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Linear groups

I A group G is linear if it is contained in GL(n,C), the group of
invertible n×n matrices over C.

I A subgroup of GL(n,C) is a linear algebraic group if it is
defined by polynomial equations.
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I A linear algebraic group is semisimple if it has no non-trivial
connected, normal, abelian subgroups.
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is the prototypical example of a semisimple group.

I Here are a couple of non-examples: Connected solvable
groups (i.e., unipotent upper triangular matrices over C) and
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Flexibility of representations

I Let G be a linear algebraic group with proper subvariety V .
Let A be an arbitrary group.

I We say a nontrivial element a ∈ A is detectable by G rel V , if
there exists a homomorphism A→ G where the image of a is
not contained in V .

I If any (nontorsion) element, a ∈ A, is detectable by G rel V
for any proper subvariety V in G , then we say A is (weakly)
G -free.
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A. Borel’s Theorem

Theorem (Armand Borel, 1983)

Let G be a semisimple linear algebraic group. Let F be a free
group. Then F is G -free.



Why semisimple groups?

I Consider G = GL(n,C).

I This contains the proper subvariety V = SL(n,C).

I Consider the element [a,b] := a−1b−1ab in the free group of
rank 2, F = 〈a,b〉.

I If we replace a and b with any matrices A, B in GL(n,C), then

det(A−1B−1AB) = det(A)−1 det(B)−1 det(A)det(B) = 1.

Thus, under any homomorphism φ : F → G , the image of the
element [a,b] is contained in V .

I That is, the group F is not G -free.
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Yes, but WHY semisimple groups?

Because GL(n,C) didn’t work.

The next most natural liner algebraic
groups to look at are SL(n,C), SO(3), etc. Also, a lot is known
about them, and there are connections to the Banach-Tarski
Paradox.
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Borel’s Property

I We say a group A has Borel’s property if it is weakly G -free
for any semisimple group G . Let the class of groups with
Borel’s property be denoted by L .

I Let the class of torsion-free groups with Borel’s property be
denoted by B.

I Clearly, B ⊂L .

I Borel’s Theorem may be stated simply as: All free groups are
in L .
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Residually free groups

I Recall that a group A is residually free if for any a ∈ A, there
exists a homomorphism φ : G → F , F free, such that φ(a) 6= 1.

I Let A be a residually free group. Let G be a semisimple group
and V a proper subgroup of G . Let a ∈ A, then because A is
residually free, there exists φ : A→ F , such that φ(a) 6= 1.
Since F is G -free, there exists a homorphism ψ : F → G such
that ψ(φ(a)) 6= 1. Thus, A has Borel’s property.



Some well-known properties of residually free groups

I Any fundamental group of an orientable surface is residually
free (Baumslag, Math. Zeit., 1962).

I Subgroups of residually free groups are residually free.

I Any residually free group cannot have torsion elements.

I If A,B are residually free, then A×B is residually free.

I Solvable groups are residually free if and only if they are
abelian.

I There exists residually free groups, A, B, such that A∗B is
not residually free.
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Properties of groups in B

I Any residually free group is in B. So, in particular, orientable
surface groups are in B.

I Subgroups of residually free groups are residually free.

I Groups in B cannot have torsion. For any k, t, the subvariety
{A ∈ SLk(C) : At = 1} is properly contained in SLk(C).

I If A,B are residually free, then A×B is residually free.

I What about the last two properties?
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Solvable groups in B

We’ve shown that B satisfies a strong Tits’ alternative:

Theorem (Khalid Bou-Rabee, Michael Larsen, 2014)

Let Γ be a finitely generated group that is in B. Then Γ contains a
free group or is a free abelian group.



