Invariant Random Subgroups

Lewis Bowen

Group Theory International Webinar
May 2012
Set-up

G: a locally compact group.

$\text{Sub}(G)$: the space of closed subgroups.

G acts on $\text{Sub}(G)$ by conjugation.

$g \cdot H := gHg^{-1}$.

$M(G)$: space of G-invariant Borel probability measures on $\text{Sub}(G)$.

An invariant random subgroup (IRS) is a random subgroup $H < G$ with law in $M(G)$.
Set-up

\(G \): a locally compact group.

\(\text{Sub}(G) \): the space of closed subgroups.
Set-up

\(G \) : a locally compact group.

\(\text{Sub}(G) \) : the space of closed subgroups.

\(G \) acts on \(\text{Sub}(G) \) by conjugation. \(g \cdot H := gHg^{-1} \).
Set-up

\(G \) : a locally compact group.

\(\text{Sub}(G) \) : the space of closed subgroups.

\(G \) acts on \(\text{Sub}(G) \) by conjugation. \(g \cdot H := gHg^{-1} \).

\(M(G) \) : space of \(G \)-invariant Borel probability measures on \(\text{Sub}(G) \).
Set-up

\(G \): a locally compact group.

\(\text{Sub}(G) \): the space of closed subgroups.

\(G \) acts on \(\text{Sub}(G) \) by conjugation. \(g \cdot H := gHg^{-1} \).

\(M(G) \): space of \(G \)-invariant Borel probability measures on \(\text{Sub}(G) \).

An \textit{invariant random subgroup} (IRS) is a random subgroup \(H < G \) with law in \(M(G) \).
Examples

- \(N \triangleleft G \Rightarrow \delta_N \in M(G) \).
Examples

- $N \triangleleft G \Rightarrow \delta_N \in M(G)$.

- If $N \triangleleft G$ has only finitely many conjugates \Rightarrow uniform prob. meas. on the conjugates of N is in $M(G)$.
Examples

- $N \triangleleft G \Rightarrow \delta_N \in M(G)$.

- If $N \triangleleft G$ has only finitely many conjugates \Rightarrow uniform prob. meas. on the conjugates of N is in $M(G)$.

- Let $\Gamma < G$ be a lattice. \exists a G-invariant prob. meas. λ on G/Γ.
Examples

1. \(N \triangleleft G \Rightarrow \delta_N \in M(G) \).

2. If \(N \triangleleft G \) has only finitely many conjugates \(\Rightarrow \) uniform prob. meas. on the conjugates of \(N \) is in \(M(G) \).

3. Let \(\Gamma \triangleleft G \) be a lattice. \(\exists \) a \(G \)-invariant prob. meas. \(\lambda \) on \(G/\Gamma \).

Define \(\Phi : G/\Gamma \to \text{Sub}(G) \) by \(\Phi(g\Gamma) := g\Gamma g^{-1} \).
Examples

- $N \triangleleft G \Rightarrow \delta_N \in M(G)$.

- If $N \triangleleft G$ has only finitely many conjugates \Rightarrow uniform prob. meas. on the conjugates of N is in $M(G)$.

- Let $\Gamma \triangleleft G$ be a lattice. \exists a G-invariant prob. meas. λ on G/Γ.
 Define $\Phi : G/\Gamma \to \text{Sub}(G)$ by $\Phi(g\Gamma) := g\Gamma g^{-1}$.
 Then $\Phi_* \lambda := \mu_\Gamma \in M(G)$.
Examples

- \(N \triangleleft G \Rightarrow \delta_N \in M(G) \).
- If \(N < G \) has only finitely many conjugates \(\Rightarrow \) uniform prob. meas. on the conjugates of \(N \) is in \(M(G) \).
- Let \(\Gamma < G \) be a lattice. \(\exists \) a \(G \)-invariant prob. meas. \(\lambda \) on \(G/\Gamma \).
 Define \(\Phi : G/\Gamma \to \text{Sub}(G) \) by \(\Phi(g\Gamma) := g\Gamma g^{-1} \).
 Then \(\Phi_* \lambda := \mu_{\Gamma} \in M(G) \).
- Let \(G \bowtie (X, \mu) \) be a probability-measure-preserving Borel action.
Examples

- \(N \lhd G \Rightarrow \delta_N \in M(G). \)

- If \(N < G \) has only finitely many conjugates \(\Rightarrow \) uniform prob. meas. on the conjugates of \(N \) is in \(M(G) \).

