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[x1, y1][x2, y2]



Fix a set X of generators. A quadratic word is an element W ∈ FX
such that each letter occurring in W occurs twice. Every quadratic
word W represents a compact surface SW .

W = . . . xy . . .

x 7→ xy−1



Every quadratic word is equivalent to a word of the form

[x1, y1][x2, y2] . . . [xg, yg] or x21x
2
2 . . . x

2
g

‘Equivalent’ means ‘lies in the same orbit under the action of
Aut(FX)’.

This is helpful when solving quadratic equations in a free group FA.

Introducing coefficients may be interpreted as passing to compact
surfaces with boundary.

Quadratic equations W = 1 in FA can have two extra forms up to
equivalence:

[x1, y1][x2, y2] . . . [xg, yg] c0 z
−1
1 c1z1 . . . z

−1
m cmzm

x21x
2
2 . . . x

2
g c0 z

−1
1 c1z1 . . . z

−1
m cmzm

where c0, c1, . . . cm ∈ FA and xi, yi are variables.



Take free monoids with involution instead of free groups.

Initial motivation:

I Getting an upper bound on the shortest solution of a quadratic
equation if a free monoid with involution.

I Understanding “the quadratic part” of the elimination process
for equations in free groups.

A monoid with involution is a monoid with an extra involution
x 7→ x−1 satisfying the identity

(xy)−1 = y−1x−1

The free monoid with involution on a generating set A is the set of
words in the doubled alphabet

A±1 = A ∪ {a−1 | a ∈ A}

with operations naturally defined.



Instead of quadratic equations W = 1, we have to consider quadratic
systems of equations:

Li = Ri, i = 1, 2, . . . , k. (1)

Here Li, Ri ∈MA∪X (the free monoid with involution freely generated
by A ∪X) and each variable occurring in the system, occurs exactly
twice.

A system (1) is orientable if the surface produced by the formal
system {LiR−1i = 1} is orientable.



Theorem

If an orientable quadratic system S of equations {Li = Ri, i ∈ I} in a
free monoid with involution MA is solvable then it has a solution of
size

≤ O(c exp(n6))

where c is the total length of coefficients of S and n is the number of
variables in S.

Corollary

Let M be a free monoid (with or without involution) with at least two
free generators. Then the Diophantine problem for orientable
quadratic systems in M is NP-complete.



Theorem (description of solutions, an easy form)

Let S be a quadratic system of equations in a free monoid with
involution MA. Then there exists and can be effectively computed
from S, a finite set of sequences of the following form producing all
solutions of S:

M0
φ1 //

U0

��
M1

φ2 //

U1

��
. . .

φr−1 // Mr−1
φr //

Ur−1

��
Mr

where

1. Mi = NSi for certain quadratic systems Si and φi is an
MA-homomorphism; S0 = S and the last system Sr is trivial,
that is, Mr = MA ∗MV for some finite V ;

2. Ui is a monoid of injective MA-endomorphisms, effectively given
as a regular language on a finite set of MA-endomorphisms.



Theorem (description of solutions, a difficult form)

Let S be an orientable quadratic system of equations in a free monoid
with involution MA. Then there exists and can be effectively computed
from S, a finite set of sequences of the following form producing all
solutions of S:

M0

V0

!!
M ′0

φ1 // M1

V1

!!
M ′1

φ2 // . . .
φr−1// Mr−1

Vr−1

##
M ′r−1

φr // Mr

where

1. for each i, Mi = MSi
and M ′i = MS′i

for certain quadratic
systems Si and S′i; each φi is a MA-homomorphism; S0 = S and
the last system Sr is trivial.

2. Si and S′i are combinatorially equivalent for all i = 0, . . . , r − 1;

3. The length r of each sequence is bounded by O(n3) where n is the
number of variables in S.

4. Vi is a regular set of injective homomorphisms which can be
defined by a finite graph of homomorphisms.



A surface train track consists of:

I a finite graph T embedded (as a topological graph) in a closed
compact surface S;

I a partition of the star St(v) of each vertex v into two nonempty
subsets D1(v) and D2(v) called directions; they form two
continuous subsets of St(v) under the cyclic ordering induced by
the embedding T → S.

(The star of a vertex v is the set of all directed edges coming out of v.)

