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Part I.
New residual properties

of groups



Known residual properties of groups: 2

• residually finite groups (RF)
• conjugacy separable groups (CS)
• locally extended residually finite groups (LERF)

Def. A group G is called LERF, if any two different f.g. subgroups
H1,H2 6 G remain different in some finite quotient of G .

H1 6=
G

H2 =⇒ there exists a fin. quotient G : H1 6=
G

H2
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New residual property of groups (SCS-property): 3

A group G is called subgroup conjugacy separable (SCS), if any
two f.g. and non-conjugate subgroups H1,H2 6 G remain
non-conjugate in some finite quotient of G .

H1 �
G

H2 =⇒ there exists a fin. quotient G : H1 �
G

H2

The following groups are SCS:

• virtually polycyclic groups (Grunewald and Segal)
• free groups and some virtually free groups (B. and Grunewald)
• orientable surface groups (B. and Bux)
• A ∗ B if A,B are SCS and LERF (B. and Elsawy)
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Another useful property: SICS 4

For A,B 6 G , we say that A is conjugate into B if there exists
g ∈ G with Ag 6 B. We write

A 
G

B

.

Def. A group G is called subgroup into-conjugacy separable
(SICS), if for any two f.g. subgroups H1,H2 6 G the following
implication holds:

H2 6 
G

H1 =⇒ there exists a fin. quotient G : H2 6 
G

H1
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How to prove that G is SCS (a strategy): 5

1. Prove that SICS =⇒ SCS (this holds not for any G )
2. Use the following reformulation of SICS:

If

G

6

H1

6 

H2

then ∃D:

G

6 fin.ind .
D

6 6 
H1 H2

3. Use coverings if G is “geometric”.



How to prove that G is SCS (a strategy): 5

1. Prove that SICS =⇒ SCS (this holds not for any G )
2. Use the following reformulation of SICS:

If

G

6

H1

6 

H2

then ∃D:

G

6 fin.ind .
D

6 6 
H1 H2

3. Use coverings if G is “geometric”.



For which groups SICS implies SCS? 6

Lem. Suppose that a group G does not contain a f.g. subgroup H
and an element g such that H < Hg . Then for G we have (SICS
=⇒ SCS).

Cor. For free and surface groups, we have (SICS =⇒ SCS).

Proof (for free groups). If the assumption of Lemma is not
satisfied, then

H < Hg < Hg2
< ...

This contradicts Takahasi’s result that for any strictly ascending
infinite chain of f.g. subgroups in a free group the ranks of the
members of this chain are unbounded.
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Part II.
Proof that free groups are SICS



Proof that F is SICS 8

Step 0. (Notations) We realize F = π1(R). For each H 6 F , there
is a covering ΓH → R with π1(ΓH) = H. There are edges in ΓH ,
which we call entries in and exists from Core(ΓH).

H := 〈[a, b], [a, b−1], [a−1, b], [a−1, b−1]〉 6 F (a, b)



Proof that F is SICS 9

Remember, that we have H1,H2 6 F such that H2 6 H1.

Step 1. (M.Hall theorem for H1) We construct a subgroup D 6 F
of finite index in F which contains H1 as a free factor.

1.1. Take the covering space ΓH1 .



Proof that F is SICS 10

1.2. Cut out infinite trees as it shown below.



Proof that F is SICS 11

1.3. Take an arbitrary finite covering ΓK → R.



Proof that F is SICS 12

1.4. Glue these two pieces.



Proof that F is SICS 13

1.5. Delete the edge with the label a.



Proof that F is SICS 14

We get a finite covering ΓD containing Core(ΓH1).
Thus, D is a subgroup of finite index in F containing H1 as a free
factor.

Core(ΓH1)

e1

e∗1

ΓK \ {ê1, ¯̂e1}

e2

e∗2

ΓK \ {ê2, ¯̂e2}

1



Proof that F is SICS 15

Step 2. (Put H2 in the play) Let H2 = 〈h1, h2, . . . , hn〉. We don’t
want the situation that is shown below, since it would mean that
Hg
2 6 D.

To avoid this situation, we take ΓK that does not contain small
loops, i.e., nontrivial loops of length up to C := max{|hi |}+ 1.
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Proof that F is SICS 16

Step 3. (End of the proof) We prove that if we take ΓK without
loops of length up to C , then H2 = 〈h1, . . . , hn〉 is not conjugate
into D.

Suppose the contrary: Hg
2 6 D. Where the loops with labels hi

can lie?
Case 1. This cannot happen.