- Let \(\Gamma < G \) be a lattice. \(\exists \) a \(G \)-invariant prob. meas. \(\lambda \) on \(G/\Gamma \).

 Define \(\Phi : G/\Gamma \rightarrow \operatorname{Sub}(G) \) by \(\Phi(g\Gamma) := g\Gamma g^{-1} \).

 Then \(\Phi_* \lambda := \mu_\Gamma \in M(G) \).

- Let \(G \curvearrowright (X, \mu) \) be a probability-measure-preserving Borel action.

 \(\operatorname{Stab} : X \rightarrow \operatorname{Sub}(G), \operatorname{Stab}(x) := \{ g \in G : gx = x \}. \)
Examples

- If $N \triangleleft G \Rightarrow \delta_N \in M(G)$.

- If $N \triangleleft G$ has only finitely many conjugates \Rightarrow uniform prob. meas. on the conjugates of N is in $M(G)$.

- Let $\Gamma \triangleleft G$ be a lattice. \exists a G-invariant prob. meas. λ on G/Γ.

 Define $\Phi : G/\Gamma \to \text{Sub}(G)$ by $\Phi(g\Gamma) := g\Gamma g^{-1}$.

 Then $\Phi_* \lambda := \mu_\Gamma \in M(G)$.

- Let $G \curvearrowright (X, \mu)$ be a probability-measure-preserving Borel action.

 $\text{Stab} : X \to \text{Sub}(G)$, $\text{Stab}(x) := \{g \in G : gx = x\}$.

 Stab is G-equivariant $\Rightarrow \text{Stab}_* \mu \in M(G)$.

(Abott-Glasner-Virag) \Rightarrow every measure in $M(G)$ arises this way.
Examples

- \(N \triangleleft G \Rightarrow \delta_N \in M(G) \).

- If \(N \triangleleft G \) has only finitely many conjugates \(\Rightarrow \) uniform prob. meas. on the conjugates of \(N \) is in \(M(G) \).

- Let \(\Gamma \triangleleft G \) be a lattice. \(\exists \) a \(G \)-invariant prob. meas. \(\lambda \) on \(G/\Gamma \).

 Define \(\Phi : G/\Gamma \to \text{Sub}(G) \) by \(\Phi(g\Gamma) := g\Gamma g^{-1} \).

 Then \(\Phi_*\lambda := \mu_{\Gamma} \in M(G) \).

- Let \(G \curvearrowright (X, \mu) \) be a probability-measure-preserving Borel action.

 \(\text{Stab} : X \to \text{Sub}(G), \text{Stab}(x) := \{ g \in G : gx = x \} \).

 \(\text{Stab} \) is \(G \)-equivariant \(\Rightarrow \) \(\text{Stab}_*\mu \in M(G) \).

 (Abert-Glasner-Virag) \(\Rightarrow \) every measure in \(M(G) \) arises this way.
$M(G)$ is a simplex

Definition

A convex closed metrizable subset K of a locally convex linear space is a **simplex** if each point in K is the barycenter of a unique probability measure supported on the subset $\partial_e K$ of extreme points of K.
$M(G)$ is a simplex

Definition

A convex closed metrizable subset K of a locally convex linear space is a simplex if each point in K is the barycenter of a unique probability measure supported on the subset $\partial e K$ of extreme points of K.

If $\mu_1, \mu_2 \in M(G)$ and $t \in [0, 1]$ then $t\mu_1 + (1 - t)\mu_2 \in M(G)$.
Research directions in IRS’s

Problem: classify the ergodic IRS’s of a given group or describe $M(G)$.

