = xx^{-1} \). Only allow non-trivial reduced words.
(b) \(G \) abelian, \(w = [x, y] \). Only allow words that are not identities of \(G \).
Translating **PCP** to groups:

\[A^* \leadsto \text{f.g. group } G, \]

words \(g_i, h_i \leadsto \) group elements \(g_i, h_i \) given as words in generators,

word \(w \leadsto \) group word,

right?

The above is trivial:

(a) \(w = xx^{-1} \). Only allow non-trivial reduced words.

(b) \(G \) abelian, \(w = [x, y] \). Only allow words that are not identities of \(G \).
Variations of **PCP** in groups turn out to be closely related to:

- double-endo-twisted conjugacy problem

 \((\text{find } w \in G \text{ s.t. } uw\varphi = w\psi v) \),

- equalizer problem

 \((\text{find the subgroup of elements } g \text{ s.t. } \varphi(g) = \psi(g)) \),

- hereditary word problem

 \((\text{word problem in any quotient of } G \text{ by a subgroup f.g. as a normal subgroup}) \).
Variations of \textbf{PCP} in groups turn out to be closely related to:

- double-endo-twisted conjugacy problem

 \[(\text{find } w \in G \text{ s.t. } uw\varphi = w\psi v),\]

- equalizer problem

 \[(\text{find the subgroup of elements } g \text{ s.t. } \varphi(g) = \psi(g)),\]

- hereditary word problem

 \[(\text{word problem in any quotient of } G \text{ by a subgroup f.g. as a normal subgroup}).\]
Variations of **PCP** in groups turn out to be closely related to:

- double-endo-twisted conjugacy problem

 (find \(w \in G \) s.t. \(uw\varphi = w\psi v \)),

- equalizer problem

 (find the subgroup of elements \(g \) s.t. \(\varphi(g) = \psi(g) \)),

- hereditary word problem

 (word problem in any quotient of \(G \) by a subgroup f.g. as a normal subgroup).
Example: Post correspondence problem

Variations of **PCP** in groups turn out to be closely related to:

- **double-endo-twisted conjugacy problem**
 (find $w \in G$ s.t. $uw\varphi = w\psi v$),

- **equalizer problem**
 (find the subgroup of elements g s.t. $\varphi(g) = \psi(g)$),

- **hereditary word problem**
 (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).
Variations of **PCP** in groups turn out to be closely related to:

- double-endo-twisted conjugacy problem
 (find $w \in G$ s.t. $uw\varphi = w\psi v$),

- equalizer problem
 (find the subgroup of elements g s.t. $\varphi(g) = \psi(g)$),

- hereditary word problem
 (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).
Variations of **PCP** in groups turn out to be closely related to:

- double-endo-twisted conjugacy problem
 (find $w \in G$ s.t. $uw\varphi = w\psi v$),

- equalizer problem
 (find the subgroup of elements g s.t. $\varphi(g) = \psi(g)$),

- hereditary word problem
 (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).
Non-commutative discrete optimization

The classic subset sum problem (SSP):

Given $a_1, \ldots, a_k, a \in \mathbb{Z}$ decide if

$$\varepsilon_1 a_1 + \ldots + \varepsilon_k a_k = a$$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

SSP for a group G:

Given $g_1, \ldots, g_k, g \in G$ decide if

$$g_1^{\varepsilon_1} \cdots g_k^{\varepsilon_k} = g$$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

Elements in G are given as words in a fixed set of generators of G.
The classic subset sum problem (SSP):

Given $a_1, \ldots, a_k, a \in \mathbb{Z}$ decide if

$$\varepsilon_1 a_1 + \ldots + \varepsilon_k a_k = a$$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

SSP for a group G:

Given $g_1, \ldots, g_k, g \in G$ decide if

$$g_1^{\varepsilon_1} \ldots g_k^{\varepsilon_k} = g$$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

Elements in G are given as words in a fixed set of generators of G.
The classic subset sum problem (SSP):

Given \(a_1, \ldots, a_k, a \in \mathbb{Z} \) decide if

\[
\varepsilon_1 a_1 + \ldots + \varepsilon_k a_k = a
\]

for some \(\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\} \).

SSP for a group \(G \):

Given \(g_1, \ldots, g_k, g \in G \) decide if

\[
g_1^{\varepsilon_1} \ldots g_k^{\varepsilon_k} = g
\]

for some \(\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\} \).