Usually it is assumed that T is geometrically embedded in S: edges of
T are smooth arcs in S and the edges in D1(v) and D2(v) are coming
out of v in two opposite directions.



Always assume:

I T is connected;

I each component of S − T is simply connected; it is a cell.



Elementary transformations:

(T1): removing and introducing bivalent vertices

(T2): elementary unzipping operations

Unzipping of an edge e at a cusp α:

Definition

Two surface train tracks T1 and T2 are combinatorially equivalent if
each one is obtained from the other by a sequence of transformations
(T1) and (T2)

(I call the RST closure of (T1) & (T2) weak combinatorial equivalence)



Representing surface train tracks by patterns:

[
1 2 3 2−1 3−1

4−1 4 1

]

A pattern is a finite set of pairs {(Ui, Vi)} of nonempty words
Ui, Vi ∈MX such that each variable x ∈ X occurs in the words Ui and
Vi totally twice. (So a pattern may be viewed as a formal
coefficient-free quadratic system of equations with variables in MX ;
‘formal’ means here that we do not consider solutions of such
systems.)



A special class of surface train tracks:

Assume that train tracks are

I single vertex;

I non-splittable;

I orientable.

A pattern
[
U
V

]
is balanced if each letter occurs once in U and once

in V .

A pattern
[
U
V

]
represents a splittable train track if there is a nontrivial

partition U = U1V2 and V = V1V2 such that U1V1 and U2V2 have
disjoint sets of variables and at least of the patterns

[
Ui

Vi

]
is balanced.



A train track T is reversible if there is a train path in T which passes
an edge twice in opposite directions. ‘Irreversible’ is the negation.

Reversible = U-turnable:

Easy observation: A pattern P =
[
U
V

]
is balanced iff the train track

T (P ) represented by P is irreversible.



A classification of (single vertex non-splittable orientable) train

tracks up to equivalence

Train tracks are marked: assumed to have a fixed marking of their
cusps. Elementary transformations and equivalence are applied to
marked train tracks.

Definition

The combinatorial type of a marked surface train track T consists of
the following data:

I Type of T : reversible or irreversible.

I The partition of the set of cusps of T into a collection of cyclically
ordered sets which occur in the boundary loops of cells of T .

I If T is irreversible, we add an extra information: the partition of
the set of cusps into two subsets C+ and C− induced by the
partition E = E+ ∪ E− of the directed edges with respect to the
distinguished direction.





Irreversible train tracks:

I Eliminating bigons

I The family of rigid train tracks

I Exceptional cases

I The general case

Proposition

Let T and T ′ be two irreversible train tracks of the same
combinatorial type and let T̂ and T̂ ′ be train tracks obtained from T
and T ′ by elimination of the same bigon. Then T and T ′ are
equivalent if and only if T̂ and T̂ ′ are equivalent.



The family of rigid irreversible train tracks

Let IRn be the following family of patterns:

IRn =

[
1 2 . . . n

n . . . 2 1

]
, n ≥ 1.

The train track T (IRn) has a single (2n− 2)-gon if n is even and two
(n− 1)-gons if n is odd. We call a train track rigid if it is equivalent
to T (IRn).

Proposition

Let k ≥ 1.

For each combinatorial type of irreversible train tracks of signature
{4k − 2} there is a single class of rigid train tracks.

For each combinatorial type of irreversible train tracks of signature
{2k, 2k} there are k classes of rigid train tracks which are
distinguished by position of one 2k-gon with respect to the other.



Proposition

Any irreversible train track with no eliminable bigons (i.e. either it
has no bigons or has a bigon as a single cell) of genus ≤ 2 is rigid.
They have signatures {0, 0}, {2}, {6} and {4, 4}.

For each combinatorial type of signature {10} (which has genus 3)
there is precisely one equivalence class of non-rigid irreversible train
tracks. It is represented by a pattern[

1 2 3 4 5 6

6 2 3 4 5 1

]

The cases above cover all the possibilities for irreversible train tracks
without bigons with at most 6 edges.



Proposition

For each combinatorial type of irreversible train tracks without bigons
with at least 7 edges there are two equivalence classes of non-rigid
train tracks distinguished by a certain invariant called the parity.

These combinatorial types cover:

I irreversible train tracks of genus 3 of signature {4, 8};
I irreversible train tracks without bigons of genera ≥ 4.


