Partial periodic quotients of mapping class groups

Rémi Coulon

Vanderbilt University

Webinar, March 6th 2014
Definition

A group G is periodic if $\exists n \in \mathbb{N}$ such that $\forall g \in G$, $g^n = 1$.
Definition

A group G is periodic if $\exists n \in \mathbb{N}$ such that $\forall g \in G$, $g^n = 1$.

Question. (W. Burnside 1902) Let G be a finitely generated periodic group. Is G necessarily finite?
Definition

A group G is periodic if $\exists n \in \mathbb{N}$ such that $\forall g \in G$, $g^n = 1$.

Question. (W. Burnside 1902) Let G be a finitely generated periodic group. Is G necessarily finite?

Free Burnside group of rank r and exponent n

$$\mathbb{B}_r(n) = \langle a_1, \ldots, a_r | x^n = 1 \rangle = \mathbb{F}_r / \mathbb{F}_r^n.$$
Theorem

Let $r \geq 2$. $\exists n_0 \in \mathbb{N}$ such that $\forall n \geq n_0$, $\mathbb{B}_r(n)$ is infinite.

Theorem

Let $r \geq 2$. \(\exists n_0 \in \mathbb{N} \) such that \(\forall n \geq n_0, \mathbb{B}_r(n) \) is infinite.

Theorem (Ol’shanskii-Ivanov)

Let G be a hyperbolic group which is not virtually cyclic. \(\exists \kappa, n_0 \in \mathbb{N} \) such that \(\forall n \geq n_0, G/G^{\kappa n} \) is infinite.
Question. Given an arbitrary group G and an integer n, what can we say about G/G^n?
Question. Given an arbitrary group G a subset S of G and an integer n, what can we say about $G/\langle\langle S^n \rangle\rangle$?
Question. Given an arbitrary group G a subset S of G and an integer n, what can we say about $G/\langle\langle S^n \rangle\rangle$?

Example for this talk. $G = \text{Mapping class group}$.

Σ surface of genus g with p punctures.

$\text{MCG}(\Sigma) = \{\text{orientation preserving homeomorphisms}\}/\{\text{isotopies}\}$
Classification of the mapping classes. (W. Thurston)

\(f \in \text{MCG}(\Sigma) \) is either

1. **periodic**: \(f \) has finite order
2. **reducible**: \(f \) permutes a collection of essential non-peripheral curves (up to isotopy) e.g. \(f \) is a Dehn Twist
3. **pseudo-Anosov**: \(f \) preserves a pair of transverse foliations and acts in an appropriate way on them.
Classification of the mapping classes. (W. Thurston)

\(f \in \text{MCG}(\Sigma) \) is either

1. **periodic**: \(f \) has finite order

\[
\begin{align*}
 a &\rightarrow b \\
 b &\rightarrow a
\end{align*}
\]
Classification of the mapping classes. (W. Thurston)

\(f \in \text{MCG}(\Sigma) \) is either

1. periodic: \(f \) has finite order
2. reducible: \(f \) permutes a collection of essential non-peripheral curves (up to isotopy) e.g. \(f \) is a Dehn Twist

\[
egin{align*}
 a & \rightarrow ab \\
 b & \rightarrow b
\end{align*}
\]
Classification of the mapping classes. (W. Thurston) $f \in \text{MCG}(\Sigma)$ is either

1. **periodic**: f has finite order
2. **reducible**: f permutes a collection of essential non-peripheral curves (up to isotopy) e.g. f is a Dehn Twist
3. **pseudo-Anosov**: f preserves a pair of transverse foliations and acts in an appropriate way on them.

$$a \rightarrow ab$$

$$b \rightarrow a$$
Theorem 1

Let S be the set of all Dehn twists in $\text{MCG}(\Sigma)$. $\exists n_0 \in \mathbb{N}$ such that $\forall n \geq n_0$ odd, \mathbb{F}_2 embeds in $\text{MCG}(\Sigma)/\langle \langle S^n \rangle \rangle$.

