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Fix a set X of generators. A quadratic word is an element W € Fx
such that each letter occurring in W occurs twice. Every quadratic
word W represents a compact surface Sy .

T =Ty




Every quadratic word is equivalent to a word of the form

[z1, y1][z2, y2] - . - [xg,yy] oOF xfa:%xi

‘Equivalent’ means ‘lies in the same orbit under the action of
Aut(Fx),.

This is helpful when solving quadratic equations in a free group Fju.

Introducing coefficients may be interpreted as passing to compact
surfaces with boundary.

Quadratic equations W =1 in F4 can have two extra forms up to
equivalence:

—1 —1
(21, y1][T2, y2] - - - [Tg,yg) o 21 €121 - - 2y CmZm
2.2 2 —1 —1
TYTy .. Ty C0 21 CIZ1 - Zpy CmZm

where cg, c1,...cm € Fa and x;, y; are variables.



Take free monoids with involution instead of free groups.

Initial motivation:

> Getting an upper bound on the shortest solution of a quadratic
equation if a free monoid with involution.
» Understanding “the quadratic part” of the elimination process
for equations in free groups.
A monoid with involution is a monoid with an extra involution

x — x~ ! satisfying the identity

(zy) "t =y tat

The free monoid with involution on a generating set A is the set of
words in the doubled alphabet

AT = AUu{a"! |ac A}

with operations naturally defined.



Instead of quadratic equations W = 1, we have to consider quadratic
systems of equations:

Li=R;, i=12,... k. (1)

Here L;, R; € Mayx (the free monoid with involution freely generated
by AU X) and each variable occurring in the system, occurs exactly
twice.

A system (1) is orientable if the surface produced by the formal
system {L;R; " = 1} is orientable.



Theorem

If an orientable quadratic system S of equations {L; = R;, i € I} in a
free monoid with involution M4 is solvable then it has a solution of
size

< O(c exp(n®))

where c is the total length of coefficients of S and n is the number of
variables in S.

Corollary

Let M be a free monoid (with or without involution) with at least two
free generators. Then the Diophantine problem for orientable
quadratic systems in M is NP-complete.



Theorem (description of solutions, an easy form)

Let S be a quadratic system of equations in a free monoid with
involution M. Then there exists and can be effectively computed
from S, a finite set of sequences of the following form producing all
solutions of S':

Ur—1
ﬂ 1 ﬂ br—1 ﬂ P
Ml MT—l MT‘

where

1. M; = Ng, for certain quadratic systems S; and ¢; is an
M a-homomorphism; Sy = S and the last system S, is trivial,
that is, M, = M s * My for some finite V;

2. U; is a monoid of injective M s-endomorphisms, effectively given
as a reqular language on a finite set of M a-endomorphisms.



Theorem (description of solutions, a difficult form)

Let S be an orientable quadratic system of equations in a free monoid
with involution M 4. Then there exists and can be effectively computed

from S, a finite set of sequences of the following form producing all
solutions of S':

VO V1 Vr—l
o 1 o P2 Pr—1 - r
My M} — M, M —...— M, M/_, — M,

where

1. for each i, M; = Mg, and M} = Msg; for certain quadratic
systems S; and Si; each ¢; is a Ma-homomorphism; Sy =S and
the last system S, is trivial.

2. S; and S} are combinatorially equivalent for alli=0,...,r—1;

3. The length v of each sequence is bounded by O(n3) where n is the
number of variables in S.

4. V; is a regular set of injective homomorphisms which can be
defined by a finite graph of homomorphisms.



A surface train track consists of:

> a finite graph T embedded (as a topological graph) in a closed
compact surface S

» a partition of the star St(v) of each vertex v into two nonempty
subsets D;(v) and Dy(v) called directions; they form two
continuous subsets of St(v) under the cyclic ordering induced by
the embedding T' — S.

(The star of a vertex v is the set of all directed edges coming out of v.)