Elements in \(G \) are given as words in a fixed set of generators of \(G \).
Algorithmic set-up

Classic SSP is pseudopolynomial

- If input is given in unary, SSP is in P,
- if input is given in binary, SSP is NP-complete.

The complexity of SSP(G) does not depend on a finite generating set, but may depend on a generating set if infinite ones are allowed.

For example:

SSP(ℤ)

- SSP(ℤ) ∈ P if ℤ is generated by \{1\},
- SSP(ℤ) is NP-complete if ℤ is generated by \{2^n | n ∈ ℕ\}.
Algorithmic set-up

Classic SSP is pseudopolynomial

- If input is given in unary, **SSP** is in **P**,
- if input is given in binary, **SSP** is **NP**-complete.

The complexity of **SSP**(G) does not depend on a finite generating set, but may depend on a generating set if infinite ones are allowed.

For example:

<table>
<thead>
<tr>
<th>SSP(\mathbb{Z})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP(\mathbb{Z}) ∈ P if \mathbb{Z} is generated by {1},</td>
</tr>
<tr>
<td>SSP(\mathbb{Z}) is NP-complete if \mathbb{Z} is generated by {2n</td>
</tr>
</tbody>
</table>
Algorithmic set-up

Classic SSP is pseudopolynomial

- If input is given in unary, SSP is in P,
- if input is given in binary, SSP is NP-complete.

The complexity of SSP(G) does not depend on a finite generating set, but may depend on a generating set if infinite ones are allowed.

For example:

\[\text{SSP}(\mathbb{Z}) \]

- \(\text{SSP}(\mathbb{Z}) \in P \) if \(\mathbb{Z} \) is generated by \(\{1\} \),
- \(\text{SSP}(\mathbb{Z}) \) is NP-complete if \(\mathbb{Z} \) is generated by \(\{2^n \mid n \in \mathbb{N}\} \).
Complexity of $\text{SSP}(G)$:

<table>
<thead>
<tr>
<th>Group</th>
<th>Complexity</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nilpotent $\mathbb{Z} \wr \mathbb{Z}$</td>
<td>\mathbb{P}</td>
<td>Poly growth</td>
</tr>
<tr>
<td>Free metabelian</td>
<td>\mathbb{NP}-complete</td>
<td>$\mathbb{Z} \wr \mathbb{Z}$</td>
</tr>
<tr>
<td>Thompson’s F</td>
<td>\mathbb{NP}-complete</td>
<td>$\mathbb{Z} \wr \mathbb{Z}$</td>
</tr>
<tr>
<td>$BS(m, n), \</td>
<td>m</td>
<td>\neq</td>
</tr>
<tr>
<td>Hyperbolic</td>
<td>\mathbb{P}</td>
<td>Log depth</td>
</tr>
</tbody>
</table>

Note that the \mathbb{NP}-completeness is despite unary input.
Complexity of $\text{SSP}(G)$:

<table>
<thead>
<tr>
<th>Group</th>
<th>Complexity</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nilpotent</td>
<td>P</td>
<td>Poly growth</td>
</tr>
<tr>
<td>$\mathbb{Z} \wr \mathbb{Z}$</td>
<td>NP-complete</td>
<td>\mathbb{Z}^ω, ZOE</td>
</tr>
<tr>
<td>Free metabelian</td>
<td>NP-complete</td>
<td>$\mathbb{Z} \wr \mathbb{Z}$</td>
</tr>
<tr>
<td>Thompson’s F</td>
<td>NP-complete</td>
<td>$\mathbb{Z} \wr \mathbb{Z}$</td>
</tr>
<tr>
<td>$BS(m,n)$, $</td>
<td>m</td>
<td>\neq</td>
</tr>
<tr>
<td>Hyperbolic</td>
<td>P</td>
<td>Log depth</td>
</tr>
</tbody>
</table>

Note that the NP-completeness is despite unary input.
Knapsack problems in groups

Three principle Knapsack type (decision) problems in groups:

- **SSP** subset sum,
- **KP** knapsack,
- **SMP** submonoid membership.
The classic knapsack problem (**KP**):

Given $a_1, \ldots, a_k, a \in \mathbb{Z}$ decide if

$$n_1 a_1 + \ldots + n_k a_k = a$$

for some non-negative integers n_1, \ldots, n_k.

The knapsack problem (**KP**) for G:

Given $g_1, \ldots, g_k, g \in G$ decide if

$$g_1^{n_1} \ldots g_k^{n_k} = g$$

for some non-negative integers n_1, \ldots, n_k.