Remark. The Dehn twists generate $\text{MCG}(\Sigma)$.
Main theorems

Σ surface of genus g with p punctures such that $3g + p - 3 > 1$.

Theorem 2

$\exists \kappa, n_0 \in \mathbb{N}$ such that $\forall n \geq n_0$ odd, there is a quotient Q of $\text{MCG}(\Sigma)$ with the following properties.

1. Let $f \in \text{MCG}(\Sigma)$ pseudo-Anosov. Either $f^{\kappa n} = 1$ in Q or $\exists u \in \text{MCG}(\Sigma)$ reducible or periodic such that $f^\kappa = u$ in Q.

2. Let $E < \text{MCG}(\Sigma)$ without pseudo-Anosov element. $\text{MCG}(\Sigma) \twoheadrightarrow Q$ induces an isomorphism from E onto its image.

3. \exists infinitely many $f \in Q$ which are not the image of a periodic or reducible $u \in \text{MCG}(\Sigma)$.
Dehn twists

\[\Sigma \text{ surface of genus } g \text{ with } p \text{ punctures such that } 3g + p - 3 > 1. \]
\[\Gamma = \pi_1(\Sigma) \text{ torsion-free hyperbolic group. } \text{MCG}(\Sigma) \simeq \text{Out}(\Gamma) \]
Dehn twists

\[\Sigma \] surface of genus \(g \) with \(p \) punctures such that \(3g + p - 3 > 1 \).
\(\Gamma = \pi_1(\Sigma) \) torsion-free hyperbolic group. \(\text{MCG}(\Sigma) \cong \text{Out}(\Gamma) \)

Theorem (Ol’shanskii)

\[\exists n_0 \in \mathbb{N}, \ \forall n \geq n_0 \text{ odd}, \ \Gamma/\Gamma^n \text{ is infinite.} \]
Dehn twists

Σ surface of genus g with p punctures such that $3g + p - 3 > 1$.
$\Gamma = \pi_1(\Sigma)$ torsion-free hyperbolic group. $\text{MCG}(\Sigma) \cong \text{Out}(\Gamma)$

Theorem (Ol’shanskii)

$\exists n_0 \in \mathbb{N}, \forall n \geq n_0$ odd, Γ/Γ^n is infinite.

Canonical map. $\text{MCG}(\Sigma) \to \text{Out}(\Gamma/\Gamma^n)$.

Theorem (C.)

$\exists n_0 \in \mathbb{N}, \forall n \geq n_0$ odd, the image of $\text{MCG}(\Gamma)$ in $\text{Out}(\Gamma/\Gamma^n)$ contains \mathbb{F}_2.
Fact. S set of all Dehn twists.
\[\forall n \in \mathbb{N}, \forall f \in S, f^n = 1 \text{ in } \text{Out}(\Gamma/\Gamma^n). \]
Fact. S set of all Dehn twists.
\[\forall n \in \mathbb{N}, \forall f \in S, f^n = 1 \text{ in } \text{Out}(\Gamma/\Gamma^n). \]

Example.

\[
\begin{align*}
 f: & \quad a \to ab & f^n: & \quad a \to ab^n \\
 b \to b & \quad b \to b
\end{align*}
\]
Fact. S set of all Dehn twists.
$\forall n \in \mathbb{N}, \forall f \in S, f^n = 1$ in $\text{Out}(\Gamma/\Gamma^n)$.

Example.

\[
\begin{align*}
 f &: a \to ab & f^n &: a \to ab^n \\
 b &\to b & b &\to b
\end{align*}
\]

Commutative diagram.

\[
\begin{array}{c}
\text{MCG}(\Sigma) \\
\downarrow \\
\text{MCG}(\Sigma)/\langle \langle S^n \rangle \rangle \longrightarrow \text{Out}(\Gamma/\Gamma^n)
\end{array}
\]
Fact. S set of all Dehn twists.
$\forall n \in \mathbb{N}, \forall f \in S, f^n = 1$ in $\text{Out}(\Gamma/\Gamma^n)$.

