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Main result

Theorem (Sunic-V.)

There exist automaton groups (i.e. self-similar groups generated by
finite self-similar sets) with unsolvable conjugacy problem.

Related results:

Grigorchuk-Nekrashevych-Sushchanskiı̆ (00): Is CP solvable for
automaton groups ?

WP is solvable for all such groups (straightforward, at most
exponential time).

WP is solvable in polynomial time, for the subclass of f.g.
contracting groups.
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Related results

Leonov (98) and Rozhkov (98) indep.: CP for the first Grigorchuk
group.

Wilson-Zaleskii (97): CP for the Gupta-Sidki groups.

Grigorchuk-Wilson (00): CP for all subgroups of finite index in the
first Grigorchuk group.

Bondarenko-Bondarenko-Sidki-Zapata (10): CP for groups
generated by bounded automata (i.e. Pol(0) groups).

Lysenok-Myasnikov-Ushakov (10): CP in polynomial time for the
first Grigorchuk group.
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A question

Our examples contain free nonabelian subgroups, so

Question
Is the CP solvable for all f.g., contracting, self-similar groups ?

Is the CP solvable for automaton groups in Pol(n), for n > 1 ?
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Strategy of the proof

Will use results from Bogopolski-Martino-Ventura:

Observation (B-M-V, 08)

Let H be f.g., and Γ 6 Aut(H) f.g. If Γ 6 Aut(H) is orbit undecidable
then H o Γ has unsolvable CP.

and

Proposition (B-M-V, 08)

For d > 4, there exist f.g., orbit undecidable, subgroups Γ 6 GLd (Z).

and then show that

Theorem (Sunic-V.)

Let Γ 6 GLd (Z) be f.g. Then, Zd o Γ is an automaton group.
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Strategy of the proof

With an easy and nice idea due to Zoran, we get the improvement

Proposition (Sunic-V.)

For d > 6, GLd (Z) contains f.g., orbit undecidable, free, subgroups.

Hence, we deduce:

Theorem (Sunic-V.)

For d > 6, there exists a f.p. group G simultaneously satisfying the
following three conditions:

G is Zd -by-free,
G is an automaton group,
G has unsolvable conjugacy problem.
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Orbit decidability

(joint work with O. Bogopolski and A. Martino)

Definition

Let H be f.g. A subgroup Γ 6 Aut(H) is said to be orbit decidable
(O.D.) if there is an algorithm s.t., given u, v ∈ H, it decides whether v
and α(u) are conjugate, for some α ∈ Γ.

First examples: H = Zd

Observation (folklore)

The full group Aut(Zd ) = GLd (Z) is orbit decidable.

Proof. For u, v ∈ Zd , there exists A ∈ GLd (Z) such that v = Au if and
only if gcd(u1, . . . ,ud ) = gcd(v1, . . . , vd ).
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OD subgroups in GLd(Z)

Proposition (linear algebra)

For A ∈ GLd (Z), the subgroup 〈A〉 6 GLd (Z) is O.D.

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of GLd (Z) are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of GL2(Z) is O.D.
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OD subgroups in Aut(Fr)

Examples over the free group: H = Fr

Theorem (Whitehead’30)

The full group Aut(Fr ) is orbit decidable. That is, given u, v ∈ Fr one
can decide whether v = α(u) for some α ∈ Aut(Fr ).

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of Aut(Fr ) are orbit decidable. That is, given
ϕ ∈ Aut(Fr ) and u, v ∈ Fr , one can decide whether v = ϕn(u), up to
conjugacy, for some n ∈ Z.

Proof. A difficult result using train-tracks.



1. Introduction 2. Strategy of the proof 3. Orbit decidability 4. Automaton groups

OD subgroups in Aut(Fr)

Examples over the free group: H = Fr

Theorem (Whitehead’30)

The full group Aut(Fr ) is orbit decidable. That is, given u, v ∈ Fr one
can decide whether v = α(u) for some α ∈ Aut(Fr ).

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of Aut(Fr ) are orbit decidable. That is, given
ϕ ∈ Aut(Fr ) and u, v ∈ Fr , one can decide whether v = ϕn(u), up to
conjugacy, for some n ∈ Z.

Proof. A difficult result using train-tracks.



1. Introduction 2. Strategy of the proof 3. Orbit decidability 4. Automaton groups

OD subgroups in Aut(Fr)

Examples over the free group: H = Fr

Theorem (Whitehead’30)

The full group Aut(Fr ) is orbit decidable. That is, given u, v ∈ Fr one
can decide whether v = α(u) for some α ∈ Aut(Fr ).