Proof that F is SICS 17

Hence we have



Proof that F is SICS 18

Case 2. This cannot happen.



Proof that F is SICS 19

Case 3. This cannot happen.



Proof that F is SICS 20

Case 4. This can happen.



Proof that F is SICS 21

Case 4. This can happen. But in this case H g̃
2 6 H1 that

contradicts our assumption. Thus, H2 is not conjugate into D.
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Part III.
Proof that surface groups are

SICS



Visualization of subgroups 23

Let G be a group. For any fin.gen. subgroup H 6 G , we choose

H 6 H∗ fin.ind
6 G .

Useful: If G is a “geometric group”, then, given H 6 G , we will
choose H∗ so that H is “geometrically embedded” in H∗.

Ex:
1) M. Hall Thm. For any fin. gen. subgroup H of a free group G ,
there exists a finite index subgroup H∗ in G such that H is a free
factor of H∗.
2) P. Scott Thm. A similar, but not the same statement for
surface groups.
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Recall the Definition of SICS 24a

Def. Suppose that for any fin.gen. H1 6 G and for any fin.gen.
H2 6 G we have

H2 6 
G

H1 =⇒ there exists a fin. quotient G : H2 6 
G

H1.

Then G is called SICS.
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Star Lemma for SICS 24

Let G be a group. For any fin.gen. subgroup H 6 G , we choose

H 6 H∗ fin.ind
6 G .

Lem. Suppose that for any fin.gen. H1 6 G and for any fin.gen.
H2 6 H∗

1 we have

H2 6 
H∗
1

H1 =⇒ there exists a fin. quotient H∗
1 : H2 6 

H∗
1

H1.

Then G is SICS.



Scott’ Theorem 25

Thm. (P. Scott) Let S be a closed surface. For any fin. gen.
subgroup H 6 π1(S , x), there exists a finitely sheeted covering map
p : (S̃ , x̃)→ (S , x) such that H is realized by a subsurface in S̃ .

The latter means that there exists an incompressible compact
subsurface A ⊆ S̃ containing x̃ such that p∗(π1(A, x̃)) = H.

Thus, we can set H∗ := p∗(π1(S̃ , x̃)).



Example 1 to Scott’ Theorem 26

π1(S, x) = 〈x1, x2, y1, y2 | [x1, y1][x2, y2] = 1〉, where [a, b] = a−1b−1ab

x2y1
y2x1

x

π1(S , x) = 〈x1, x2, y1, y2 | [x1, y1][x2, y2] = 1〉, where [a, b] := a−1b−1ab

The subgroup 〈x1, y1〉 can be realized by a subsurface in S .

The subgroup 〈x1, y1〉 6 π1(S, x) is visible in S: it can be realized by a subsurface in S.

x2y1
y2x1



Example 2 to Scott’ Theorem 27

The cyclic subgroup 〈y1x−1
2 〉 6 π1(S, x) is invisible in S: it cannot be realized by a subsurface

in S.

x2y1

x

The cyclic subgroup 〈y1x−1
2 〉 6 π1(S , x) cannot be realized by a

subsurface in S .
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Example 2 to Scott’ Theorem (continuation) 28

How to construct a covering S̃ → S such that the subgroup
〈y1x−1

2 〉 6 π1(S , x) is realized by a subsurface in S̃?

How to construct a covering S̃ → S such that the subgroup 〈y1x−1
2 〉 6 π1(S, x) is visible in S̃?
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An improvement of Scott’ Theorem 32

P.Scott Theorem (improved). Let S be a closed surface with
χ(S) < 0. For any finitely generated subgroup H 6 π1(S , x), there
exists a finitely sheeted covering map p : (S̃ , x̃)→ (S , x) such that

1) H is realized in S̃ , i.e., there exists an incompressible compact
subsurface A ⊆ S̃ containing x̃ with p∗(π1(A, x̃)) = H;
2) A has a good shape, i.e., B := S \ A is a connected surface
and genus(B) > 0.



Branched coverings of graphs (Example 1) 33
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Branched coverings of graphs (Example 1) 36
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Branched coverings of graphs (Example 2) 37



Branched coverings of graphs (Example 2) 38



Creating a genus in all components of S \ A 39



Creating a genus in all components of S \ A 40
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Creating a unique complementary component to A 45



Proof that surface groups are SICS (a preparation) 46

We want to prove that G := π1(S) is SICS. Let H1,H2 6 π1(S) be
fin. gen. and such that H2 6 H1. Using the Star Lemma and the
improvement of Scott’ Theorem, we may assume the following:

Assumption. H1 6 π1(S) is realized by an incompressible
subsurface A ⊂ S s.t. B := S \ A is a connected surface with
genus(B) > 0.