Remark 1. $M(G)$ is compact in the weak* topology. So it can be viewed as a compactification of the set of lattice subgroups.

Remark 2. If K is an IRS then $K \setminus G$ can be thought of as something like a group. Although it need not be homogeneous, it possesses “statistical homogeneity”.

Lewis Bowen (Texas A&M)
Invariant Random Subgroups
Research directions in IRS’s

Problem: classify the ergodic IRS’s of a given group or describe $M(G)$.

Remark 1. $M(G)$ is compact in the weak* topology. So it can be viewed as a compactification of the set of lattice subgroups.
Research directions in IRS’s

Problem: classify the ergodic IRS’s of a given group or describe $M(G)$.

Remark 1. $M(G)$ is compact in the weak* topology. So it can be viewed as a compactification of the set of lattice subgroups.

Remark 2. If K is an IRS then $K \backslash G$ can be thought of as something like a group. Although it need not be homogeneous, it possesses “statistical homogeneity”.
Higher rank simple Lie groups

Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank ≥ 2 and $K < G$ is an ergodic IRS then either K is a lattice a.s. or $K = \{e\}$.
Theorem (Stuck-Zimmer, 1994)

If G is a simple Lie group of real rank ≥ 2 and $K < G$ is an ergodic IRS then either K is a lattice a.s. or $K = \{e\}$.

Let $X = G/K$. An X-manifold M is a manifold locally modeled on X (i.e., $M = X/\Gamma$ for some lattice $\Gamma < G$).
Higher rank simple Lie groups

Theorem

(Abert-Bergeron-Biringer-Gelander-Nikolov-Raimbault-Samet)

If G is as above, and M_i is a sequence of X-manifolds such that

\[
\lim_{i \to \infty} \text{vol}(M_i) = +\infty, \quad \liminf_{i \to \infty} \text{injrad}(M_i) > 0
\]

⇒ $\forall k$, \ \ \ \lim_{i \to \infty} \frac{b_k(M_i)}{\text{vol}(M_i)} = \beta_k(X)$.

Sketch.

Let $M_i = X/\Gamma_i$. By Stuck-Zimmer, μ_{Γ_i} converges in $M(G)$ to δ_e. Show that L^2-betti numbers vary continuously on $M(G)$ using a generalized version of Lück approximation.
Higher rank simple Lie groups

Theorem (Abert-Bergeron-Biringer-Gelander-Nikolov-Raimbault-Samet)

If G is as above, and M_i is a sequence of X-manifolds such that

$$\lim_{i \to \infty} \text{vol}(M_i) = +\infty, \quad \lim_{i \to \infty} \inf \text{injrad}(M_i) > 0$$

$$\Rightarrow \forall k, \quad \lim_{i \to \infty} \frac{b_k(M_i)}{\text{vol}(M_i)} = \beta_k(X).$$

Sketch.

Let $M_i = X/\Gamma_i$. By Stuck-Zimmer, μ_{Γ_i} converges in $M(G)$ to δ_e. Show that L^2-betti numbers vary continuously on $M(G)$ using a generalized version of Lück approximation.
Random walks

Let $G = \langle a, b | R \rangle$ be a 2-generator group,
Random walks

Let $G = \langle a, b | R \rangle$ be a 2-generator group,

$\mu = \text{uniform prob. meas. on } \{a, b, a^{-1}, b^{-1} \},$
Random walks

Let $G = \langle a, b | R \rangle$ be a 2-generator group,

$\mu = \text{uniform prob. meas. on } \{a, b, a^{-1}, b^{-1}\}$,

$\{X_i\}_{i=1}^{\infty} = \text{i.i.d. random variables with law } \mu$,
Random walks