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of Aut(Fr ) are orbit decidable. That is, given
ϕ ∈ Aut(Fr ) and u, v ∈ Fr , one can decide whether v = ϕn(u), up to
conjugacy, for some n ∈ Z.

Proof. A difficult result using train-tracks.



1. Introduction 2. Strategy of the proof 3. Orbit decidability 4. Automaton groups

OD subgroups in Aut(Fr)

Examples over the free group: H = Fr

Theorem (Whitehead’30)

The full group Aut(Fr ) is orbit decidable. That is, given u, v ∈ Fr one
can decide whether v = α(u) for some α ∈ Aut(Fr ).

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of Aut(Fr ) are orbit decidable. That is, given
ϕ ∈ Aut(Fr ) and u, v ∈ Fr , one can decide whether v = ϕn(u), up to
conjugacy, for some n ∈ Z.

Proof. A difficult result using train-tracks.



1. Introduction 2. Strategy of the proof 3. Orbit decidability 4. Automaton groups

OD subgroups in Aut(Fr)

Examples over the free group: H = Fr

Theorem (Whitehead’30)

The full group Aut(Fr ) is orbit decidable. That is, given u, v ∈ Fr one
can decide whether v = α(u) for some α ∈ Aut(Fr ).

Proof. This is a classical and very influential result.

Theorem (Brinkmann, 06)

Cyclic groups of Aut(Fr ) are orbit decidable. That is, given
ϕ ∈ Aut(Fr ) and u, v ∈ Fr , one can decide whether v = ϕn(u), up to
conjugacy, for some n ∈ Z.

Proof. A difficult result using train-tracks.



1. Introduction 2. Strategy of the proof 3. Orbit decidability 4. Automaton groups

OD subgroups of Aut(Fr)

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of Aut(Fr ) are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of Aut(F2) is O.D.



1. Introduction 2. Strategy of the proof 3. Orbit decidability 4. Automaton groups

OD subgroups of Aut(Fr)

Proposition (Bogopolski-Martino-V., 08)

Finite index subgroups of Aut(Fr ) are O.D.

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of Aut(F2) is O.D.



1. Introduction 2. Strategy of the proof 3. Orbit decidability 4. Automaton groups

Connection to semidirect products

Observation (B-M-V)

Let H be f.g., and Γ 6 Aut(H) f.g. If H o Γ has solvable CP, then
Γ 6 Aut(H) is orbit decidable.

Proof. G = H o Γ contains elements (h, γ) ∈ H × Γ operated like

(h1, γ1) · (h2, γ2) = (h1γ1(h2), γ1γ2)

(h, γ)−1 = (γ−1(h−1), γ−1).

For h1, h2 ∈ H 6 G, we have h1 ∼G h2 ⇔ ∃(h, γ) ∈ H o Γ s.t.

(h2, Id) = (h, γ)−1 · (h1, Id) · (h, γ)
(γ−1(h−1), γ−1) · (h1h, γ)
(γ−1(h−1h1h), Id).

Hence, h1 ∼G h2 ⇔ ∃γ ∈ Γ and h ∈ H s.t. h1 = hγ(h2)h−1. �
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Connection to semidirect products

In fact, for the free and free abelian cases (among others), the
convers is also true, after “erasing the relations from Γ”:

Theorem (B-M-V, 08)

Let H be Zd or Fr , and Γ 6 Aut(H) generated by α1, . . . , αm. Then,
H oα1,...,αm Fm has solvable CP if and only if
Γ = 〈α1, . . . , αm〉 6 Aut(H) is orbit decidable.

Corollary

Zd -by-Z groups have solvable conjugacy problem.

Corollary

If Γ = 〈M1, . . . ,Mm〉 is of finite index in GLd (Z) then Zd oM1,...,Mm Fm
has solvable conjugacy problem.

Corollary

Every Z2-by-free group has solvable conjugacy problem.
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Connection to semidirect products

Corollary (Bogopolski-Martino-Maslakova-V., 06)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary

If Γ = 〈ϕ1, . . . , ϕm〉 has finite index in Aut(Fr ) then Fr oϕ1,...,ϕm Fm has
solvable conjugacy problem.

Corollary

Every F2-by-free group has solvable conjugacy problem.

What we shall use is:

Observation (B-M-V, 08)

Let H be f.g., and Γ 6 Aut(H) f.g. If Γ 6 Aut(H) is orbit undecidable
then H o Γ has unsolvable CP.
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But...