There are minor variations of this problem, for instance, integer **KP**, when n_i are arbitrary integers. They are all similar, we omit them here. The subset sum problem sometimes is called 0−1 knapsack.
The knapsack problem in groups

The classic knapsack problem (\(\text{KP} \))**:
Given \(a_1, \ldots, a_k, a \in \mathbb{Z} \) decide if

\[
n_1 a_1 + \ldots + n_k a_k = a
\]

for some non-negative integers \(n_1, \ldots, n_k \).

The knapsack problem (\(\text{KP} \)) for **\(G \)**:
Given \(g_1, \ldots, g_k, g \in G \) decide if

\[
g_1^{n_1} \ldots g_k^{n_k} = g
\]

for some non-negative integers \(n_1, \ldots, n_k \).

There are minor variations of this problem, for instance, integer KP, when \(n_i \) are arbitrary integers. They are all similar, we omit them here. The subset sum problem sometimes is called 0−1 knapsack.
The knapsack problem in groups

The classic knapsack problem (KP):
Given $a_1, \ldots, a_k, a \in \mathbb{Z}$ decide if

$$n_1 a_1 + \ldots + n_k a_k = a$$

for some non-negative integers n_1, \ldots, n_k.

The knapsack problem (KP) for G:
Given $g_1, \ldots, g_k, g \in G$ decide if

$$g_1^{n_1} \ldots g_k^{n_k} = g$$

for some non-negative integers n_1, \ldots, n_k.

There are minor variations of this problem, for instance, integer KP, when n_i are arbitrary integers. They are all similar, we omit them here. The subset sum problem sometimes is called 0–1 knapsack.
The knapsack problem in groups is closely related to the big powers method, which appeared long before any complexity considerations.

Integer knapsack = membership in product of cyclic groups.
The knapsack problem in groups is closely related to the big powers method, which appeared long before any complexity considerations.

Integer knapsack = membership in product of cyclic groups.
The submonoid membership problem in groups

Submonoid membership problem (SMP):

Given a finite set $A = \{g_1, \ldots, g_k, g\}$ of elements of G decide if g belongs to the submonoid generated by A, i.e., if $g = g_{i_1} \cdots g_{i_s}$ for some $g_{i_j} \in A$.

If the set A is closed under inversion then we have the subgroup membership problem in G.
It makes sense to consider the bounded versions of KP and SMP, they are always decidable in groups with decidable word problem.

The bounded knapsack problem (BKP) for G

decide, when given $g_1, \ldots, g_k, g \in G$ and $1^m \in \mathbb{N}$, if $g = g_1^{\varepsilon_1} \cdots g_k^{\varepsilon_k}$ for some $\varepsilon_i \in \{0, 1, \ldots, m\}$.

BKP is P-time equivalent to SSP in G.
It makes sense to consider the bounded versions of KP and SMP, they are always decidable in groups with decidable word problem.

The bounded knapsack problem (BKP) for G:

decide, when given $g_1, \ldots, g_k, g \in G$ and $1^m \in \mathbb{N}$, if $g = g_1^{\varepsilon_1} \cdots g_k^{\varepsilon_k}$ for some $\varepsilon_i \in \{0, 1, \ldots, m\}$.

BKP is \mathbf{P}-time equivalent to SSP in G.
Bounded variations

Bounded submonoid membership problem (BSMP) for G:

Given $g_1, \ldots, g_k, g \in G$ and $1^m \in \mathbb{N}$ (in unary) decide if g is equal in G to a product of the form $g = g_{i_1} \cdots g_{i_s}$, where $g_{i_1}, \ldots, g_{i_s} \in \{g_1, \ldots, g_k\}$ and $s \leq m$.

15 / 35
Known results [MNU]

SSP and BKP:
- **NP**-complete in $\mathbb{Z} \wr \mathbb{Z}$, free metabelian, Thompson’s F, $BS(m, n), m \neq \pm n$.
- **P**-time in f.g. v. nilpotent groups, hyperbolic groups, $BS(n, \pm n)$.

