
Artin groups of large type

Sarah Rees,
,

University of Newcastle, UK

Stevens Group Theory Webinar, October 6th 2011

1



Abstract: Artin groups of large type

Artin groups are those groups with presentations of the form

〈a1, . . . , an |
mij︷ ︸︸ ︷

aiajai · · · =
mij︷ ︸︸ ︷

ajaiaj · · ·, i < j,mij ∈ N ∪∞,mij ≥ 2〉.
Braid groups, free groups, and free abelian groups provide examples, and
Coxeter groups are natural quotients. Following Appel&Schupp, we say
that such a group has large type if each mij is at least 3. It was proved 20
years ago by Appel and Schupp using small cancellation techniques that
Artin groups of large type have soluble word and conjugacy problem; later
Peifer and Brady&McCammond used small cancellation to prove many of
these biautomatic.

I’ll describe joint work with Derek Holt that describes the set L of shortlex
minimal geodesics for any Artin group G of large type, given any ordering



of its (natural) generating set, proves both L and the set of all geodesics to
be regular sets, and proves that L provides a shortlex automatic structure
for G. Hence G admits a quadratic time solution to the word problem,
using a reduction process that has parallels with Tits’ solution to the
word problem for Coxeter groups, and has a quadratic Dehn function.
Subgroups generated by subgroups of the natural generating set (proved
already to be Artin groups (see Appel&Schupp; Appel; Lek) are now seen
to be quasiconvex (in fact convex) in G. This work builds on work of
Mairesse and Mathéus that identifies the geodesics in dihedral (i.e. 2-
generator) Artin groups.



Notation

G = 〈X〉 is a group, |X| <∞.

A word over X is a string over X± := X∪X−1, i.e. an element of X±∗.
We use = for equality of strings, =G for equality of group elements, |w|
for the string length of w, |w|G for min{|u| : u =G w}.
The shortlex word order puts u before v (u <slex v) if either |u| < |v| or
|u| = |v| but u precedes v lexicographically.

So
cat <slex dog <slex cats.



Artin groups

An Artin group is defined in terms of a Coxeter matrix, i.e. a symmetric
matrix (mij) with entries in N∪{∞}, and off-diagonal entries all at least
2. It has a presentation

〈a1, . . . , an | mij(ai, aj) = mij(aj, ai) for each i 6= j〉,
where we write m(a, b) for the alternating product aba · · · of length m,
(later we’ll also write (a, b)m for · · · bab).

Adding the relations a2
i = 1 defines the associated Coxeter group.

An Artin group is said to be of spherical or finite type if the Coxeter
group is finite, and of dihedral type if it is 2-generated.

It is of large or extra-large type if all mij are at least 3, or at least 4.

It is right angled if all mij are 2 or infinite.



The word and conjugacy problems

Let G = 〈X | R〉 be a group, |X| <∞.

G has soluble word problem if ∃ algorithm to decide, given any input
word w over X , ‘w =G 1?’

G has soluble conjugacy problem if ∃ algorithm to decide, given
any pair of input words w, v over X , ‘∃g ∈ G : gwg−1 =G v?’.

It’s well known that both problems are theoretically insoluble even for
finitely presented groups, and that there are groups with soluble word
problem but insoluble conjugacy problem.

Dehn’s algorithm solves the word problem in word hyperbolic groups,
reducing any representative of the identity to the empty word through a
sequence of strictly length reducing substitutions.



Automatic and biautomatic groups

G is automatic if ∃ a regular set L of representative words over X , and
k ∈ N s.t. any v, w ∈ L with |v−1w|G ≤ 1 k-fellow travel.
Then (L, k) is an automatic structure for G.

L is regular if ‘w ∈ L?’ can be decided by reading w sequentially using
bounded memory, i.e. with a finite state automaton, fsa.
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Two words v, w k-fellow travel (v ∼k w) if the paths they trace out
from the origin of Γ(G,X) stay at most k-apart through their length.



Definition of automaticity is independent of generating set, class is closed
under finite extensions, direct products, free products, and more.

G is shortlex automatic if L can be chosen to be the minimal reps
of group elements under the shortlex word order.

