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Riemann surface actions

Let X be a compact Riemann surface of genus g, and let G

be the group of all conformal automorphisms of X.

Then X is isomorphic to the quotient space U/Λ of the upper

half-plane U via its fundamental group Λ, and G is isomorphic

to Γ/Λ, where Γ is the normalizer of Λ in PSL(2,R), the

group of all orientation-preserving isometries of U.

The groups Γ and Λ are called Fuchsian groups, which by

definition are co-compact discrete subgroups of PSL(2,R).

The group Λ is also called a surface-kernel group.



Fuchsian groups and signatures

Every Fuchsian group Γ has a finite presentation in terms

of (say) r elliptic generators x1, x2, . . . , xr and 2γ hyperbolic

generators a1, b1, . . . , aγ, bγ, subject to the defining relations

x1
m1 = x2

m2 = · · · = xrmr = [a1, b1] . . . [aγ, bγ]x1 . . . xr = 1.

The presentation can be encoded by the signature of Γ,

which is σ(Γ) = (γ; m1,m2, . . . ,mr) .

If the surface-kernel group Λ is the fundamental group of a

compact Riemann surface of genus g, then r = 0 and γ = g,

so that Λ has signature (g; −).



Riemann-Hurwitz formula

The area of a fundamental region for the Fuchsian group Γ
with signature (γ; m1,m2, . . . ,mr) is µ(Γ) = 2πξ(Γ), where

ξ(Γ) = 2γ − 2 +
r∑

i=1

(
1−

1

mi

)
.

If Λ ≤ Γ with finite index, then µ(Λ) = |Γ : Λ| · µ(Γ), or,
equivalently, ξ(Λ) = |Γ:Λ| · ξ(Γ). In particular, if G = Γ/Λ is
the conformal automorphism group of a compact Riemann
surface of genus g, then ξ(Λ) = 2g − 2 and therefore

2g − 2 = |G|

2γ − 2 +
r∑

i=1

(
1−

1

mi

) .
This is known as the Riemann-Hurwitz formula.



Triangle groups

The ‘group order to genus’ ratio is
|G|

2g − 2
=
|Γ:Λ|
ξ(Λ)

=
1

ξ(Γ)
.

For genus g > 1, this ratio is maximised when ξ(Γ) takes its

minimum positive value, which is 1
84, and occurs when the

group Γ has signature (0; 2,3,7). This is Hurwitz’s theorem

(and then quotients of Γ are called Hurwitz groups).

More generally, a Fuchsian group with signature (0; k, l,m)

is called a triangle group, and has defining presentation

∆(k, l,m) = 〈 x, y, z | xk = yl = zm = xyz = 1 〉.



Big question (by Martin Bridson & Alan Reid)

If Γ and Σ are Fuchsian groups that have exactly the same

finite quotients, then are Γ and Σ isomorphic?

In other words, is every Fuchsian group determined up to

isomorphism by its finite quotients?

Important case: What about triangle groups?



Preliminaries

Let Γ be the (r, s, t) triangle group, with presentation

∆(r, s, t) = 〈 x, y, z | xyz = xr = ys = zt = 1 〉.

We can assume r ≤ s ≤ t (by permutation and/or inversion
of the three generators).

Also the (r, s, t) triangle group Γ is called

• spherical (genus 0) if 1
r + 1

s + 1
t > 1

• euclidean (genus 1) if 1
r + 1

s + 1
t = 1

• hyperbolic (genus g > 1) if 1
r + 1

s + 1
t < 1.

Now suppose the (r, s, t) triangle group Γ and the (u, v.w)
triangle group Σ have exactly the same finite quotients.



Some properties of hyperbolic triangle groups

If 1
r + 1

s + 1
t < 1, then the (r, s, t) triangle group ∆ is

• infinite

• insoluble

• residually finite [i.e. the intersection of all subgroups of

finite index in ∆ is trivial]

• SQ-universal [i.e. every countable group is a subgroup

of some quotient of ∆]



Observation 1

If Γ is spherical, then [by Maschke] we know that Γ is cyclic,

dihedral, tetrahedral, octahedral or icosahedral.

In fact:

• Γ ∼= Ct if (r, s, t) = (1, t, t),

• Γ ∼= Dt if (r, s, t) = (2,2, t),

• Γ ∼= A4 if (r, s, t) = (2,3,3),

• Γ ∼= S4 if (r, s, t) = (2,3,4),

• Γ ∼= A5 if (r, s, t) = (2,3,5).

Conversely, if Γ is finite, then Γ is spherical.

Corollary 1: If Γ is spherical, then so is Σ, and Γ ∼= Σ.