What we want to prove for G = π1(S) 47

G

6

H1

6 

H2

=⇒ ∃D:

G

6 fin.ind .
D

6 6 
H1 H2



Proof in three steps 48

G

6

H1

6 

H2

G

6 fin.ind .
D

6 6 
H1 H2

Step 1

=⇒ ∃g ∈ H2 =
⇒

Step 3

G

6

H1

6 

g

=⇒∃D:
Step 2

G

6 fin.ind .
D

6 6 
H1 g



Step 1 49

Claim. Let H1,H2 6 π1(S) be fin.gen. Suppose that H1 is realized
by a surface A ⊂ S such that B := S \ A is a connected surface.

If each element g ∈ H2 is conjugate into H1, then the whole H2 is
conjugate into H1.

Proof. We may assume that H2 is noncyclic.

• The decomposition S = A ∪ B induces a graph of groups
decomposition of π1(S) with two vertex groups π1(A) and
π1(B), and with cyclic edge groups corresponding to the
common boundary components R1, . . . ,Rn of A and B.

• G = π1(S) acts on the Bass-Serre tree T with vertex
stabilizers conjugate to π1(A) and to π1(B).

• Each g ∈ H2 acts elliptically on T (since g  H1 = π1(A)).
Hence H2 has a global fixed vertex in T .
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Step 1 (continuation) 50

Claim. Let H1,H2 6 π1(S) be fin.gen. Suppose that H1 is realized
by a surface A ⊂ S such that B := S \ A is a connected surface.

If each element g ∈ H2 is conjugate into H1, then the whole H2 is
conjugate into H1.

Continuation of the proof.

• If H2 fixes a vertex of type A, then H2 is conjugate of π1(A)
and we are done. Suppose that H2 fixes a vertex of type B.
Recall that each g ∈ H2 fixes a vertex of type A.

• Then each element g ∈ H2 fixes an edge of T . If this edge is
of type Ri , then g is conjugate into π1(Ri ). Let π1(Ri ) = 〈ai 〉.
• Thus, each g ∈ H2 is conjugate to a power of some

a ∈ {a1, . . . , an}.
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a ∈ {a1, . . . , an}.
• Let G (i) be the i-th commutator subgroup of G . Since H2 is a

noncyclic free group, there exists an infinite subset I ⊂ N such
that G (i) \ G (i+1) contains an element xi ∈ H2 for each i ∈ I .
We may assume that each xi is conjugate to a power of the
same a. Since G (i)/G (i+1) is torsionfree, a ∈ G (i) \ G (i+1) for
each i ∈ I . A contradiction.
• Thus H2 is conjugate into H1 = π1(A).
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Step 2 52

Claim. Let χ(S) < 0. Given a subgroup H 6 π1(S) that is realized
by a surface A ⊂ S such that B := S \ A is a connected surface
with genus(B) > 0

and given an element g ∈ G that is not conjugate into H, there

exists H 6 D
fin.ind .
6 π1(S) such that g is not conjugate into D.



Step 2 (geometric formulation) 53

Claim. Let χ(S) < 0. Given a subsurface A ⊂ S such that
B := S \ A is a connected surface with genus(B) > 0

and given a loop γ ⊂ S that cannot be freely homotoped into A,
there exists a finitely-sheeted covering S̃ → S such that A lifts but
γ does not.

Proof. We will construct such S̃ by gluing several copies of special
coverings of A and B.



Construction of S̃ (form) 54

Figure 2. An example of the surface S3 with parameters n = 2, M = 3.
For simplicity, we assume here that N = 0, N ′ = 1.

1

A

B̃ A B̃

A
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Endow S with a hyperbolic metric `. Then all coverings of pieces
of S inherit the metric `. A curve is called short if its length does
not exceed `(γ). So, γ itself and all its lifts are short.

We will construct a finitely sheeted covering S̃ → S so that
each short loop in S̃ is contained, up to homotopy, in a home-
omorphic lift of the A-subsurface.

Then γ will not have closed lifts in S̃ as desired.