Usually it is assumed that T is geometrically embedded in S: edges of
T are smooth arcs in S and the edges in D;(v) and Dy(v) are coming
out of v in two opposite directions.
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Always assume:

» T is connected;

» each component of S — T is simply connected; it is a cell.

cusp
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Elementary transformations:
(T1): removing and introducing bivalent vertices
(T2): elementary unzipping operations

Unzipping of an edge e at a cusp a:

et

Definition

Two surface train tracks 77 and T are combinatorially equivalent if

each one is obtained from the other by a sequence of transformations
(T1) and (T2)

(I call the RST closure of (T1) & (T2) weak combinatorial equivalence)



Representing surface train tracks by patterns:

[1 2321 3—1]
4-141

A pattern is a finite set of pairs {(U;, V;)} of nonempty words

U;,V; € Mx such that each variable x € X occurs in the words U; and
V; totally twice. (So a pattern may be viewed as a formal
coefficient-free quadratic system of equations with variables in Mx;
‘formal’ means here that we do not consider solutions of such
systems.)



A special class of surface train tracks:

Assume that train tracks are

> single vertex;
» non-splittable;

» orientable.

A pattern [g] is balanced if each letter occurs once in U and once
inV.

A pattern [3] represents a splittable train track if there is a nontrivial

partition U = UV, and V = V; V5 such that U,V and UV, have
disjoint sets of variables and at least of the patterns [I‘J/l] is balanced.



A train track T is reversible if there is a train path in 7" which passes
an edge twice in opposite directions. ‘Irreversible’ is the negation.

Reversible = U-turnable:

Easy observation: A pattern P = [‘[ﬂ is balanced iff the train track
T (P) represented by P is irreversible.



A classification of (single vertex non-splittable orientable) train

tracks up to equivalence

Train tracks are marked: assumed to have a fixed marking of their
cusps. Elementary transformations and equivalence are applied to
marked train tracks.

Definition

The combinatorial type of a marked surface train track T' consists of
the following data:

» Type of T reversible or irreversible.

» The partition of the set of cusps of T" into a collection of cyclically
ordered sets which occur in the boundary loops of cells of T

» If T is irreversible, we add an extra information: the partition of
the set of cusps into two subsets C* and C~ induced by the
partition £ = ET U E~ of the directed edges with respect to the
distinguished direction.
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Irreversible train tracks:

Eliminating bigons

»
» The family of rigid train tracks
» Exceptional cases

>

The general case

Proposition

Let T and T’ be two irreversible train tracks of the same
combinatorial type and let T and T' be train tracks obtained from T
and T' by elimination of the same bigon. Then T and T’ are
equivalent if and only if T and T" are equivalent.



The family of rigid irreversible train tracks

Let IR,, be the following family of patterns:

12...n
IR, = . n>1.
[n...?l] "

The train track 7 (IR,) has a single (2n — 2)-gon if n is even and two
(n — 1)-gons if n is odd. We call a train track rigid if it is equivalent
to T(IR,,).

Proposition
Let k> 1.

For each combinatorial type of irreversible train tracks of signature
{4k — 2} there is a single class of rigid train tracks.

For each combinatorial type of irreversible train tracks of signature
{2k, 2k} there are k classes of rigid train tracks which are
distinguished by position of one 2k-gon with respect to the other.



Proposition

Any irreversible train track with no eliminable bigons (i.e. either it
has no bigons or has a bigon as a single cell) of genus < 2 is rigid.
They have signatures {0,0}, {2}, {6} and {4,4}.

For each combinatorial type of signature {10} (which has genus 3)
there is precisely one equivalence class of non-rigid irreversible train
tracks. It is represented by a pattern

123456
623451

The cases above cover all the possibilities for irreversible train tracks
without bigons with at most 6 edges.



Proposition

For each combinatorial type of irreversible train tracks without bigons
with at least 7 edges there are two equivalence classes of non-rigid
train tracks distinguished by a certain invariant called the parity.

These combinatorial types cover:

> irreversible train tracks of genus 3 of signature {4,8};

> irreversible train tracks without bigons of genera > 4.