Example.

$$f: \begin{align*}
a &\rightarrow ab \\
b &\rightarrow b
\end{align*}$$

$$f^n: \begin{align*}
a &\rightarrow ab^n \\
b &\rightarrow b
\end{align*}$$

Commutative diagram.

$$\begin{align*}
\text{MCG}(\Sigma) \\
\downarrow \\
\text{MCG}(\Sigma)/\langle\langle S^n \rangle\rangle &\rightarrow \text{Out}(\Gamma/\Gamma^n)
\end{align*}$$

Consequence. \mathbb{F}_2 embeds in $\text{MCG}(\Sigma)/\langle\langle S^n \rangle\rangle$.

General Idea. Use the “hyperbolic features” of $\text{MCG}(\Sigma)$.
General Idea. Use the “hyperbolic features” of MCG(Σ).

Complex of curves.
Simplicial complex X built out of $Σ$.

- vertex : isotopy class of an essential non-peripheral curve
- k-simplex : collection of $k + 1$ vertices $\{\alpha_0, \ldots, \alpha_k\}$ which can be realized by disjoint curves in $Σ$.
The complex of curves

Features of the complex of curves

\[\Sigma \text{ surface of genus } g \text{ with } p \text{ punctures such that } 3g + p - 3 > 1. \]

\[\text{MCG}(\Sigma) \text{ acts on } X \text{ by isometries.} \]
Features of the complex of curves

\(\Sigma \) surface of genus \(g \) with \(p \) punctures such that \(3g + p - 3 > 1 \). \(\text{MCG}(\Sigma) \) acts on \(X \) by isometries.

Theorem (Masur-Minsky)

\(X \) is Gromov hyperbolic.
- Periodic and reducible mapping classes act *elliptically*.
- Pseudo-Anosov mapping classes act *loxodromically*.
The complex of curves

Features of the complex of curves

Σ surface of genus g with p punctures such that $3g + p - 3 > 1$. $\text{MCG}(\Sigma)$ acts on X by isometries.

Theorem (Masur-Minsky)

X is Gromov hyperbolic.
- Periodic and reducible mapping classes act *elliptically*.
- Pseudo-Anosov mapping classes act *loxodromically*.

Theorem (Bowditch)

$\text{MCG}(\Sigma)$ acts *acylindrically* on X.

Rémi Coulon

Partial periodic quotients of mapping class groups
A more general framework

X is a δ-hyperbolic space, G acts by isometries on X.
A more general framework

X is a δ-hyperbolic space, G acts by isometries on X.

Remark. Every group acts on a hyperbolic space, even properly. One needs some extra assumption.
X is a δ-hyperbolic space, G acts by isometries on X.

Remark. Every group acts on a hyperbolic space, even properly. One needs some extra assumption.

Definition

G acts *acylindrically* if

$\forall d \geq 0, \exists D, N$ such that $\forall x, y \in X$ with $|x - y| \geq D$,

$$\# \{ g \in G \mid |gx - x| \leq d \quad \text{and} \quad |gy - y| \leq d \} \leq N.$$
Goal. “kill” a very large collection of n-th powers in G.
Goal. "kill" a very large collection of n-th powers in G.

Construct by induction a sequence of groups G_k with a "nice" action on a hyperbolic space X_k

\[G = G_0 \to G_1 \to \ldots \to G_k \to G_{k+1} \to \ldots \]

\[X = X_0 \to X_1 \to \ldots \to X_k \to X_{k+1} \to \ldots \]
Goal. “kill” a very large collection of n-th powers in G.

Construct by induction a sequence of groups G_k with a “nice” action on a hyperbolic space X_k

\[
G = G_0 \to G_1 \to \ldots \to G_k \to G_{k+1} \to \ldots
\]

\[
X = X_0 \to X_1 \to \ldots \to X_k \to X_{k+1} \to \ldots
\]

Induction. G_{k+1} is obtained from G_k by small cancellation (using the Delzant-Gromov approach).
Goal. “kill” a very large collection of n-th powers in G.