Theorem (Miller, 70’s)

There are free-by-free groups with unsolvable conjugacy problem.

So, there must be orbit undecidable subgroups in Aut (Fr ), for r > 3.
Where are them ?

Proposition (Bogopolski-Martino-V., 08)

Let H be a group, and let A 6 B 6 Aut(H) and v ∈ H be such that
B ∩ Stab∗(v) = 1. Then,

OD(A) solvable ⇒ MP(A,B) solvable.
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{φ ∈ B | vφ ∼ w} = B ∩ (Stab∗(v) · ϕ) = (B ∩ Stab∗(v)) · ϕ = {ϕ}.

So, deciding whether v can be mapped to w, up to conjugacy, by
somebody in A, is the same as deciding whether ϕ belongs to A.
Hence,

OD(A) ⇒ MP(A,B).�
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Finding orbit undecidable subgroups

So,...

Taking the copy B of F2 × F2 in Aut(F3) via the embedding

F2 × F2 ↪→ Aut (F3),
(u, v) 7→ uθv : F3 → F3

q 7→ u−1qv
a 7→ a
b 7→ b

and a Mihailova subgroup in there A 6 B 6 Aut(F3) (taking
v = qaqbq) one obtains precisely the orbit undecidable subgroups
corresponding to Miller’s examples.
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Finding orbit undecidable subgroups

Proposition (B-M-V, 08)

For d > 4, there exist f.g., orbit undecidable, subgroups Γ 6 GLd (Z).

Proof. Consider F2 ' 〈P =

(
1 1
1 2

)
, Q =

(
2 1
1 1

)
〉 ≤24 GL2(Z).

Stab(1,0) = {M | (1,0)M = (1,0)} = {
(

1 0
n ±1

)
| n ∈ Z}.

〈P,Q〉 ∩ Stab(1,0) = 〈
(

1 0
12 1

)
〉.

Choose a free subgroup F2 ' 〈P ′,Q′〉 ≤ 〈P,Q〉 such that
〈P ′,Q′〉 ∩ Stab(1,0) = {I} and consider

B = 〈
(

P ′ 0
0 I

)
,

(
Q′ 0
0 I

)
,

(
I 0
0 P ′

)
,

(
I 0
0 Q′

)
〉 ≤ GL4(Z).

Note that B ' F2 × F2.
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Finding orbit undecidable subgroups

Write v = (1,0,1,0). By construction, B ∩ Stab(v) = {I}.
Take A ≤ B ' F2 × F2 with unsolvable membership problem.
By previous Proposition, A 6 GL4(Z) is orbit undecidable.
Similarly for A 6 GLd (Z), d > 4. �

Question

Does there exist an orbit undecidable subgroup of GL3(Z) ?
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Playing with 2 extra dimensions...

These orbit undecidable examples Γ 6 GL4(Z) come from Mihailova’s
construction, so they are not finitely presented...

Proposition (Sunic-V.)

For d > 6, GLd (Z) contains f.g., orbit undecidable, free, subgroups.

Proof. Let d > 6.
Since d − 2 > 4, there exists 〈g1, . . . ,gm〉 = Γ 6 GLd−2(Z) being
orbit undecidable.
Let Fm = 〈f1, . . . , fm〉, and choose matrices s1, . . . , sm ∈ GL2(Z)
such that 〈s1, . . . , sm〉 ' Fm.
Consider the homomorphism given by

φ : Fm → GLd (Z)

fi 7→
(

gi 0
0 si

)
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Playing with 2 extra dimensions...

Since 〈s1, . . . , sm〉 6 GL2(Z) is free with basis {s1, . . . , sm}, then
φ must be one-to-one, and its image F is a free subgroup of
GLd (Z) or rank m.
Easy to see that F 6 GLd (Z) is orbit undecidable (using the orbit
undecidability of 〈g1, . . . ,gm〉 = Γ 6 GLd−2(Z)). �

In summary,

For d > 6, there exists a free Γ 6 GLd (Z) such that Zd o Γ has
unsolvable CP.
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Tree automorphisms

(joint work with Z. Sunic)

Let X be an alphabet on k letters, and let X ∗ be the free monoid on
X , thought as a rooted k -ary tree:

