An example of an automatic graph of intermediate growth

Dmytro Savchuk
(joint with A. Miasnikov)

University of South Florida

October 3, 2013
Automatic groups

Automatic groups were introduced by Thurston in 1986 motivated by earlier results of Cannon.

Initial motivation was:

- understand fundamental groups of compact 3-manifolds
- make them tractable for computing
Formal Languages

X – finite alphabet
$X^* – set of all finite words over X
$X^\infty – set of all infinite words over X

Definition

A *formal language* is a collection of words in X^*.
Definition

A formal language is called **regular** if it is accepted by finite state automaton-acceptor.

Example

The language L accepted by this automaton is

$$\{1^n01^m01^k \mid n \geq 0, m \geq 0, k \geq 0\}$$
Definition (Informal)

A group $G = \langle S \rangle$ (with $S = S^{-1}$) is automatic if

- there is a regular language L over S such that $u \mapsto \overline{u}$ from L to G is onto
- right multiplication by each $s \in S \cup \{id\}$ can be performed by finite automaton
“Pros” of automatic groups

If G is automatic, then

- Word problem in G is decidable in quadratic time
- For any word $w \in S^*$ one can find its representative in L in quadratic time
- G is finitely presented
- The Dehn function of G is at most quadratic
- If G is biautomatic, then the conjugacy problem is decidable
- hyperbolic (in particular free); braid; Artin groups of finite type; Coxeter groups; most of 3-manifold groups are automatic
“Cons” of automatic groups

The following groups are NOT automatic

- infinite torsion groups
- f.g. nilpotent groups (not virtually abelian)
- some $\pi_1(3$-manifold)s
- non-abelian torsion free polycyclic groups
- $SL_n(\mathbb{Z})$
- Baumslag-Solitar groups $BS(p, q) = \langle x, y \mid y^{-1}x^py = x^q \rangle$ unless $p = 0$, $q = 0$ or $p = \pm q$

So the class of automatic groups is NICE but NOT WIDE ENOUGH
Suggested generalizations

- Combable groups (relax requirement on the language)
- Geometric generalization of automaticity that covers all 3-manifold groups (Bridson-Gilman)
- Stackable groups (Brittenham-Hermiller)
- C-graph automatic groups (Elder-Taback)
Suggested generalizations

- Combable groups (relax requirement on the language)
- Geometric generalization of automaticity that covers all 3-manifold groups (Bridson-Gilman)
- Stackable groups (Brittenham-Hermiller)
- C-graph automatic groups (Elder-Taback)

We look at:

- Graph automatic groups (relax restriction on the alphabet) - Kharlampovich, Khoussainov, Miasnikov (2011)

Retains nice algorithmic properties and includes many more examples: f.g. nilpotent of class 2 and some of higher nilpotency classes; $BS(1, n)$; many metabelian and solvable groups; infinitely presented groups
Suggested generalizations

- Combable groups (relax requirement on the language)
- Geometric generalization of automaticity that covers all 3-manifold groups (Bridson-Gilman)
- Stackable groups (Brittenham-Hermiller)
- C-graph automatic groups (Elder-Taback)

We look at:

- Graph automatic groups (relax restriction on the alphabet) - Kharlampovich, Khoussainov, Miasnikov (2011)

Retains nice algorithmic properties and includes many more examples: f.g. nilpotent of class 2 and some of higher nilpotency classes; $BS(1, n)$; many metabelian and solvable groups; infinitely presented groups

Question

Are there graph automatic groups of intermediate growth?
Let’s be more specific!

\[X_{\diamond} = X \cup \{\diamond\}, \diamond \not\in X \] - padded alphabet.

Definition

For \((w_1, w_2) \in (X^*)^2\) a convolution \(\otimes(w_1, w_2)\) is a word over \((X_{\diamond})^2\) of length \(\max\{|w_1|, |w_2|\}\), whose \(j\)-th symbol is \((\sigma_1, \sigma_2)\), where

\[
\sigma_i = \begin{cases}
\text{the } j\text{-th symbol of } w_i, & \text{if } j \leq |w_i| \\
\diamond, & \text{otherwise}
\end{cases}
\]

Example

\[
\otimes(011, 00110) = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ \diamond \\ \diamond \end{pmatrix}
\]
Regular Binary relations

Definition
Let R be a binary relation on X^*. The convolution of R is the language over $(X^*)^2$ defined by

$$\otimes R = \{\otimes (w_1, w_2) \mid (w_1, w_2) \in R\} \subset (X^*)^2$$

Definition
A binary relation R on X^* is called regular if its convolution $\otimes R$ is a regular language over $(X^*)^2$.
Automatic vs. Graph Automatic groups