Construct by induction a sequence of groups G_k with a “nice” action on a hyperbolic space X_k

\[
G = G_0 \implies G_1 \implies \ldots \implies G_k \implies G_{k+1} \implies \ldots
\]

\[
X = X_0 \implies X_1 \implies \ldots \implies X_k \implies X_{k+1} \implies \ldots
\]

Induction. G_{k+1} is obtained from G_k by small cancellation (using the Delzant-Gromov approach).

At the limit. $Q = \lim_{\to} G_k$.
Small cancellation theory

G acts by isometries on a δ-hyperbolic space X. R set of “relations” (invariant by conjugation).
Small cancellation theory

G acts by isometries on a δ-hyperbolic space X. R set of “relations” (invariant by conjugation).

Small cancellation parameters.

Length of the pieces

$$\Delta(R) \approx \sup_{r_1 \neq r_2} \diam(\text{Axe}(r_1) \cap \text{Axe}(r_2)) .$$

Length of the relations

$$T(R) = \inf_r \| r \| .$$
Small cancellation theory

G acts by isometries on a δ-hyperbolic space X. R set of “relations” (invariant by conjugation).

Small cancellation parameters.

Length of the pieces

$$\Delta(R) \approx \sup_{r_1 \neq r_2} \text{diam} \left(\text{Axe}(r_1) \cap \text{Axe}(r_2) \right).$$

Length of the relations

$$T(R) = \inf_r \| r \|.$$
\(G\) acts by isometries on a \(\delta\)-hyperbolic space \(X\). \(R\) set of “relations” (invariant by conjugation).

Small cancellation parameters.

Length of the pieces

\[\Delta(R) \approx \sup_{r_1 \neq r_2} \text{diam} (\text{Axe}(r_1) \cap \text{Axe}(r_2)). \]

Length of the relations

\[T(R) = \inf_r \|r\|. \]
G acts by isometries on a δ-hyperbolic space X. R set of “relations” (invariant by conjugation).

Small cancellation parameters.

Length of the pieces

$$\Delta(R) \approx \sup_{r_1 \neq r_2} \text{diam}(\text{Axe}(r_1) \cap \text{Axe}(r_2)).$$

Length of the relations

$$T(R) = \inf_r \|r\|.$$
Small cancellation theory

G acts by isometries on a δ-hyperbolic space X. R set of “relations” (invariant by conjugation).

Small cancellation parameters.

Length of the pieces

$$\Delta(R) \approx \sup_{r_1 \neq r_2} \text{diam} \left(\text{Axe}(r_1) \cap \text{Axe}(r_2) \right).$$

Length of the relations

$$T(R) = \inf_r \|r\|.$$
Theorem (Delzant-Gromov)

\[\exists \delta_0, \delta_1, \Delta_0, \rho \text{ with the following properties. If } \delta \leq \delta_0, \Delta(R) \leq \Delta_0 \text{ and } T(R) \geq \rho \text{ then} \]

- \[\overline{G} = G/\langle \langle R \rangle \rangle \] acts by isometries on a \(\delta_1 \)-hyperbolic space \(\overline{X} \).
- \(\overline{G} \) inherits some properties of \(G \).
Theorem (Delzant-Gromov)

\[\exists \delta_0, \delta_1, \Delta_0, \rho \text{ with the following properties. If } \delta \leq \delta_0, \Delta(R) \leq \Delta_0 \text{ and } T(R) \geq \rho \text{ then} \]

- \(\overline{G} = G/\langle \langle R \rangle \rangle \) acts by isometries on a \(\delta_1 \)-hyperbolic space \(\overline{X} \).
- \(\overline{G} \) inherits some properties of \(G \).

Remarks.