∅

wwooooooooooooooo

''OOOOOOOOOOOOOOO

a

��~~
~~

~~
~~

  @
@@

@@
@@

@ b

~~~~
~~

~~
~~

  @
@@

@@
@@

@

aa ab ba bb

· · · · · · · · ·

Definition
Every tree automorphism g decomposes as a root permutation
πg : X → X, and k sections g|x , for x ∈ X:

g(xw) = πg(x)g|x (w).
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Automaton groups

Definition
A set of tree automorphisms is self-similar if it contains all
sections of all of its elements.
A finite automaton is a finite self-similar set (elements are called
states).
The group G(A) of tree automorphisms generated by an
automaton A is called an automaton group.

The Grigorchuk group: G = 〈α, β, γ, δ〉, where

α = σ(1,1), β = 1(α, γ), γ = 1(α, δ), δ = 1(1, β).
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Affinities of n-adic integers

Definition

LetM = {M1, . . . ,Mm} be integral d × d matrices with non-zero
determinants. Let n > 2 be relatively prime to all these determinants
(thus, Mi is invertible over the ring Zn of n-adic integers).

For an integral d × d matrix M and v ∈ Zd , consider the invertible
affine transformation vM : Zd

n → Zd
n , vM(u) = v + Mu.

Let
GM,n = 〈{vM | M ∈M, v ∈ Zd}〉 6 Affd (Zn).

Lemma
The group GM, n is finitely generated.
If, in addition, det Mi = ±1, then GM,n ∼= Zd o Γ, where
Γ = 〈M1, . . . ,Mm〉 6 GLd (Z); in particular, GM,n does not depend
on n.
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Affinities of n-adic integers

Proof. Denote the translation by τv : Zd
n → Zd

n , u 7→ u + v.
Since vM = τv 0M, we have GM,n generated by 0M for M ∈M, and
τei , where the ei ’s are the canonical vectors.

If M ∈ GLd (Z), then vM ∈ Affd (Zn) restricts to an integral bijective
affine transformation vM ∈ Affd (Z); hence, we can view
GM,n 6 Affd (Z) (and is independent from n; let’s denote it by GM).

They get multiplied as

vMv′M ′ : u −→ v′ + M ′u −→ v + M(v′ + M ′u) =
(v + Mv′) + MM ′u =

v+Mv′(MM ′)(u).

So, GM ∼= Zd o Γ, where Γ = 〈M1, . . . ,Mm〉 6 GLd (Z).
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GM is an automaton group

So, we have the groups GM,n (withM = {M1, . . . ,Mm} as before) and

det Mi = ±1 ⇒ GM,n ∼= Zd o Γ,

where Γ = 〈M1, . . . ,Mm〉 6 GLd (Z).

It only remains to prove that:

Proposition

GM,n is an automaton group.
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GM is an automaton group

Definition
Elements in Zn may be (uniquely) represented as right infinite words
over Yn = {0, . . . ,n − 1}:

y1y2y3 · · · ←→ y1 + n · y2 + n2 · y3 + · · · .

Similarly, elements of Zd
n (the free d-dimensional module, viewed as

column vectors), may be (uniquely) represented as right infinite words
over Xn = Y d

n = {(y1, . . . , yd )T | yi ∈ Yn}:

x1x2x3 · · · ←→ x1 + n · x2 + n2 · x3 + · · · .

Note that |Yn| = n and |Xn| = nd .
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GM is an automaton group

Definition

For v ∈ Zd , define vectors Mod(v) ∈ Xn and Div(v) ∈ Zd s.t.
v = Mod(v) + n · Div(v).

Lemma

For every v ∈ Zd , and every x1x2x3 . . . ∈ Zd
n , we have

vM(x1x2x3 · · · ) = Mod(v + Mx1) + n ·Div(v+Mx1) M(x2x3x4 · · · ).

Proof.

vM(x1x2 · · · ) = v + Mx1x2 · · · = v + M(x1 + n · (x2x3 · · · ))
= v + Mx1 + n ·Mx2x3 · · ·
= Mod(v + Mx1) + n · Div(v + Mx1) + nMx2x3 · · ·
= Mod(v + Mx1) + n · (Div(v + Mx1) + Mx2x3 · · · )
= Mod(v + Mx1) + n ·Div(v+Mx1) M(x2x3 · · · ). �
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GM is an automaton group

vM(x1x2x3 · · · ) = Mod(v + Mx1) + n ·Div(v+Mx1) M(x2x3x4 · · · ).

Definition
For M ∈M, let VM be the set of integral vectors with coordinates
between −‖M‖ and ‖M‖ − 1 (note that |VM | = (2‖M‖)d ).