Observation 2

If Γ is toroidal, then Γ is infinite and soluble, with free abelian

derived group Γ′ = [Γ,Γ] and finite abelian quotient Γ/[Γ,Γ].

In fact:

• Γ/[Γ,Γ] ∼= C6 if (r, s, t) = (2,3,6),

• Γ/[Γ,Γ] ∼= C2 × C4 if (r, s, t) = (2,4,4),

• Γ/[Γ,Γ] ∼= C3 × C3 if (r, s, t) = (3,3,3).

Conversely, if Γ is infinite and soluble, then Γ is toroidal.

Corollary 2: If Γ is toroidal, then so is Σ, and Γ ∼= Σ.

So from now on, we may suppose that Γ and Σ are both

hyperbolic. In particular, Γ and Σ are infinite but insoluble.



Observation 3

The abelianisation of the (r, s, t) triangle group Γ is Cd×Ce
where d = gcd(r, s, t), e = lcm(gcd(r, s),gcd(r, t),gcd(s, t)),

and de = rst/lcm(r, s, t).

[For example, the abelianisation of ∆(4,6,28) is C2 × C4.]

Corollary 3:

(a) gcd(r, s, t) = gcd(u, v, w),

(b) rst
lcm(r,s,t) = uvw

lcm(u,v,w) , and

(c) lcm(gcd(r, s),gcd(r, t),gcd(s, t))

= lcm(gcd(u, v),gcd(u,w),gcd(v, w)).



Observation 4

Let us say that a group G is (r, s, t)-generated if G can

be generated by elements a, b and c of orders r, s and t

respectively such that abc = 1 ... or in other words, if G is

a smooth quotient Γ/Λ of the (r, s, t)-triangle group Γ.

Moreover, for any triple (r, s, t), the set of (r, s, t)-generated

groups is non-empty. The latter follows from the known

fact that every hyperbolic triangle group is residually finite

(or from Macbeath’s theorem, to come).

Corollary 4: The groups Γ and Σ have exactly the same

sets of (r, s, t)-generated quotients and (u, v, w)-generated

quotients, and each of these sets is non-empty.



Macbeath’s theorem [A.M. Macbeath (1969)]

Let (r, s, t) be a hyperbolic triple other than (2,5,5), (3,4,4),

(3,3,5), (3,5,5) or (5,5,5). Then for any odd prime p, the

group PSL(2, pf) is (r, s, t)-generated if and only if pf is the

smallest power of p for which PSL(2, pf) contains elements

of orders r, s and t.

The five triples above, together with the spherical triples and

the triple (3,3,3), were called exceptional by Macbeath.

Note that A5
∼= PSL(2,5) is (2,5,5)-, (3,3,5)-, (3,5,5)- and

(5,5,5)-generated, while the group S4 is (3,4,4)-generated.



Observation 5

If G = Γ/Λ is the smallest (r, s, t)-generated quotient of Γ,

then Λ is a Fuchsian group with signature (2g;−), being

the fundamental group of a Riemann surface S of genus g,

where 2− 2g = |G|
(

1
r + 1

s + 1
t − 1

)
, by Riemann-Hurwitz.

In particular, Λ/Λ′ is free abelian of rank 2g.

It follows that for any positive integer n coprime to |G|, the

largest quotient of Γ that is an extension of an abelian group

of exponent n by the group G is the quotient Γ/Λ′Λn, which

has order n2g|G|.

Corollary 5: 1
r + 1

s + 1
t = 1

u + 1
v + 1

w [Pf: Same g for both.]



Observation 6

For any prime divisor p of rst, let pα, pβ and pγ be the largest

powers of p dividing r, s and t, ordered so that α ≤ β ≤ γ.

Then:

(a) pα is the largest power of p dividing gcd(r, s, t),

(b) pγ is the largest power of p dividing lcm(r, s, t),

(c) pα+β+γ is the largest power of p dividing rst,

(d) pα+β is the largest power of p dividing rst
lcm(r,s,t).

Furthermore, either β = γ, or pγ is the largest power of p

dividing the reduced denominator of 1
r + 1

s + 1
t = rs+rt+st

rst .



Corollary 6a: rst = uvw, and lcm(r, s, t) = lcm(u, v, w), and

rs+ rt+ st = uv + uw + vw.

Proof. For any prime divisor p of rst, the largest powers of p

dividing r,s and t are determined by the quantities gcd(r, s, t),
rst

lcm(r,s,t) and 1
r + 1

s + 1
t . By Corollaries 3 and 5, these three

quantities are the same for the triple (u, v, w), and hence the

largest powers of p dividing u, v and w are equal to those

for r,s and t (in some order). The rest follows easily. �

Corollary 6b: If (r, s, t) is one of the exceptional hyperbolic

triples (2,5,5), (3,4,4), (3,3,5), (3,5,5) or (5,5,5), then

(r, s, t) = (u, v, w).