- The constants \(\delta_0, \delta_1, \Delta_0 \) and \(\rho \) do not depend on \(G, X \) or \(R \).
- Class of groups “invariant under small cancellation”.
Controlling the small cancellation parameters

Length of the pieces.
Controlling the small cancellation parameters

Length of the pieces.

Take $g, h \in G$ loxodromic. Assume that

$$\text{diam} \left(\text{Axe}(g) \cap \text{Axe}(h) \right) \gg N \max \{ \|g\|, \|h\| \} + D.$$
Controlling the small cancellation parameters

Length of the pieces.

Take \(g, h \in G \) loxodromic. Assume that

\[
\text{diam} (\text{Axe}(g) \cap \text{Axe}(h)) \gg N \max\{\|g\|, \|h\|\} + D.
\]
Controlling the small cancellation parameters

Length of the pieces.

Take \(g, h \in G \) loxodromic. Assume that

\[
\text{diam} \left(\text{Axe}(g) \cap \text{Axe}(h) \right) \gg N \max\{\|g\|, \|h\|\} + D.
\]

Hence \(\exists i < j \) such that \([g, h_i] = [g, h_j] \). Thus \([g, h_{j-i}] = 1 \).

Since \(g, h \) loxodromic, \(\text{Axe}(g) = \text{Axe}(h) \).
Controlling the small cancellation parameters

Length of the pieces.

Take $g, h \in G$ loxodromic. Assume that

$$\text{diam} (\text{Axe}(g) \cap \text{Axe}(h)) \gg N \max\{\|g\|, \|h\|\} + D.$$
Length of the pieces.

Take $g, h \in G$ loxodromic. Assume that

$$\text{diam} (\text{Axe}(g) \cap \text{Axe}(h)) \gg N \max\{\|g\|, \|h\|\} + D.$$

Hence $\exists i < j$ such that $[g, h^i] = [g, h^j]$. Thus $[g, h^{j-i}] = 1$.

Rémi Coulon
Partial periodic quotients of mapping class groups
Length of the pieces.

Take $g, h \in G$ loxodromic. Assume that

$$\text{diam} \left(\text{Axe}(g) \cap \text{Axe}(h) \right) \gg N \max\{\|g\|, \|h\|\} + D.$$

Hence $\exists i < j$ such that $[g, h^i] = [g, h^j]$. Thus $[g, h^{j-i}] = 1$. Since g, h loxodromic, $\text{Axe}(g) = \text{Axe}(h)$.

Rémi Coulon

Partial periodic quotients of mapping class groups
Length of the relations.
Length of the relations.

Fact: \(\exists \varepsilon > 0, \ \forall g \in G \ \text{loxodromic}, \ ||g|| \geq \varepsilon, \ \text{hence} \ ||g^n|| \approx n\varepsilon. \)
Length of the relations.

Fact: $\exists \varepsilon > 0$, $\forall g \in G$ loxodromic, $\| g \| \geq \varepsilon$, hence $\| g^n \| \gtrsim n\varepsilon$.

Consequence. if R is a set of powers g^n with finitely many conjugacy classes of loxodromic elements.

- $\Delta(R)$ bounded
- $T(R) \gtrsim n\varepsilon$.
Length of the relations.

Fact: $\exists \epsilon > 0$, $\forall g \in G$ loxodromic, $\|g\| \geq \epsilon$, hence $\|g^n\| \gtrsim n\epsilon$.

Consequence. if R is a set of powers g^n with finitely many conjugacy classes of loxodromic elements.

- $\Delta(R)$ bounded
- $T(R) \gtrsim n\epsilon$.

Rescale the space X by $\rho / n\epsilon$ and the small cancellation assumptions are satisfied, provided n is large enough.
Length of the relations.

Fact: $\exists \varepsilon > 0$, $\forall g \in G$ loxodromic, $\| g \| \geq \varepsilon$, hence $\| g^n \| \gtrapprox n\varepsilon$.

Consequence. if R is a set of powers g^n with finitely many conjugacy classes of loxodromic elements.

- $\Delta(R)$ bounded
- $T(R) \gtrapprox n\varepsilon$.