BSMP:
- **NP**-complete in $F_2 \times F_2$ (therefore **NP**-hard in any group that contains $F_2 \times F_2$, e.g. $B_{\geq 5}$, $GL(\geq 4, \mathbb{Z})$, partially commutative with induced \Box.)
- **P**-time in f.g. v. nilpotent groups, hyperbolic groups.
Known results

KP:

- [MNU] \(\mathsf{P} \)-time in abelian groups, hyperbolic groups.
- [Olshanski, Sapir, 2000] There is \(G \) with decidable \(\mathsf{WP} \) and undecidable membership in cyclic subgroups.
- [Lohrey, 2013] Undecidable in \(\mathsf{UT}_d(\mathbb{Z}) \) if \(d \) is large enough.
- [Mischenko, Treyer, 2014] Undecidable in nilpotent groups of class \(\geq 2 \) if \(\gamma_c(G) \) is large enough. Decidable in \(\mathsf{UT}_3(\mathbb{Z}) \).
What about group-theoretic constructions?

Q1 Does **SSP** carry from G, H to $G \ast H$?

A1 That’s not the right question.

Q2 Does **SSP** in $G \times H$ behave like the word problem or like the membership problem?

A2 Both!
What about group-theoretic constructions?

Q1 Does SSP carry from G, H to $G \ast H$?
A1 That's not the right question.

Q2 Does SSP in $G \times H$ behave like the word problem or like the membership problem?
A2 Both!
What about group-theoretic constructions?

Q1 Does SSP carry from G, H to $G \ast H$?
A1 That’s not the right question.

Q2 Does SSP in $G \times H$ behave like the word problem or like the membership problem?
A2 Both!
What about group-theoretic constructions?

Q1 Does SSP carry from G, H to $G \ast H$?

A1 That's not the right question.

Q2 Does SSP in $G \times H$ behave like the word problem or like the membership problem?

A2 Both!
What about group-theoretic constructions?

Q1 Does **SSP** carry from G, H to $G \ast H$?

A1 That’s not the right question.

Q2 Does **SSP** in $G \times H$ behave like the word problem or like the membership problem?

A2 Both!
What an instance of $\text{SSP}(G)$ looks like?

$g_1 \quad g_2 \quad g_k \quad g^{-1}$

$\varepsilon \quad \varepsilon \quad \varepsilon \quad \varepsilon \quad \varepsilon$
SSP and free products

What an instance of $\text{SSP}(G)$ looks like?

$g_1 \quad g_2 \quad g_k \quad g^{-1}$
Consider $\text{SSP}(G \ast H)$.

If some path reads trivial group element, then there is subpath in G or H that reads 1_G or 1_H, resp.

Try to solve it using $\text{SSP}(G)$ and $\text{SSP}(H)$.
Consider $\text{SSP}(G \ast H)$.

If some path reads trivial group element, then there is subpath in G or H that reads 1_G or 1_H, resp.

Try to solve it using $\text{SSP}(G)$ and $\text{SSP}(H)$.
SSP and free products

Look at the G part:

Solve all occurring instances of $\text{SSP}(G)$:
SSP and free products

Look at the G part:

Solve all occurring instances of $\text{SSP}(G)$:
SSP and free products

Bring back H part:

Look at H part separately:

This is not SSP anymore! ($3 \neq 2^m$ choices of paths.)
Bring back H part:

Look at H part separately:

This is not SSP anymore! ($3 \neq 2^m$ choices of paths.)
Bring back H part:

Look at H part separately:

This is not SSP anymore! ($3 \neq 2^m$ choices of paths.)
In this context, it is natural to consider so-called Acyclic Graph Problem:

The acyclic graph problem $\text{AGP}(G, X)$

Given an acyclic directed graph Γ labeled by letters in $X \cup X^{-1} \cup \{\varepsilon\}$ with two marked vertices, α and ω, decide whether there is an oriented path in Γ from α to ω labeled by a word w such that $w = 1$ in G.

AGP\((G)\) generalizes SSP\((G)\) (i.e. SSP\((G)\) is P-time reducible to AGP\((G)\)):
AGP(\(G\)) generalizes SSP(\(G\)) (i.e. SSP(\(G\)) is P-time reducible to AGP(\(G\))):

AGP(\(G\)) generalizes BSMP(\(G\)):
Question
Does \(\text{AGP}(G) \) reduce to \(\text{SSP}(G) \)?

We don’t know. But in all \(G \) with \(\text{P}-\text{time} \ \text{SSP}(G) \) that we know, \(\text{AGP}(G) \) is also \(\text{P}-\text{time} \), by essentially the same arguments:

- \(\text{AGP}(\text{virtually f.g. nilpotent}) \in \text{P} \) by polynomial growth,
- \(\text{AGP}(\text{hyperbolic}) \in \text{P} \) by logarithmic depth of Van Kampen diagrams.