Let $G = \langle a, b | R \rangle$ be a 2-generator group,

$\mu = \text{uniform prob. meas. on } \{a, b, a^{-1}, b^{-1}\},$

$\{X_i\}_{i=1}^{\infty} = \text{i.i.d. random variables with law } \mu,$

$Z_n = X_1 \cdots X_n.$
Random walks

Let $G = \langle a, b | R \rangle$ be a 2-generator group,

$\mu = \text{uniform prob. meas. on } \{ a, b, a^{-1}, b^{-1} \},$

$\{ X_i \}_{i=1}^{\infty} = \text{i.i.d. random variables with law } \mu,$

$Z_n = X_1 \cdots X_n.$

$\{ Z_n \}$ is the simple random walk on G with μ-increments.
Entropy

Let μ^n be the law of Z_n,

\[H(\mu^n) := -\sum_{g \in G} \mu^n(\{g\}) \log \mu^n(\{g\}) \]

\[h_{\mu^n}(G) := \lim_{n \to \infty} \frac{1}{n} H(\mu^n) \]

$0 \leq h_{\mu^n}(G) \leq h_{\mu^n}(F_2)$.

Problem: What are all possible values of $h_{\mu^n}(G)$ as G varies over all 2-generator groups?
Entropy

Let μ^n be the law of Z_n,

$$H(\mu^n) := - \sum_{g \in G} \mu(\{g\}) \log \mu(\{g\});$$

$h_{\mu}(G) := \lim_{n \to \infty} \frac{1}{n} H(\mu^n)$.

$0 \leq h_{\mu}(G) \leq h_{\mu}(F_2)$.

Problem

What are all possible values of $h_{\mu}(G)$ as G varies over all 2-generator groups?
Entropy

Let μ^n be the law of Z_n,

$$H(\mu^n) := - \sum_{g \in G} \mu(\{g\}) \log \mu(\{g\});$$

$$h_\mu(G) := \lim_{n \to \infty} \frac{1}{n} H(\mu^n).$$
Entropy

Let μ^n be the law of Z_n,

$$H(\mu^n) := - \sum_{g \in G} \mu(\{g\}) \log \mu(\{g\});$$

$$h_\mu(G) := \lim_{n \to \infty} \frac{1}{n} H(\mu^n).$$

$$0 \leq h_\mu(G) \leq h_\mu(\mathbb{F}_2).$$
Entropy

Let μ^n be the law of Z_n,

$$H(\mu^n) := -\sum_{g \in G} \mu(\{g\}) \log \mu(\{g\});$$

$$h_\mu(G) := \lim_{n \to \infty} \frac{1}{n} H(\mu^n).$$

$$0 \leq h_\mu(G) \leq h_\mu(\mathbb{F}_2).$$

Problem

What are all possible values of $h_\mu(G)$ as G varies over all 2-generator groups?
Random walk entropy

- This problem is related to the structure theory of stationary actions and Furstenberg entropy.
Random walk entropy

- This problem is related to the structure theory of stationary actions and Furstenberg entropy.

Theorem

\[\{ h_\mu(G) : G \text{ a 2-generator group} \} \]

is dense in \([0, h_\mu(F_2)]\).
Random walks on random coset spaces

For $K < \mathbb{F}_2$, consider the random walk $\{KZ_n\}_{n=1}^{\infty}$ on $K \backslash \mathbb{F}_2$.
Random walks on random coset spaces

For $K \leq \mathbb{F}_2$, consider the random walk $\{KZ_n\}_{n=1}^{\infty}$ on $K \backslash \mathbb{F}_2$.

Let $\mu_K^n(\{Kg\}) = \text{Prob} \ (KZ_n = Kg)$,
For $K < \mathbb{F}_2$, consider the random walk $\{KZ_n\}_{n=1}^\infty$ on $K\backslash \mathbb{F}_2$.

Let $\mu^n_K(\{Kg\}) = \text{Prob} (KZ_n = Kg)$,

$$h_\mu(\lambda) := \lim_{n \to \infty} \frac{1}{n} \int H(\mu^n_K) \ d\lambda(K).$$
Theorem

There exists a path-connected subspace $\mathcal{N} \subset M_{e}(F_2)$ on which the map $\lambda \in \mathcal{N} \mapsto h_\mu(\lambda)$ is continuous and surjects onto $[0, h_\mu(F_2)]$.