Rescale the space X by $\rho/n\varepsilon$ and the small cancellation assumptions are satisfied, provided n is large enough.

Difficulty. bound the exponent n at each step.
Not easy to control the parameters of acylindricity: there are more and more small isometries.
Not easy to control the parameters of acylindricity: there are more and more small isometries.

Burnside groups of odd exponents. At each step, every elementary subgroup is cyclic.
Not easy to control the parameters of acylindricity: there are more and more small isometries.

Burnside groups of odd exponents. At each step, every elementary subgroup is cyclic.

Partial quotient of mapping class groups. Elementary subgroups can be very large: they contain \mathbb{Z}^m.
Invariants for the group actions.

1. \(r_{inj}(G, X) = \inf \{ \|g\| \mid g \in G \text{ loxodromic} \} \)
Invariants for the group actions.

1. $r_{\text{inj}}(G, X) = \inf \{ \| g \| \mid g \in G \text{ loxodromic} \}$

2. $\nu = \nu(G, X)$ smallest integer p with the following property. Given $g, h \in G$ with h loxodromic, if $\langle g, hgh^{-1}, \ldots, h^pgh^{-p} \rangle$ is elliptic then $\langle g, h \rangle$ is elementary.
Invariants for the group actions.

1. $r_{inj}(G, X) = \inf\{\|g\| \mid g \in G \text{ loxodromic}\}$

2. $\nu = \nu(G, X)$ smallest integer p with the following property. Given $g, h \in G$ with h loxodromic, if $\langle g, hgh^{-1}, \ldots, h^p gh^{-p} \rangle$ is elliptic then $\langle g, h \rangle$ is elementary.

3. $A(G, X) = \sup \text{diam} (\text{Axe}(g_0) \cap \cdots \cap \text{Axe}(g_\nu))$, where $\|g_i\| \leq 1000\delta$ and $\langle g_0, \ldots, g_\nu \rangle$ non-elementary.
Invariants for the group actions.

1. $r_{inj}(G, X) = \inf\{\|g\| \mid g \in G \text{ loxodromic}\}$

2. $\nu = \nu(G, X)$ smallest integer p with the following property. Given $g, h \in G$ with h loxodromic, if $\langle g, hgh^{-1}, \ldots, h^p gh^{-p} \rangle$ is elliptic then $\langle g, h \rangle$ is elementary.

3. $A(G, X) = \sup \text{diam} (\text{Axe}(g_0) \cap \cdots \cap \text{Axe}(g_\nu)),$ where $\|g_i\| \leq 1000\delta$ and $\langle g_0, \ldots, g_\nu \rangle$ non-elementary.

Remark. The parameters speak about the small scale properties of the group action.
Assume that G has no involution. Let $g, h \in G$, loxodromic. If $\text{Axe}(g) \neq \text{Axe}(h)$ is not elementary then

$$\text{diam}(\text{Axe}(g) \cap \text{Axe}(h)) \leq (\nu + 1) \max\{\|g\|, \|h\|\} + A(G, X) + \delta$$

It allows to bound the length of the pieces from above.
Key lemma

Assume that G has no involution. Let $g, h \in G$, loxodromic. If $\text{Axe}(g) \neq \text{Axe}(h)$ is not elementary then

$$\text{diam}(\text{Axe}(g) \cap \text{Axe}(h)) \leq (\nu + 1) \max \{ \|g\|, \|h\| \} + A(G, X) + \delta$$

It allows to bound the length of the pieces from above.

Other important point. The invariants of the action refer to the geometry at a small scale. One can control the invariants of $(\overline{G}, \overline{X})$ using the one of (G, X).
General result and applications

Start with G torsion-free acting acylindrically on a hyperbolic length space X.
Start with G torsion-free acting acylindrically on a hyperbolic length space X.