Also, we know that \(\text{AGP}(G) \ \text{P}-\text{time} \) reduces to:

- \(\text{SSP}(G \times F_2) \),
- \(\text{SSP}(G * F_2) \).
Question

Does $\text{AGP}(G)$ reduce to $\text{SSP}(G)$?

We don’t know. But in all G with P-time $\text{SSP}(G)$ that we know, $\text{AGP}(G)$ is also P-time, by essentially the same arguments:

- AGP (virtually f.g. nilpotent) $\in \text{P}$ by polynomial growth,
- AGP (hyperbolic) $\in \text{P}$ by logarithmic depth of Van Kampen diagrams.

Also, we know that $\text{AGP}(G)$ P-time reduces to:

- $\text{SSP}(G \times F_2)$,
- $\text{SSP}(G \ast F_2)$.
Question

Does $\text{AGP}(G)$ reduce to $\text{SSP}(G)$?

We don’t know. But in all G with \textbf{P}-time $\text{SSP}(G)$ that we know, $\text{AGP}(G)$ is also \textbf{P}-time, by essentially the same arguments:

- $\text{AGP}(\text{virtually f.g. nilpotent}) \in \textbf{P}$ by polynomial growth,
- $\text{AGP}(\text{hyperbolic}) \in \textbf{P}$ by logarithmic depth of Van Kampen diagrams.

Also, we know that $\text{AGP}(G)$ \textbf{P}-time reduces to:

- $\text{SSP}(G \times F_2)$,
- $\text{SSP}(G \ast F_2)$.
We don’t know. But in all G with P-time $SSP(G)$ that we know, $AGP(G)$ is also P-time, by essentially the same arguments:

- $AGP($virtually f.g. nilpotent$) \in P$ by polynomial growth,
- $AGP($hyperbolic$) \in P$ by logarithmic depth of Van Kampen diagrams.

Also, we know that $AGP(G)$ P-time reduces to:

- $SSP(G \times F_2)$,
- $SSP(G \ast F_2)$.
Question

Does AGP(G) reduce to SSP(G)?

We don’t know. But in all G with P-time SSP(G) that we know, AGP(G) is also P-time, by essentially the same arguments:

- AGP(virtually f.g. nilpotent) ∈ P by polynomial growth,
- AGP(hyperbolic) ∈ P by logarithmic depth of Van Kampen diagrams.

Also, we know that AGP(G) P-time reduces to:

- SSP(G × F₂),
- SSP(G ⋊ F₂).
Question
Does \(\text{AGP}(G) \) reduce to \(\text{SSP}(G) \)?

We don’t know. But in all \(G \) with \(\text{P-time} \ \text{SSP}(G) \) that we know, \(\text{AGP}(G) \) is also \(\text{P-time} \), by essentially the same arguments:

- \(\text{AGP} \) (virtually f.g. nilpotent) \(\in \text{P} \) by polynomial growth,
- \(\text{AGP} \) (hyperbolic) \(\in \text{P} \) by logarithmic depth of Van Kampen diagrams.

Also, we know that \(\text{AGP}(G) \) \(\text{P-time} \) reduces to:

- \(\text{SSP}(G \times F_2) \),
- \(\text{SSP}(G * F_2) \).
Question

Does $\text{AGP}(G)$ reduce to $\text{SSP}(G)$?

We don’t know. But in all G with \textbf{P}-time $\text{SSP}(G)$ that we know, $\text{AGP}(G)$ is also \textbf{P}-time, by essentially the same arguments:

- $\text{AGP}(\text{virtually f.g. nilpotent}) \in \textbf{P}$ by polynomial growth,
- $\text{AGP}(\text{hyperbolic}) \in \textbf{P}$ by logarithmic depth of Van Kampen diagrams.

Also, we know that $\text{AGP}(G)$ \textbf{P}-time reduces to:

- $\text{SSP}(G \times F_2)$,
- $\text{SSP}(G \ast F_2)$.

Question

Does $AGP(G)$ reduce to $SSP(G)$?

We don’t know. But in all G with P-time $SSP(G)$ that we know, $AGP(G)$ is also P-time, by essentially the same arguments:

- $AGP($virtually f.g. nilpotent$) \in P$ by polynomial growth,
- $AGP($hyperbolic$) \in P$ by logarithmic depth of Van Kampen diagrams.