Biautomatic groups

G is biautomatic if G has an automatic structure (L, k) such that
whenever (v, w) ∈ L with wv−1 =G x ∈ X , the paths traced out by w
and xv k-‘fellow-travel’ as well.

Automatic groups have soluble word problem (soluble in quadratic time).

Biautomatic groups have soluble conjugacy problem (soluble in at worst
doubly exponential time).



Artin groups of large type, what was known?

Artin groups of large and extra-large type were introduced and studied in:

K.I. Appel and P.E. Schupp, Artin groups and infinite Coxeter groups,
Invent. Math. 72 (1983) 201–220,
K.I.Appel, On Artin groups and Coxeter groups of large type,
Contemporary Mathematics 33 (1984) 50–78.

Using small cancellation techniques, they were proved to have soluble word
and conjugacy problems. Parabolic subgroups 〈xi, i ∈ J ⊆ [1, n]〉 were
proved to embed as Artin subgroups, subgroups 〈x2

i 〉 to be free.



(Bi)automaticity of Artin groups?

Artin groups of spherical type were proved biautomatic by Charney (1992),
by direct construction of an appropriate structure.

Artin groups of extra large type were proved biautomatic by Peifer (1994).

3-generator Artin groups of large type, and many others of large type
were proved biautomatic by McCammond and Wise (2000). Non-standard
presentations of these groups satisfy small cancellation conditions that
allow application of a result by Gersten and Short (1990).

Right angled Artin groups were proved biautomatic by Hermiller and Meier
(1995), by direct construction.

It is still unknown whether all Artin groups are biautomatic. Shortlex
(bi)automaticity was previously open for all except right angled groups.



Our results

Theorem (Holt, Rees, PLMS 2011) Suppose that G is an Artin
group of large type, defined over its natural generator set X . Then G is
shortlex automatic.

As a consequence of this result (and its proof), we have

• easy descriptions of the geodesics and shortlex minimal geodesics in G,

• a straightforward algorithm to rewrite words into that form, and in
particular to solve the word problem.

• We can deduce that parabolic subgroups are (quasi-)convex in G.

And so we can do more . . .



Theorem (Holt, Rees, PLMS 2011) An Artin group of large type
in its standard presentation satisfies the falsification by fellow traveller
condition. Hence the set of all geodesics is regular.
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The falsification by fellow traveller condition (FFTP) is satisfied
if, for some k, any non-geodesic word asynchronously k-fellow travels with
a shorter representative of the same element. This condition is proved by
Neumann and Shapiro (1995) to imply regularity of the set of all geodesics.



A further application

Theorem (Holt, Rees, preprint 2011)
Artin groups of extra large type satisfy the rapid decay condition.

A finitely generated group G satisfies rapid decay if the operator norm
||.||∗ for the group algebra CG is bounded by a constant multiple of the
Sobolev norm ||.||s,r,`, for some length function ` on G.

Rapid decay is relevant to the Novikov and Baum-Connes conjectures.



Explaining the notation for rapid decay

We define, for φ ∈ CG,

||φ||∗ = sup
ψ∈CG

||φ ∗ ψ||2
||ψ||2

, φ ∗ ψ(g) =
∑
h∈G

φ(h)ψ(h−1g),

||ψ||2 =

√∑
g∈G
|ψ(g)|2, ||φ||2,r,` =

√∑
g∈G
|φ(g)|2(1 + `(g))2r.

A function ` : G→ R is a length function if

`(1G) = 0, `(g−1) = `(g), `(gh) ≤ `(g) + `(h), ∀g, h ∈ G.



Proving it all. Our approach

We build on the work of Mairesse and Matheus, who characterised geodesics
in dihedral Artin groups.

We shall see that in an Artin group of large type a word that is not shortlex
minimal can be reduced using a sequence of reductions within 2-generator
subwords.

In some sense this is analogous to the reduction process that solves the
word problem in Coxeter groups (Tits’ algorithm).