Iterate small cancellation.

\[
G = G_0 \to G_1 \to \ldots \to G_k \to G_{k+1} \to \ldots
\]

\[
X = X_0 \to X_1 \to \ldots \to X_k \to X_{k+1} \to \ldots
\]
General result and applications

Start with G torsion-free acting acylindrically on a hyperbolic length space X.

Iterate small cancellation.

$$G = G_0 \rightarrow G_1 \rightarrow \ldots \rightarrow G_k \rightarrow G_{k+1} \rightarrow \ldots$$

$$X = X_0 \rightarrow X_1 \rightarrow \ldots \rightarrow X_k \rightarrow X_{k+1} \rightarrow \ldots$$

At each step
General result and applications

Start with G torsion-free acting acylindrically on a hyperbolic length space X.

Iterate small cancellation.

\[
G = G_0 \rightarrow G_1 \rightarrow \ldots \rightarrow G_k \rightarrow G_{k+1} \rightarrow \ldots \\
X = X_0 \rightarrow X_1 \rightarrow \ldots \rightarrow X_k \rightarrow X_{k+1} \rightarrow \ldots
\]

At each step
- G_k acts acylindrically on X_k with controlled invariants,
Start with G torsion-free acting acylindrically on a hyperbolic length space X.

Iterate small cancellation.

$$G = G_0 \rightarrow G_1 \rightarrow \cdots \rightarrow G_k \rightarrow G_{k+1} \rightarrow \cdots$$

$$X = X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_k \rightarrow X_{k+1} \rightarrow \cdots$$

At each step

- G_k acts acylindrically on X_k with controlled invariants,
- kill n-th power of some loxodromic elements,
Start with G torsion-free acting acylindrically on a hyperbolic length space X.

Iterate small cancellation.

$G = G_0 \twoheadrightarrow G_1 \twoheadrightarrow \ldots \twoheadrightarrow G_k \twoheadrightarrow G_{k+1} \twoheadrightarrow \ldots$

$X = X_0 \twoheadrightarrow X_1 \twoheadrightarrow \ldots \twoheadrightarrow X_k \twoheadrightarrow X_{k+1} \twoheadrightarrow \ldots$

At each step

- G_k acts acylindrically on X_k with controlled invariants,
- kill n-th power of some loxodromic elements,
- $G_k \twoheadrightarrow G_{k+1}$ restricted to elliptic subgroups is one-to-one.
Theorem

Let G be a group acting acylindrically on a hyperbolic length space X. Assume that G is torsion-free and non-elementary. There exists n_0 such that for all $n \geq n_0$ odd, there is a quotient Q of G with the following properties.

- Let $g \in Q$. Either $g^n = 1$ or there exists $u \in G$ elliptic such that $g = u$ in Q.
- Let $E \leq G$ elliptic. $G \to Q$ induces an isomorphism from E onto its image.
- There exist infinitely many elements in Q which are not the image of an elliptic element of G.
Remarks.
One can weaken the assumption to allow

- G to have odd torsion
- G to have parabolic isometries for the action on X (the action is no more acylindrical).
Remarks.
One can weaken the assumption to allow
- G to have odd torsion
- G to have parabolic isometries for the action on X (the action is no more acylindrical).

Application to the mapping class group.
$\text{MCG}(\Sigma)$ is not torsion-free!! It has even torsion.
Remarks.

One can weaken the assumption to allow

- G to have odd torsion
- G to have parabolic isometries for the action on X (the action is no more acylindrical).

Application to the mapping class group.

$\text{MCG}(\Sigma)$ is not torsion-free!! It has even torsion. There exists a finite-index subgroup H of $\text{MCG}(\Sigma)$ which is torsion-free. Apply the theorem with H.
Other applications.

Theorem

Let A and B be two groups without involution. Let C be a subgroup of A and B malnormal in A or B. There exists a quotient Q of $A \ast_C B$ with the following properties.

1. The groups A and B embed into Q.
2. For all $g \in Q$, if g is not conjugated to an element of A or B, then $g^n = 1$.
3. There exist infinitely many elements in Q which are not conjugated to an element of A or B.