Also, we know that $AGP(G)$ P-time reduces to:

- $SSP(G \times F_2)$,
- $SSP(G \ast F_2)$.

AGP plays nicely with free products:

Theorem

Let G, H be finitely generated groups. Then $\text{AGP}(G \ast H)$ is P-time Cook reducible to $\text{AGP}(G), \text{AGP}(H)$.

Proof: same as what we tried to do with SSP, only this time it works.
AGP plays nicely with free products:

Theorem

Let G, H be finitely generated groups. Then $\text{AGP}(G \ast H)$ is P-time Cook reducible to $\text{AGP}(G), \text{AGP}(H)$.

Proof: same as what we tried to do with SSP, only this time it works.
Corollary

If G, H are finitely generated groups such that $\text{AGP}(G), \text{AGP}(H) \in P$ then $\text{AGP}(G \ast H) \in P$.

Corollary

SSP, BKP, BSMP, AGP are polynomial time decidable in free products of finitely generated virtually nilpotent and hyperbolic groups in any finite number.
Corollary

If G, H are finitely generated groups such that $\text{AGP}(G)$, $\text{AGP}(H) \in P$ then $\text{AGP}(G \ast H) \in P$.

Corollary

SSP, BKP, BSMP, AGP are polynomial time decidable in free products of finitely generated virtually nilpotent and hyperbolic groups in any finite number.
What about Knapsack Problem $\text{KP}(G \ast H)$?

Difficulty: put a bound on exponents n_i in

$$g_1^{n_1} \cdots g_k^{n_k} = g.$$
What about Knapsack Problem $\textbf{KP}(G \ast H)$?

Difficulty: put a bound on exponents n_i in

$$g_1^{n_1} \ldots g_k^{n_k} = g.$$

We can do it in

- abelian groups (by linear algebra),
- hyperbolic groups (thin n-gons).
What about Knapsack Problem $\mathbf{KP}(G \ast H)$?

Difficulty: put a bound on exponents n_i in

$$g_1^{n_1} \ldots g_k^{n_k} = g.$$

We can do it in

- abelian groups (by linear algebra),
- hyperbolic groups (thin n-gons).
What about Knapsack Problem $\textbf{KP}(G \ast H)$?

Difficulty: put a bound on exponents n_i in

$$g_1^{n_1} \cdots g_k^{n_k} = g.$$

We can do it in
- abelian groups (by linear algebra),
- hyperbolic groups (thin n-gons).
In hyperbolic groups:
Similar argument works in free products, which gives

Theorem

If G, H are groups such that $KP(G), KP(H) \in P$, then $KP(G \ast H)$ is P-time reducible to $BKP(G \ast H)$.

Corollary

If G, H are groups such that $AGP(G), AGP(H) \in P$ and $KP(G), KP(H) \in P$ then $KP(G \ast H) \in P$.

Corollary

KP is polynomial time decidable in free products of finitely generated abelian and hyperbolic groups in any finite number.
Similar argument works in free products, which gives

Theorem

If G, H are groups such that $\text{KP}(G), \text{KP}(H) \in \text{P}$, then $\text{KP}(G \ast H)$ is P-time reducible to $\text{BKP}(G \ast H)$.

Corollary

If G, H are groups such that $\text{AGP}(G), \text{AGP}(H) \in \text{P}$ and $\text{KP}(G), \text{KP}(H) \in \text{P}$ then $\text{KP}(G \ast H) \in \text{P}$.

Corollary

KP is polynomial time decidable in free products of finitely generated abelian and hyperbolic groups in any finite number.
KP and free products

Similar argument works in free products, which gives

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>If G, H are groups such that $\text{KP}(G), \text{KP}(H) \in P$, then $\text{KP}(G \ast H)$ is P-time reducible to $\text{BKP}(G \ast H)$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>If G, H are groups such that $\text{AGP}(G), \text{AGP}(H) \in P$ and $\text{KP}(G), \text{KP}(H) \in P$ then $\text{KP}(G \ast H) \in P$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP is polynomial time decidable in free products of finitely generated abelian and hyperbolic groups in any finite number.</td>
</tr>
</tbody>
</table>
SSP and direct products

\(\text{AGP}(G \times H) \) is decidable whenever \(\text{WP}(G), \text{WP}(H) \) are decidable. What about complexity?

\(\text{AGP}(F_2 \times F_2) \) is \(\text{NP} \)-complete since \(\text{BSMP}(F_2 \times F_2) \) is, by a variation of Mikhailova construction.