Proof. Each such triple (r, s, t) is uniquely determined by rst

(plus lcm(r, s, t) and gcd(r, s, t) in the case of (3,4,4)). �



Corollary 6c: If the triples (r, s, t) and (u, v, w) have an entry

in common, then (r, s, t) = (u, v, w).

Proof. Suppose for example that t = w.

Then rs = rst
t = uvw

w = uv, and then since rs + (r + s)t =

rs+rt+st = rst(1
r+1

s+1
t ) = uvw(1

u+1
v+ 1

w) = uv+uw+vw =

uv + (u+ v)w, we find that r + s = u+ v.

It is now an elementary exercise to deduce from rs = uv and

r + s = u+ v that {r, s} = {u, v}.

The same argument works for all other coincidences. �



Observation 7

If Γ has a dihedral group Dm as a quotient, then its abelian-
isation has even order, so at least two of r, s and t are even.

Corollary 7: If at least two of r, s and t are even, then
(r, s, t) = (u, v, w).

Proof. By comparison of abelianisations, at least two of u,
v and w are even. Now let m = max(t, w) if all three of r,
s and t are even, or let m be the largest odd integer among
r, s, t, u, v and w otherwise. Then Dm is a quotient of Γ or Σ,
and hence must also be a quotient of the other. It follows
that m appears in both triples (r, s, t) and (u, v, w), and so
by Corollary 6c, we have (r, s, t) = (u, v, w). �



Do we have enough yet?

No!

There are 3581 pairs of distinct triples {(r, s, t), (u, v, w)} with

(a) r ≤ s ≤ t and u ≤ v ≤ w,

(b) rst = uvw ≤ 12,000,000,

(c) gcd(r, s, t) = gcd(u, v, w) and lcm(r, s, t) = lcm(u, v, w),

(d) rs+ rt+ st = uv + uw + vw, and

(e) at most one of r, s, t being even.

e.g. take (5,14,21) and (7,7,30), or (4,11,105) and (5,7,132).



Observation 8

Define the L2-set of a triple (k, l,m) to be the (unique) set

of pairwise coprime positive integers such that

(a) their LCM is the same as the LCM of {k, l,m}, and

(b) each of k, l and m divides exactly one member of the set

— e.g. the L2-set of (6,15,19) is {19,30}.

If the triple (k, l,m) is non-exceptional, then by Macbeath’s

theorem, PSL(2, p) is (k, l,m)-generated iff each member of

the L2-set of (k, l,m) is equal to p or a divisor of p±1
2 .

Corollary 8a: If the triples (r, s, t) and (u, v, w) are non-

exceptional, then they have the same L2-set.



Corollary 8b: If one of r, s, t is coprime to each of the other

two, then (r, s, t) = (u, v, w). In particular, if Γ is perfect,

then (r, s, t) = (u, v, w).

Proof. Suppose that (r, s, t) 6= (u, v, w), and also, say, that

gcd(r, st) = 1. (The other two cases are similar.) Then

since uvw = rst (by Corollary 6a) and each of u, v and w is

distinct from r, s and t (by Corollary 6c), at least one of u, v

and w divides neither r nor st, and hence is of the form cd

where c and d are non-trivial divisors of r and st respectively.

It follows that the L2-sets of (r, s, t) and (u, v, w) are distinct,

contradiction. �

Thus any two non-isomorphic perfect triangle groups are

distinguished by their finite quotients.



Observation 9

For every triple (k, l,m) such that k, l,m > 1 and at most one

of k, l,m is even, and for every integer q > 3 that does not

divide any of the members of the L2-set of (k, l,m), there

exists a finite quotient G of the (k, l,m) triangle group such

that G has no element of order q. [The proof is easy.]

Corollary 9: The integers u, v and w do not have non-trivial

divisors u′, v′ and w′ such that one of r, s and t is coprime to

each of 6, u′, v′ and w′.

Proof. If q ∈ {r, s, t} is coprime to 6, u′, v′ and w′, then there

exists a finite quotient G of the (u′, v′, w′) triangle group

such that G has no non-trivial element of order dividing q.

But then G is a quotient of ∆(u, v, w) but not ∆(r, s, t). �



Application/example

Consider the triples (17,162,459) and (27,34,1377).