Free products of groups in B

Proposition (Khalid Bou-Rabee, Michael Larsen, 2014)

If A = F2×Z and B = Z. Then A,B ∈B, but A∗B is not in B.
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Groups with Borel’s property that have torsion

By putting Borel’s methods under a microsope, we were able to
extend his result to other groups:

Theorem (Khalid Bou-Rabee, Michael Larsen, 2014)

Let p be a prime such that p ≡ 1 mod 3. Then the group
Z/p ∗Z/p has Borel’s property. That is, this group is in L .



A group that is in B but not residually free.

Here is the first example we found. Let

K =
〈
a1, . . . ,a7,b : ba1b

−1 = a2, . . . ,ba6b
−1 = a7,ba7b

−1 = a1
〉
,

then this group is in B, but is not residually free.



Why is K not residually free?

Residually free groups are residually finite 2-group. The action of b
on the free group 〈a1, . . . ,a7〉 has order two!
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What about surface groups?

I A (oriented) surface group is the fundamental group of a
(oriented) two-dimensional manifold.

I By Baumslag’s result, all oriented surface groups are in B.

I What about nonoriented surfaces?



The Klein bottle

The Klein bottle is virtually abelian, and thus is neither free
abelian nor contains a nonabelian free group. So by the
Altternative for B, the Klein bottle is not in B.



Projected sums of k planes

I We are left with one relator groups of the form〈
a,b,c , . . . ,z : a2b2 · · ·z2 = 1

〉
.

I Baumslag showed that if the number of letters is greater than
3, then the group in question is residually free, so those have
Borel’s property.

I We are left with
〈
a,b : a2b2 = 1

〉
and

〈
a : a2 = 1

〉
. The latter

group is finite, and thus not in B.

I The former group was shown to not be residually free by R. C.
Lyndon and M. P. Schützenberger in 1962. They did this by
studying the equation aM = bNcP in a free group.

(In fact,
that’s the title of their paper.)
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Projected sums of 3 planes

Theorem (Khalid Bou-Rabee and Michael Larsen, 2014)

The group
〈
a,b,c : a2b2c2 = 1

〉
is in B.

We also handled other groups, including some other Fuchsian
groups and von Dyck groups. See our joint paper ‘Linear groups
with Borel’s property’ (2014).



Extending Borel’s proof

What is the main difficulty in extending Borel’s proof to other
groups? To understand this, let’s look at a brief outline of the
proof. Let F be a nonabelian free group.

I Show that F is SL(2,C)-free. This follows from a quick
dimension counting argument.

I Show that F is SL(3,C)-free. This is the main difficulty.
Ping-pong lemma gives many images of F , but they all have a
single eigenvalue 1. The trick that Borel uses is to find
representations of F that factor through a division algebra, so
none of the eigenvalues can be one!

I Now use the structure theory of semisimple algebraic groups,
to conclude that F is G -free for all semisimple G .

The free group is very nice, in that finding homomorphisms from F
is very easy! For other groups, their representation varieties are no
longer connected, so one has to be very careful with dimension
counting arguments.
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A theorem of Breuillard, Green, Guralnick, and Tao

Theorem (Breuillard, Green, Guralnick, and Tao, 2012)

Let w1,w2 be two elements in a free group of rank 2. Let a,b be
generic elements of a semisimple Lie group G over an algebraically
closed field. Then w1(a,b) and w2(a,b) generate a Zariski-dense
subgroup of G .

Using this theorem, they were able to prove results on expanding
generators (elements that generate a Cayley graph which is an
expander).



Their question

Question (Breuillard, Green, Guralnick, and Tao, 2012)

Can one characterize the set of pairs of words (w1,w2) in the free
group F2 such that the double word map G ×G → G ×G given by

ew1,w2(a,b) = (w1(a,b),w2(a,b))

is dominant?



Our answer

Theorem (Khalid Bou-Rabee and Michael Larsen)

Yes, if w1 = [x1,x2] · · · [x2k−1,x2k ] where k ≥ 2. Let w2 be a word
not in the normal closure of w1. Then the double-word map
defined by w1,w2 is dominant.



Thank you!

The End.
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