By itself, this does not mean \(\text{SSP}(F_2 \times F_2) \) is \(\text{NP} \)-complete because we don’t know whether \(\text{AGP}(G) \) reduces to \(\text{SSP}(G) \).

Question

Is \(\text{SSP}(F_2 \times F_2) \) \(\text{NP} \)-complete?

Answer: we don’t know... but we know about \(\text{SSP}(F_2 \times F_2 \times \mathbb{Z})! \)
SSP and direct products

\[\text{AGP}(G \times H) \text{ is decidable whenever } \text{WP}(G), \text{WP}(H) \text{ are decidable. What about complexity?} \]

\[\text{AGP}(F_2 \times F_2) \text{ is NP-complete since } \text{BSMP}(F_2 \times F_2) \text{ is, by a variation of Mikhailova construction.} \]

By itself, this does not mean \(\text{SSP}(F_2 \times F_2) \) is NP-complete because we don’t know whether \(\text{AGP}(G) \) reduces to \(\text{SSP}(G) \).

Question

Is \(\text{SSP}(F_2 \times F_2) \) NP-complete?

Answer: we don’t know... but we know about \(\text{SSP}(F_2 \times F_2 \times \mathbb{Z}) \)!
SSP and direct products

\[\text{AGP}(G \times H) \] is decidable whenever \(\text{WP}(G), \text{WP}(H) \) are decidable. What about complexity?

\[\text{AGP}(F_2 \times F_2) \] is \(\text{NP} \)-complete since \(\text{BSMP}(F_2 \times F_2) \) is, by a variation of Mikhailova construction.

By itself, this does not mean \(\text{SSP}(F_2 \times F_2) \) is \(\text{NP} \)-complete because we don’t know whether \(\text{AGP}(G) \) reduces to \(\text{SSP}(G) \).

Question

Is \(\text{SSP}(F_2 \times F_2) \) \(\text{NP} \)-complete?

Answer: we don’t know… but we know about \(\text{SSP}(F_2 \times F_2 \times \mathbb{Z}) \)!
SSP and direct products

\(\text{AGP}(G \times H) \) is decidable whenever \(\text{WP}(G), \text{WP}(H) \) are decidable. What about complexity?

\(\text{AGP}(F_2 \times F_2) \) is \(\text{NP} \)-complete since \(\text{BSMP}(F_2 \times F_2) \) is, by a variation of Mikhailova construction.

By itself, this does not mean \(\text{SSP}(F_2 \times F_2) \) is \(\text{NP} \)-complete because we don’t know whether \(\text{AGP}(G) \) reduces to \(\text{SSP}(G) \).

Question

Is \(\text{SSP}(F_2 \times F_2) \) \(\text{NP} \)-complete?

Answer: we don’t know... but we know about \(\text{SSP}(F_2 \times F_2 \times \mathbb{Z}) \)!
AGP\((G \times H)\) is decidable whenever WP\((G)\), WP\((H)\) are decidable. What about complexity?

AGP\((F_2 \times F_2)\) is \textbf{NP}\(-complete since BSMP\((F_2 \times F_2)\) is, by a variation of Mikhailova construction.

By itself, this does not mean SSP\((F_2 \times F_2)\) is \textbf{NP}\(-complete because we don’t know whether AGP\((G)\) reduces to SSP\((G)\).

\textbf{Question}

Is SSP\((F_2 \times F_2)\) \textbf{NP}\(-complete?

\textbf{Answer}: we don’t know… but we know about SSP\((F_2 \times F_2 \times \mathbb{Z})\)!
BSMP\((G)\) vs SSP\((G \times \mathbb{Z})\):

BSMP\((G)\) reduces to SSP\((G \times \mathbb{Z})\):

\[
(w_1, 1) \to (\varepsilon, 0) \\
(w_2, 1) \to (\varepsilon, 0) \\
(w_k, 1) \to (\varepsilon, 0) \\
(w_1, 1) \to (\varepsilon, 0) \\
(w_k, 1) \to (w^{-1}, -n) \\
\alpha \to \omega
\]

\Gamma_0

\(m\) repetitions of \(\Gamma_0\)

Corollary

SSP\((F_2 \times F_2 \times \mathbb{Z})\) is NP-complete.
BSMP\((G)\) reduces to SSP\((G \times \mathbb{Z})\):

Corollary

SSP\((F_2 \times F_2 \times \mathbb{Z})\) is NP-complete.
SSP and direct products

Observation: \(\text{AGP}(G) \) and \(\text{AGP}(G \times \mathbb{Z}) \) are \(\mathsf{P} \)-time equivalent.