Coxeter groups

For a Coxeter group

G = 〈a1, . . . , an | a2
i = 1,mij(ai, aj) = mij(aj, ai) for each i 6= j〉,

Tits’ algorithm solves the word problem in quadratic time, and uses the
braid relations mij(ai, aj) = mij(aj, ai)

Tits’ algorithm:
First replace any a−1

i in w by ai.

Then, while some application of a sequence of braid relations to w pro-
duces a subword a2

i , delete that subword and repeat.
If w → ε, then return ‘w =G 1’; otherwise return ‘w 6=G 1’.

At every step in the reduction process wi+1 is no longer than wi, and
contains no generator not in wi.



Example:

〈a, b, c | a2 = b2 = c2 = (ab)3 = (bc)7 = (ac)2 = 1〉
(abacbcbcbc)7 → (babcbcbcbc)7

→ (bacbcbcbcc)7→ (bacbcbcb)7→ b(acbcbc)7b

→ b(cabcbc)7b→ bc(abcb)7cb = bcab(cbab)6cbcb

→ bcab(caba)6cbcb

→ bcab(acba)6cbcb→ bcaba(cb)6acbcb

→ bcbab(cb)7cabcb = bcba(bc)7abcb→ ε

We can see this reduction graphically (next slide).

Notice that although this group is in fact word hyperbolic the presentation
we’re using isn’t a Dehn presentation and so Dehn’s algorithm isn’t valid.
No relator intersects the input word in more than half of its length. We
cannot reduce w with substitutions that reduce length at every stage.





Back to Artin groups . . .

Recall we have

G = 〈a1, . . . , an |
mij︷ ︸︸ ︷

aiajai · · · =
mij︷ ︸︸ ︷

ajai · · ·, i < j,mij ∈ N ∪∞〉.
We write m(a, b) for the alternating product aba · · · of length m,
and (a, b)m for · · · bab.
Large type means that mij ≥ 3. We may assume that some mij are finite,
since otherwise the group is free.



Dihedral Artin groups

The geodesics of all dihedral Artin groups have been studied by Mairesse
and Mathéus. Let DAm be the dihedral Artin group

DAm = 〈a, b | m(a, b) = m(b, a)〉.
For any word w over a, b, we define p(w), n(w) as follows:

p(w) is the minimum of m and the length of the longest positive alter-
nating subword in w,

n(w) is the minimum of m and the length of the longest negative alter-
nating subword in w.

Example:
For w = aba−1baba−1bababa−1b−1, in DA3, we have p(w) = 3, n(w) =
2. The following theorem tells us that w is non-geodesic.



Theorem (Mairesse,Mathéus, 2006)
In a dihedral Artin group DAm, a word w is geodesic iff p(w)+n(w) ≤ m,
and is the unique geodesic representative of the element it represents if
p(w) + n(w) < m.

The Garside element ∆ in a dihedral Artin group is used in rewriting.
∆ is represented by m(a, b) and either ∆ or ∆2 is central (depending on
whether m is even or odd. If m is odd, ∆ conjugates a to b.

We write δ for the permutation of {a, b, a−1, b−1}∗ induced by conjuga-
tion by ∆.

Examples:

In DA3, ∆ = aba =G bab. a∆ = b, and δ(ab3a−1) = ba3b−1

In DA4, ∆ = abab =G baba. a∆ = a, and δ(ab3a−1) = ab3a−1



Critical words in dihedral Artin groups.

We call a geodesic word v critical if it has the form

p(x, y)ξ(z−1, t−1)n or n(y−1, x−1)δ(ξ)(t, z)p,

where {x, y} = {z, t} = {a, b}, p = p(v), n = n(v). (We add an extra
condition when p or n is zero.)

We define an involution τ on the set of critical words that swaps the words
in each pair (as above). That w =G τ (w) follows from the equations

p(x, y) =G n(y−1, x−1)∆, ∆ξ =G δ(ξ)∆, ∆(z−1, t−1)n =G (t, z)p

The two words begin and end with different generators.

We call application of τ to a critical subword of w a τ-move on w.

We’ll use τ -moves in much the same way that Tits’ algorithm for Coxeter
groups uses the braid relations.