Definition (Automatic (Thurston))

A f.g. group $G = \langle S \rangle$ is called **automatic** if

- There exists a regular language $L \subset S^*$ such that $\bar{\rightarrow}: L \to G$ is onto
- The relations $E_s = \{ (u, v) \mid u, v \in L, \bar{u} = \bar{v}s \}$ on S^* are regular for $s \in S \cup \{ id \}$

Definition (Graph Automatic (KKM))

A f.g. group $G = \langle S \rangle$ is called **Graph automatic** if there is a finite alphabet X such that

- There exists a regular language $L \subset X^*$ and an onto map $\bar{\rightarrow}: L \to G$
- The relations $E_s = \{ (u, v) \mid u, v \in L, \bar{u} = \bar{v}s \}$ on X^* are regular for $s \in S \cup \{ id \}$

X need not coincide with a generating set S.
More general definition of graph automaticity

Let \(\Gamma = (V, E, \sigma : E \rightarrow S) \) be a labeled graph. We interpreted it as a system of \(|S|\) binary relations \(E_s \) on \(V \):

\[
E_s = \{ (v, v') \mid (v, v') \in E \text{ and the label of } (v, v') \text{ is } s \}.
\]

Each map \(\overline{-} : V \rightarrow X^* \) induces \(|S|\) binary relations \(\overline{E}_s \) on \(X^* \):

\[
\overline{E}_s = \{ (\overline{v}, \overline{v}') \mid (v, v') \in E_s \}.
\]

Definition

\(\Gamma = (V, E, \sigma : E \rightarrow S) \) is called **automatic**, if there is a finite alphabet \(X \) and an injective map \(\overline{-} : V \rightarrow X^* \) such that

- \(\overline{V} \) is a regular language over \(X \) and
- \(\overline{E}_s \) is a regular binary relation on \(X^* \) for each \(s \in S \).
More general definition of graph automaticity

Proposition

A f.g. group $G = \langle S \rangle$ is graph automatic \iff Cayley graph $Cay(G, S)$ with respect to S is automatic.
$V(T) = X^*$, \hspace{1cm} X = \{0, \ldots, d - 1\} \text{ -- alphabet}$

$G < \text{Aut } T$
Action on T given by finite initial automaton

Definition (By Example)

$S_2 = \{\varepsilon, \sigma\}$ acts on $X = \{0, 1\}$.

\[\mathcal{A} \quad \text{noninitial automaton}, \]
\[\mathcal{A}_q \quad \text{initial automaton, } q \in \{a, b, id\}. \]

A_q acts on X^* (and on T)
<table>
<thead>
<tr>
<th>Input:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 1 0 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>States:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b a b a id id id</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 0 0 0 1 1</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
Input: 0 0 0 0 1 0 1 1 1
States: \(a\) \(b\) \(a\) \(b\) \(a\) \(id\) \(id\) \(id\)
Output: 1 0 1 0 0 0 1 1 1
Input: 0 0 0 0 1 0 1 1 1

States: a b a b a id id id

Output: 1 0 1 0 0 0 1 1 1

- Graph with states and transitions:
 - States: ε, σ
 - Transitions:
 - a: ε → σ, σ → 1
 - b: ε → ε
 - id: ε → id, id → ε

- Input sequence:
 - 0 0 0 0 1 0 1 1 1

- Output sequence:
 - 1 0 1 0 0 0 1 1 1
Input: 0 0 0 0 1 0 1 1 1

States:

\[a \ b \ a \ b \ a \ id \ id \ id \]

Output: 1 0 1 0 0 0 1 1 1

\[a \sigma \]

\[b \varepsilon \]

\[0 \ 0 \ 1 \]

\[\varepsilon \]

\[0, 1 \]
<table>
<thead>
<tr>
<th>Input:</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>States:</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>id</td>
<td>id</td>
<td>id</td>
</tr>
<tr>
<td>Output:</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

![Graph Diagram](image-url)
Input: \[\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
\end{array}\]

States: \[\begin{array}{cccccccccc}
a & b & a & b & a & \text{id} & \text{id} & \text{id} \\
\end{array}\]

Output: \[\begin{array}{cccccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
\end{array}\]
Input:

```
0 0 0 0 1 0 1 1
```

States:

```
a b a b a id id id
```

Output:

```
1 0 1 0 0 0 1 1
```

Diagram:

- **Input Symbol: A**
- **Output Symbol: B**
- **State Symbol: C**
- **Transition Symbols: D, E**

Vertices:
- **Start State (A):** Input starts here.
- **End State (C):** Output ends here.
- **Intermediate States:**
 - **B:** (State): Transition to output.
 - **D:** (State): Transition to output.