Definition
Construct the automaton AM,n:

Alphabet: Xn.
States: mv for v ∈ VM , with root permutation and sections

mv(x) = Mod(v + Mx), and mv|x = mDiv(v+Mx).

Straightforward to see that sections are again states.



1. Introduction 2. Strategy of the proof 3. Orbit decidability 4. Automaton groups

GM is an automaton group

vM(x1x2x3 · · · ) = Mod(v + Mx1) + n ·Div(v+Mx1) M(x2x3x4 · · · ).

Definition
For M ∈M, let VM be the set of integral vectors with coordinates
between −‖M‖ and ‖M‖ − 1 (note that |VM | = (2‖M‖)d ).

Definition
Construct the automaton AM,n:

Alphabet: Xn.
States: mv for v ∈ VM , with root permutation and sections

mv(x) = Mod(v + Mx), and mv|x = mDiv(v+Mx).

Straightforward to see that sections are again states.



1. Introduction 2. Strategy of the proof 3. Orbit decidability 4. Automaton groups

GM is an automaton group

vM(x1x2x3 · · · ) = Mod(v + Mx1) + n ·Div(v+Mx1) M(x2x3x4 · · · ).

Definition
For M ∈M, let VM be the set of integral vectors with coordinates
between −‖M‖ and ‖M‖ − 1 (note that |VM | = (2‖M‖)d ).

Definition
Construct the automaton AM,n:

Alphabet: Xn.
States: mv for v ∈ VM , with root permutation and sections

mv(x) = Mod(v + Mx), and mv|x = mDiv(v+Mx).

Straightforward to see that sections are again states.



1. Introduction 2. Strategy of the proof 3. Orbit decidability 4. Automaton groups

GM is an automaton group

vM(x1x2x3 · · · ) = Mod(v + Mx1) + n ·Div(v+Mx1) M(x2x3x4 · · · ).

Definition
For M ∈M, let VM be the set of integral vectors with coordinates
between −‖M‖ and ‖M‖ − 1 (note that |VM | = (2‖M‖)d ).

Definition
Construct the automaton AM,n:

Alphabet: Xn.
States: mv for v ∈ VM , with root permutation and sections

mv(x) = Mod(v + Mx), and mv|x = mDiv(v+Mx).

Straightforward to see that sections are again states.



1. Introduction 2. Strategy of the proof 3. Orbit decidability 4. Automaton groups

GM is an automaton group

vM(x1x2x3 · · · ) = Mod(v + Mx1) + n ·Div(v+Mx1) M(x2x3x4 · · · ).

Definition
For M ∈M, let VM be the set of integral vectors with coordinates
between −‖M‖ and ‖M‖ − 1 (note that |VM | = (2‖M‖)d ).

Definition
Construct the automaton AM,n:

Alphabet: Xn.
States: mv for v ∈ VM , with root permutation and sections

mv(x) = Mod(v + Mx), and mv|x = mDiv(v+Mx).

Straightforward to see that sections are again states.



1. Introduction 2. Strategy of the proof 3. Orbit decidability 4. Automaton groups

GM is an automaton group

Observation

The state mv ∈ AM,n acts on a vector u = x1x2x3 · · · ∈ Zd
n as

mv(u) = vM(u).

Definition
Construct the automaton AM,n as the disjoint union of the automata
AM1,n, . . . ,AMm,n.

Alphabet: Xn,
It has 2d ∑m

i=1 ||Mi ||d states.

Proposition

GM,n is an automaton group generated by the automaton AM,n (over
an alphabet of size nd , and having 2d ∑m

i=1 ||Mi ||d states).
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GM is an automaton group

Proof. Clearly, G(AM,n) 6 GM,n.

For the other inclusion it remains to see that AM,n has enough states
to generate GM,n. In fact, for every M ∈M, we have states
m0,m−e1 , . . . ,m−ed and so, also have

m0 = 0M : u 7→ Mu

and

τej = m0(m−ej )
−1 : u 7→ M−1(ej + u) 7→ MM−1(ej + u) = ej + u,

which generate GM,n. �
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Conclusion

So, we have proved that

Theorem

For d > 6, there existsM = {M1, . . . , Mm} such that
Γ = 〈M1, . . . , Mm〉 6 GLd (Z) is free and orbit undecidable. Hence,
the group AM,n ' GM,n

is an automaton group,
is Zd -by-free (i.e. ' Zd o Γ),
has unsolvable conjugacy problem.
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