Corollary

There are groups \(G, H \) such that \(\text{SSP}(G), \text{SSP}(H) \in \mathsf{P} \), but \(\text{SSP}(G \times H) \) is \(\mathsf{NP} \)-complete.

Proof: \(G = F_2, \ H = F_2 \times \mathbb{Z} \).
Observation: $\text{AGP}(G)$ and $\text{AGP}(G \times \mathbb{Z})$ are \mathbf{P}-time equivalent.

Corollary

There are groups G, H such that $\text{SSP}(G), \text{SSP}(H) \in \mathbf{P}$, but $\text{SSP}(G \times H)$ is \mathbf{NP}-complete.

Proof: $G = F_2$, $H = F_2 \times \mathbb{Z}$.
Observation: \(\text{AGP}(G) \) and \(\text{AGP}(G \times \mathbb{Z}) \) are \(P \)-time equivalent.

Corollary

There are groups \(G, H \) such that \(\text{SSP}(G), \text{SSP}(H) \in P \), but \(\text{SSP}(G \times H) \) is \(NP \)-complete.

Proof: \(G = F_2, H = F_2 \times \mathbb{Z} \).
Some of (many) open questions:

- In which nilpotent groups is \mathbf{KP} decidable? Polynomial?
- Is \mathbf{SSP} (lamplighter) in \mathbf{P}?
- Is \mathbf{SSP} (polycyclic) in \mathbf{P}?
- Is decidability of \mathbf{KP} invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about $\mathbf{SSP}(G \ast_A H)$, $\mathbf{SSP}(\text{HNN})$? (Finite amalgamated subgroups are fine.)
- What about \mathbf{SSP} (relatively hyperbolic)? In particular \mathbf{SSP} (limit groups)?
Some of (many) open questions:

- In which nilpotent groups is \mathbf{KP} decidable? Polynomial?
- Is \mathbf{SSP} (lamplighter) in \mathbf{P}?
- Is \mathbf{SSP} (polycyclic) in \mathbf{P}?
- Is decidability of \mathbf{KP} invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about $\mathbf{SSP}(G \underset{A}{\ast} H)$, $\mathbf{SSP}(\text{HNN})$? (Finite amalgamated subgroups are fine.)
- What about \mathbf{SSP} (relatively hyperbolic)? In particular \mathbf{SSP} (limit groups)?
Some of (many) open questions:

- In which nilpotent groups is KP decidable? Polynomial?
- Is $\text{SSP}\text{(lamplighter)}$ in P?
- Is $\text{SSP}\text{(polycyclic)}$ in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about $\text{SSP}(G \ast_A H)$, $\text{SSP}(\text{HNN})$? (Finite amalgamated subgroups are fine.)
- What about $\text{SSP}(\text{relatively hyperbolic})$? In particular $\text{SSP}(\text{limit groups})$?
Some of (many) open questions:

- In which nilpotent groups is \mathbf{KP} decidable? Polynomial?
- Is \mathbf{SSP} (lamplighter) in \mathbf{P}?
- Is \mathbf{SSP} (polycyclic) in \mathbf{P}?
- Is decidability of \mathbf{KP} invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about $\mathbf{SSP}(G \ast_A H)$, \mathbf{SSP}(HNN)? (Finite amalgamated subgroups are fine.)
- What about \mathbf{SSP} (relatively hyperbolic)? In particular \mathbf{SSP} (limit groups)?
Some of (many) open questions:

- In which nilpotent groups is KP decidable? Polynomial?
- Is SSP(lamplighter) in P?
- Is SSP(polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about $\text{SSP}(G \star_A H)$, $\text{SSP}(\text{HNN})$? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?
Some of (many) open questions:

- In which nilpotent groups is KP decidable? Polynomial?
- Is SSP (lamplighter) in P?
- Is SSP (polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about $\text{SSP}(G \ast_A H)$, SSP(HNN)? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?
Some of (many) open questions:

- In which nilpotent groups is KP decidable? Polynomial?
- Is SSP (lamplighter) in P?
- Is SSP (polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about $\text{SSP}(G \ast A H)$, $\text{SSP}(\text{HNN})$? (Finite amalgamated subgroups are fine.)
- What about SSP (relatively hyperbolic)? In particular SSP (limit groups)?