Edges:
- **Transition Arrows:**
 - From **A** to **B** with symbol **D**.
 - From **B** to **C** with symbol **E**.
 - From **C** to **A** with symbol **E**.

Markings:
- **Start State (A):** **B**
- **End State (C):** **C**
Input:

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

States:

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>id</td>
<td>id</td>
<td>id</td>
<td></td>
</tr>
</tbody>
</table>

Output:

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Definition of automaton group

Given an automaton A every state q defines an automorphism A_q of X^*

Definition

The **automaton** group generated by automaton A is a group

$$G(A) = \langle A_q \mid q \text{ is a state of } A \rangle < Aut X^*$$
Definition of automaton group

Given an automaton \(A \) every state \(q \) defines an automorphism \(A_q \) of \(X^* \)

\[
G(A) = \langle A_q \mid q \text{ is a state of } A \rangle < \text{Aut } X^*
\]

Example

\[
0, 1 \xrightarrow{a} \sigma
\]

\(a(w) = \overline{w} \). Thus \(a^2 = 1 \) and \(G(A) \simeq C_2 \).
Automata groups as a source of counterexamples

- Burnside problem on infinite periodic groups
- Milnor problem on groups of intermediate growth
- Day problem on amenability
- Atiyah conjecture on L^2 Betti numbers
Let $G = \langle S \rangle$ act transitively on X.

Definition

The **Schreier graph** $\Gamma(G, X, S)$ of the action of G on X with respect to generating set S is the graph with set of vertices X and edges

![Diagram of Schreier graph](image)
Schreier Graphs
Schreier Graphs
Why Schreier graphs?

- Are usually simpler than Cayley graphs
- Describe the action at the level of orbits
- If Schreier graph of G is non-amenable, then G is non-amenable.
- Are used to construct expanders
- Connect groups acting on rooted trees and holomorphic dynamics
\[\text{IMG}(z^2 + i) \]

\[\text{IMG}(z^2 - 1) \]
Theorem (Bondarenko, Ceccherini-Silberstein, Donno, Nekrashevych, 2012)

All Schreier graphs Γ_ω for $\omega \in \{0, 1\}^\infty$ of the group G have intermediate growth. More specifically, the growth function satisfies

$$n^{\frac{1}{2}\log_2 n} \leq |B(\omega, n)| \leq n^{\log_2 n}$$
Theorem (Miasnikov, S.)

The graph $\Gamma_{(01)^\infty}$ is an automatic graph of intermediate growth.
Definition of $\omega = x_1 x_2 x_3 \ldots$ and $\omega' = y_1 y_2 y_3 \ldots$ in X^∞ are called cofinal if there exists $N > 0$ such that $x_n = y_n$ for all $n \geq N$.

Proposition (Bondarenko, Ceccherini-Silberstein, Donno, Nekrashevych, 2012)

The orbit of $\omega = (01)^\infty$ coincides with a cofinality class of $(01)^\infty$.
Definition

\(\omega = x_1 x_2 x_3 \ldots \) and \(\omega' = y_1 y_2 y_3 \ldots \) in \(X^\infty \) are called **cofinal** if there exists \(N > 0 \) such that \(x_n = y_n \) for all \(n \geq N \).

Proposition (Bondarenko, Ceccherini-Silberstein, Donno, Nekrashevych, 2012)

The orbit of \(\omega = (01)^\infty \) coincides with a cofinality class of \((01)^\infty \).

Thus, each vertex of \(\Gamma_{(01)^\infty} \) is labelled by an infinite word over \(X \) that is cofinal with \((01)^\infty \).
Definition of

For

\[\omega = x_1 x_2 x_3 \ldots x_k 0 1 0 1 \ldots \]
\[(01)_{\infty} = 0 1 0 \ldots 1 0 1 0 1 \ldots \]

where \(x_k \neq 1 \), define

\[\overline{\omega} = x_1 x_2 x_3 \ldots x_k \]

Example

- \((01)_{\infty} = \emptyset \)
- \(110011(01)_{\infty} = 11001 \)
Automaton A_V accepting $V(\Gamma_{(01)\infty})$

Observation

$V(\Gamma_{(01)\infty})$ consists of the empty word and words whose last letter is different from corresponding letter of $(01)\infty$.
Automaton \mathcal{A}_a accepting L_a
Automaton \mathcal{A}_b accepting L_b