Note that 17 divides 459, 34 and 1377, and if we ‘suppress’

it (by dividing through by 17), then we obtain the two sub-

triples (1,162,27) and (27,2,81).

Now PSL(2,163) is a quotient of ∆(27,2,81), and hence

one of ∆(27,34,1377), but because it has no element of

order 17, it cannot be a quotient of ∆(17,162,459).

Thus ∆(17,162,459) 6∼= ∆(27,34,1377).

Note: Equivalently, only the latter has C17×PSL(2,163) as

a smooth quotient.



Summary of where we’re at:

The observations made so far are sufficient to distinguish

most triangle groups from each other, using just abelian,

dihedral and 2-dimensional projective quotients (and exten-

sions of abelian groups by the latter).

But these are not completely sufficient.

For example, consider the triples (15,42,63) and (21,21,90),

which satisfy the conclusions of Corollaries 3, 5 and 6a, but

do not satisfy the hypothesis of Corollary 8b and do not

admit the kinds of divisors met in Corollary 9.

For such triples, we need to consider further types of quo-

tients, so we turn to other direct products.



Example

Consider the triples (5,35,42) and (7,10,105).

We can think of (5,35,42) as a kind of ‘product’ of the

triples (5,5,6) and (5,7,7), and then see that the direct

product PSL(2,11)× PSL(2,29) is (5,35,42)-generated.

But on the other hand, elements of PSL(2,11) have orders

dividing 5, 6 and 11, while elements of PSL(2,29) have

orders dividing 14, 15 and 29, and so the direct product

PSL(2,11)×PSL(2,29) has no element of order 105. Hence

PSL(2,11)× PSL(2,29) is not (7,10,105)-generated.

Thus ∆(5,35,42) 6∼= ∆(7,10,105).



Observation 10

Suppose (r1, s1, t1) and (r2, s2, t2) are sub-triples such that

r = lcm(r1, r2), s = lcm(s1, s2) and t = lcm(t1, t2). If G

and H are finite groups that are (r1, s1, t1)- and (r2, s2, t2)-

generated, say by element triples (x1, y1, z1) and (x2, y2, z2),

then some subgroup of G × H is (r, s, t)-generated, by the

triple ((x1, x2), (y1, y2), (z1, z2)).

Corollary 10: If q1 and q2 are coprime positive integers,

each greater than 3, such that q1q2 divides at least one of

u, v and w, then either q1q2 divides at least one of r, s and t,

or otherwise one of r, s and t is prime and equal to q1 or q2.

[Proof uses quotients of the form G×PSL(2, p) for some p.]



Theorem [2011, not yet published]

If Γ and Σ are triangle groups having exactly the same finite

homomorphic images, then Γ ∼= Σ.

Proof. Assume the theorem is false. Let (r, s, t) and (u, v, w)

be distinct triples such that Γ = ∆(r, s, t) and Σ = ∆(u, v, w)

have exactly the same finite quotients.

WLOG assume w = max{r, s, t, u, v, w}. By Corollary 6c, we

have r ≤ s ≤ t < w, so w cannot divide r, s or t.

If w is a prime-power, then w divides lcm(r, s, t) = lcm(u, v, w)

and so divides at least one of r, s, t, contradiction. Hence w

is composite, say w = q1q2, with 1 < q1 < q2 < w.



Now q1q2 = w divides none of r, s and t, and so Corollary 10

applies, giving a contradiction unless q1 and q2 cannot be

chosen such that each is each is greater than 3, and neither

is both prime and equal to one (or more) of r, s and t.

An easy number-theoretic exercise then shows that

(a) q1 = 2 and q2 is an odd prime-power, or

(b) q1 = 3 and q2 is a prime-power, or

(c) one of q1 and q2 is prime and equal to r, s or t,
and the other is a prime-power, or

(d) w = 6p where p > 3 is a prime equal to r, s or t.

We can eliminate each of these four cases in turn, using the

earlier results [in about a third of a page for each case].



Final note

Recall there are 3581 pairs of distinct triples {(r, s, t), (u, v, w)}
with

(a) r ≤ s ≤ t and u ≤ v ≤ w,

(b) rst = uvw ≤ 12,000,000,

(c) gcd(r, s, t) = gcd(u, v, w) and lcm(r, s, t) = lcm(u, v, w),

(d) rs+ rt+ st = uv + uw + vw, and

(e) at most one of r, s, t being even.

All of these 3581 pairs can be eliminated using Corollary 8b

(the ‘coprime’ test) or Corollary 10 (on direct products), ex-

cept for one pair, viz. {(17,162,459), (27,34,1377)}, which

we eliminated using Corollary 9 (by ‘suppressing’ r = 17).