Lewis Bowen (Texas A&M)
Invariant Random Subgroups
There exists a path-connected subspace $\mathcal{N} \subset M_e(F_2)$ on which the map $\lambda \in \mathcal{N} \mapsto h_\mu(\lambda)$ is continuous and surjects onto $[0, h_\mu(F_2)]$.

The finitely-supported measures in \mathcal{N} are dense and these correspond to normal subgroups of F_2. Therefore,

$$\{h_\mu(G) : G \text{ a 2-generator group}\}$$

is dense in $[0, h_\mu(F_2)]$.
Let $K_n < F_2$ be the group generated by all elements of the form ghg^{-1} where $g \in \langle a^n, b^n \rangle$ and either $h = a^k b^r a^{-k}$ for some $1 \leq |k| \leq n - 1$ and $r \in \mathbb{Z}$ or $h = b^k a^r b^{-k}$ for some $1 \leq |k| \leq n - 1$ and $r \in \mathbb{Z}$.
Choose $0 \leq p \leq 1$ and choose each loop of $K_n \backslash \mathbb{F}_2$ with probability p independently.
Choose $0 \leq p \leq 1$ and choose each loop of $K_n \backslash F_2$ with probability p independently. Consider the resulting 2-complex.
A covering construction

Choose $0 \leq p \leq 1$ and choose each loop of $K_n \backslash \mathbb{F}_2$ with probability p independently. Consider the resulting 2-complex. Take its universal cover.
Choose $0 \leq p \leq 1$ and choose each loop of $K_n \backslash F_2$ with probability p independently. Consider the resulting 2-complex. Take its universal cover. This is the Schreier coset graph of an IRS with law $\lambda_{n,p}$.

A covering construction
A covering construction

\[h_\mu(\lambda_{n,p}) \text{ is continuous in } p, \]
A covering construction

\[h_\mu(\lambda_{n,p}) \text{ is continuous in } p, \]

\[\lambda_{n,0} = \delta_e \Rightarrow h_\mu(\lambda_{n,0}) = h_\mu(\mathbb{F}_2), \]
A covering construction

$h_\mu(\lambda_n,p)$ is continuous in p,

$\lambda_{n,0} = \delta_e \Rightarrow h_\mu(\lambda_{n,0}) = h_\mu(\mathbb{F}_2),$

$\lim_{n \to \infty} h_\mu(\lambda_{n,1}) = 0.$
A covering construction

\[h_\mu(\lambda_{n,p}) \] is continuous in \(p \),

\[\lambda_{n,0} = \delta_e \Rightarrow h_\mu(\lambda_{n,0}) = h_\mu(\mathbb{F}_2), \]

\[\lim_{n \to \infty} h_\mu(\lambda_{n,1}) = 0. \]

We can approximate \(\lambda_{n,p} \) by choosing a periodic collection of loops of \(K_n \setminus \mathbb{F}_2 \) and then taking the universal cover of the 2-complex,
A covering construction

\[h_\mu(\lambda_{n,p}) \] is continuous in \(p \),

\[\lambda_{n,0} = \delta_e \Rightarrow h_\mu(\lambda_{n,0}) = h_\mu(\mathbb{F}_2), \]

\[\lim_{n \to \infty} h_\mu(\lambda_{n,1}) = 0. \]

We can approximate \(\lambda_{n,p} \) be choosing a periodic collection of loops of \(K_n \backslash \mathbb{F}_2 \) and then taking the universal cover of the 2-complex, which gives a Schreier coset graph for a group with only finitely many conjugates.
A covering construction

\[h_\mu(\lambda_{n,p}) \] is continuous in \(p \),

\[\lambda_{n,0} = \delta_e \Rightarrow h_\mu(\lambda_{n,0}) = h_\mu(F_2), \]

\[\lim_{n \to \infty} h_\mu(\lambda_{n,1}) = 0. \]

We can approximate \(\lambda_{n,p} \) be choosing a periodic collection of loops of \(K_n \setminus F_2 \) and then taking the universal cover of the 2-complex, which gives a Schreier coset graph for a group with only finitely many conjugates. Its normal core has entropy approximating \(\lambda_{n,p} \).
Classification Results