Therefore we shall

1) put conditions on lengths of closed curves in the covering
pieces,

2) put conditions on lengths of curves connecting two boundary
components in each covering piece,

3) choose covering pieces so that boundaries of differen pieces
under gluing have the same length).
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Figure 2. An example of the surface S3 with parameters n = 2, M = 3.
For simplicity, we assume here that N = 0, N ′ = 1.
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We want: these curves must be long 57

Figure 2. An example of the surface S3 with parameters n = 2, M = 3.
For simplicity, we assume here that N = 0, N ′ = 1.
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Figure 2. An example of the surface S3 with parameters n = 2, M = 3.
For simplicity, we assume here that N = 0, N ′ = 1.
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Figure 2. An example of the surface S3 with parameters n = 2, M = 3.
For simplicity, we assume here that N = 0, N ′ = 1.
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Figure 2. An example of the surface S3 with parameters n = 2, M = 3.
For simplicity, we assume here that N = 0, N ′ = 1.
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Figure 2. An example of the surface S3 with parameters n = 2, M = 3.
For simplicity, we assume here that N = 0, N ′ = 1.
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Where short curves in S̃ can be? 62

Figure 2. An example of the surface S3 with parameters n = 2, M = 3.
For simplicity, we assume here that N = 0, N ′ = 1.
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A final gluing of large and small pieces 63
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Part IV.
Hurwitz’ problem
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Does such covering exist?

There does not exist a covering ϕ : S̃ → S of degree 4 with the data

(
2
2

)
,

(
2
2

)
,

(
3
1

)
.

4
3

1

2

2

2

2

No.



Example 1 65

Does such covering exist?

There does not exist a covering ϕ : S̃ → S of degree 4 with the data

(
2
2

)
,

(
2
2

)
,

(
3
1

)
.

4
3

1

2

2

2

2

No.
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Does such covering exist?

There exists a covering ϕ : S̃ → S of degree 4 with the data

(
2
2

)
,

(
2
2

)
,

(
2
2

)
.

4
2

2

2

2

2

2

Yes.
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Does such covering exist?

There exists a covering ϕ : S̃ → S of degree 4 with the data

(
2
2

)
,

(
2
2

)
,

(
2
2

)
.

4
2

2

2

2

2

2

Yes.



Hurwitz’ problem (formulation) 67

Let S be a compact surface with boundary components Bi (i ∈ I ).
For which numbers d and di ,1, . . . , di ,m(i) (i ∈ I ), there exists a

covering θ : S̃ → S such that

1) degθ = d ,

2) lifts of each boundary component Bi cover Bi with degrees
di ,1,. . . , di ,m(i) ?

There are no difficulties for genus(S) > 1. Partial results for
genus(S) = 0 are in papers of Hurwitz, Husemoller, Ezell, Singerman,

Edmonds, Kulkarni, Stong, Petronio, Pervova, ....



Hurwitz’ problem (formulation) 67

Let S be a compact surface with boundary components Bi (i ∈ I ).
For which numbers d and di ,1, . . . , di ,m(i) (i ∈ I ), there exists a

covering θ : S̃ → S such that

1) degθ = d ,

2) lifts of each boundary component Bi cover Bi with degrees
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Hurwitz’ problem (necessary and sufficient conditions) 68

Let π1(S) =

〈a1, b1, . . . , ag , bg , x1, x2, . . . , xn |
g∏

i=1
[ai , bi ] · x1x2 . . . xn = 1〉.

Theorem. There exists a covering S̃ → S of degree d with the

data




d11
...

d1,m1


, . . . ,




dn1
...

dn,mn


 iff

(1) χ(S̃) = d · χ(S),
(2) d = di1 + · · ·+ dimi

for every i = 1, . . . , n,

and there exists a homomorphism θ : π1(S)→ Perm{1, 2, . . . , d}
such that:

(3) Im(θ) acts transitively on {1, 2, . . . , d},
(4) θ(xi ) is the product of mi independent cycles of lengths

di1, . . . , dimi
, i = 1, . . . , n.
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Part V.
Problems on SCS and SICS
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1) Are limit groups SCS?

2) Let A,B be LERF groups having a common malnormal
subgroup C . Is A ∗C B a SCS-group (a SICS-group)?

3) Which interesting classes of groups are SCS (SICS)?

4) Investigate relations between CS, LERF, SCS, SICS.

5) Whether SCS (SICS) inherits under passing to subgroups and
overgroups of finite index?

6) Which interesting classes of groups G possess the following
property:
Given fin. gen. H1,H2 6 G . If each element of H2 is
conjugate into H1, then the whole H2 is conjugate into H1.



THANK YOU!
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