Theorem (Stuck-Zimmer, 1994)

\[\text{If } G \text{ is a simple Lie group of real rank } \geq 2 \text{ and } K < G \text{ is an ergodic IRS then either } K \text{ is a lattice a.s. or } K = \{e\}. \]
Theorem (Stuck-Zimmer, 1994)

If G *is a simple Lie group of real rank* ≥ 2 *and* $K < G$ *is an ergodic IRS then either* K *is a lattice a.s. or* $K = \{e\}$.

Theorem (Vershik, 2010)

There is a nice classification of IRS’s of $S_\infty = \bigcup_n S_n$.

Theorem (Stuck-Zimmer, 1994)

If \(G \) is a simple Lie group of real rank \(\geq 2 \) and \(K < G \) is an ergodic IRS then either \(K \) is a lattice a.s. or \(K = \{e\} \).

Theorem (Vershik, 2010)

There is a nice classification of IRS's of \(S_\infty = \bigcup_n S_n \).

Theorem (Bader-Shalom, 2006)

If \(G_1, G_2 \) are just non-compact infinite property (T) groups then every ergodic IRS \(K < G_1 \times G_2 \) either splits as a product \(K = H_1 \times H_2 \) or \(K \) is a lattice subgroup a.s.
What sort of simplex is $M(G)$?

A simplex Σ is

- **Poulsen** if $\partial_e \Sigma$ is dense in Σ;
- **Bauer** if $\partial_e \Sigma$ is closed in Σ.

Theorem (Lindenstrauss-Olsen-Sternfeld, 1978)

There is a unique Poulsen simplex Σ up to affine isomorphism. Moreover, $\partial_e \Sigma \sim = L^2$.

There are uncountably many nonisomorphic Bauer simplices.
What sort of simplex is $M(G)$?

A simplex Σ is

- **Poulsen** if $\partial_e \Sigma$ is dense in Σ;
- **Bauer** if $\partial_e \Sigma$ is closed in Σ.

Theorem (Lindenstrauss-Olsen-Sternfeld, 1978)

There is a unique Poulsen simplex Σ up to affine isomorphism. Moreover, $\partial_e \Sigma \cong L^2$.
What sort of simplex is $M(G)$?

A simplex Σ is

- **Poulsen** if $\partial_e \Sigma$ is dense in Σ;
- **Bauer** if $\partial_e \Sigma$ is closed in Σ.

Theorem (Lindenstrauss-Olsen-Sternfeld, 1978)

*There is a unique Poulsen simplex Σ up to affine isomorphism. Moreover, $\partial_e \Sigma \cong L^2$.***

There are uncountably many nonisomorphic Bauer simplices.
Simplices

$M(\mathbb{F}_r)$ is neither.
Simplices

$M(\mathbb{F}_r)$ is neither.

Let $M_{fi}(\mathbb{F}_r) \subset M_e(\mathbb{F}_r)$ be those measures coming from finite-index subgroups.
Simplices

\(M(\mathbb{F}_r) \) is neither.

Let \(M_{fi}(\mathbb{F}_r) \subset M_{e}(\mathbb{F}_r) \) be those measures coming from finite-index subgroups.

\(M_{fi}(\mathbb{F}_r) \) is countable and each \(\mu \in M_{fi}(\mathbb{F}_r) \) is isolated in \(M_{e}(\mathbb{F}_r) \).
Simplices

$M(\mathbb{F}_r)$ is neither.

Let $M_{fi}(\mathbb{F}_r) \subset M_e(\mathbb{F}_r)$ be those measures coming from finite-index subgroups.

$M_{fi}(\mathbb{F}_r)$ is countable and each $\mu \in M_{fi}(\mathbb{F}_r)$ is isolated in $M_e(\mathbb{F}_r)$.

Let $M_{ie}(\mathbb{F}_r) := M_e(\mathbb{F}_r) \setminus M_{fi}(\mathbb{F}_r)$ and $M_i(\mathbb{F}_r) = \text{Hull}(M_{ie}(\mathbb{F}_r))$.
Simplices

$M(\mathbb{F}_r)$ is neither.

Let $M_{fi}(\mathbb{F}_r) \subset M_e(\mathbb{F}_r)$ be those measures coming from finite-index subgroups.

$M_{fi}(\mathbb{F}_r)$ is countable and each $\mu \in M_{fi}(\mathbb{F}_r)$ is isolated in $M_e(\mathbb{F}_r)$.

Let $M_{ie}(\mathbb{F}_r) := M_e(\mathbb{F}_r) \setminus M_{fi}(\mathbb{F}_r)$ and $M_i(\mathbb{F}_r) = \overline{\text{Hull}(M_{ie}(\mathbb{F}_r))}$.

Theorem

$M_i(\mathbb{F}_r)$ is a Poulsen simplex. So $M_{ie}(\mathbb{F}_r) \cong L^2$.

Lewis Bowen (Texas A&M)
Given two Schreier coset graphs $K_1 \backslash F_r$, $K_2 \backslash F_r$, we can connect them together by replacing a vertex of each with 2 vertices and adding some edges.
Ergodic measures are dense

Let $\eta \in M_i(F_r)$.

For $\rho \in (0,1)$ we will construct $\eta_\rho \in M_{ie}(F_r)$ such that $\lim_{\rho \to 0} \eta_\rho = \eta$.
Let $K < \mathbb{F}_r$ be random with law η.
Building an ergodic approximation

Color each vertex of $K \backslash F_r$ red with prob. p independently.
Building an ergodic approximation

At a red vertex, choose a random subgroup $L < F_r$ with law η independent of K and attach its Schreier coset graph by surgery to $K \backslash F_r$.
At a red vertex, choose a random subgroup $J < \mathbb{F}_r$ with law η independent of K and other subgroups and attach its Schreier coset graph by surgery to $K \backslash \mathbb{F}_r$.
Building an ergodic approximation
Building an ergodic approximation
Building an ergodic approximation
Building an ergodic approximation

This is the Schreier coset graph of a random subgroup $K < F_2$. Let η_p be the law of this subgroup. Show:

η_p is ergodic and $\lim_{p \to 0} \eta_p = \eta$.

Lewis Bowen (Texas A&M)
Building an ergodic approximation

This is the Schreier coset graph of a random subgroup $K < \mathbb{F}_2$. Let η_p be the law of this subgroup. Show: η_p is ergodic and $\lim_{p \to 0} \eta_p = \eta$.
Further results and questions

- (Abert-Glasner-Weiss) If $K < G$ is an ergodic IRS then
 $\rho(K \backslash G) = \rho(G) \iff K$ is amenable a.s.
Further results and questions

- (Abert-Glasner-Weiss) If $K < G$ is an ergodic IRS then
 $$\rho(K \setminus G) = \rho(G) \iff K \text{ is amenable a.s.}$$

- (B.) Any ergodic aperiodic probability-measure-preserving equivalence relation (X, μ, E) with $\text{cost}(E) < r$ is isomorphic to $(\text{Sub}(\mathbb{F}_r), \lambda, E_{\mathbb{F}_r})$ for some $\lambda \in M(\mathbb{F}_r)$.
Further results and questions

- (Abert-Glasner-Weiss) If $K < G$ is an ergodic IRS then
 $\rho(K \backslash G) = \rho(G) \iff K$ is amenable a.s.

- (B.) Any ergodic aperiodic probability-measure-preserving
 equivalence relation (X, μ, E) with cost$(E) < r$ is isomorphic to
 $(\text{Sub}(\mathbb{F}_r), \lambda, E_{\mathbb{F}_r})$ for some $\lambda \in M(\mathbb{F}_r)$.

- (Bartholdi-Grigorchuk) There is a finitely generated group G with
 an ergodic IRS K so that the Schreier coset graph $K \backslash G$ has
 polynomial growth of irrational degree almost surely.