Two critical words related by a τ-move.

w

w
p(x, y)

ξ (z−1, t−1)n

n(y−1, x−1)

δ(ξ)

(t, z)p



Example:
In G = DA3, aba−1 is critical, and τ (aba−1) = b−1ab.

Applying that τ -move 2 (but not 3) times to the non-geodesic word w we
met before,, we see that

w = (aba−1)b(aba−1)bab(aba−1)b−1→ (aba−1)b(b−1ab)bab(b−1ab)b−1,

and the final word freely reduces to abbbaa, which is geodesic.

It is straightforward to derive the following from Mathéus and Mairesse’
criterion for geodesics.

Theorem (Holt, Rees, PLMS 2011)
If w is freely reduced over {a, b} then w is shortlex minimal in DAm unless
it can be written as w1w2w3 where w2 is critical, and w′ = w1τ (w2)w3
is either less than w lexicographically or not freely reduced.



Applying τ moves in Artin groups of large type.

When we have more than 2 generators, we reduce to shortlex minimal
form using sequences of τ -moves, each on a 2-generator subword.

Example:

G = 〈a, b, c | aba = bab, aca = cac, bcbc = cbcb〉

First consider w = a−1bac−1bcaba. The 2 generator subwords a−1ba,
c−1bc, aba are all geodesic in the dihedral Artin subgroups (in fact also
in G). The two maximal a, b subwords are critical in DA3. Applying a
τ -move to the leftmost critical subword creates a new critical subword, to
which we can then apply a τ -move.

In fact, a sequence of 3 τ -moves transforms w to a word that is not freely
reduced. The free reduction is then bacbc−1ab,



a−1

u

b a

u
b

a

b−1
u

c−1 b c

b−1u
c

b c−1

u
a b

u

a b

a−1
u

a

Reducing a−1bac−1bcaba.

We call a sequence of τ -moves like this a rightward length reducing
sequence.



Now consider w = cbcab−1ab−1cac−1, in which cac−1 is critical. Ap-
plying a τ -move to this critical subword creates a new critical subword,
ab−1ab−1a−1, to which we can then apply a further τ -move. After one
more τ -move, w is transformed to the word w′ = b−1cbca−1a−1bbca, of
the same length as w but preceding w lexicographically.

c a c−1
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ua b−1 a b−1
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b−1uu
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c
b c

We call a sequence like this a leftward lex reducing sequence.



A shortlex automatic structure

Let L be the regular set of words that excludes w iff it admits either a
rightward length reducing sequence of τ -moves or a leftward lex areducing
sequence of τ -moves. Certainly L contains all shortlex minimal reps. To
prove our theorem we need the following.

Proposition (Holt, Rees)
If w ∈ L but wg 6∈ L then
either (1) a single rightward sequence of τ -moves on w transforms w
to a word w′g−1, and w′ ∈ L
or (2) a single leftward sequence of τ -moves on wg transforms wg to a
word w′′ less than wg, and w′′ ∈ L.

NB: w and w′, w′′ k=fellow travel, for k = 2 max{mij : mij <∞}.



Crucial to the proof of the proposition:

Application of a single sequence of τ -moves to a word preserves the se-
quence of pairs of generators that appear in successive, overlapping, max-
imal 2-generator subwords.

We can check that this is valid for the reductions

a−1bac−1bcaba → bacbc−1ab and

cbcab−1ab−1cac−1 → b−1cbca−1a−1bbca

in
G = 〈a, b, c | aba = bab, aca = cac, bcbc = cbcb〉.

But this is a consequence of large type.



The proposition fails without large type

Let G = 〈a, b, c | aba = bab, ac = ca, bcb = cbc〉.
Then w = cbbacba−1 ∈ W , but wb−1 admits a rightward length reducing
sequence to w′ = cbbcb−1a, which then reduces lexicographically, to
w′′ = b−1cbbca. And w′′b <slex w.

c b b u
a c

c

a
u

b a−1

u
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In the rightward reduction of wb−1 a sequence of 5 overlapping max 2-gen
subwords collapses to a sequence of 2.



Applying the proposition to prove G shortlex automatic

We define a map ρ : X±∗→ L as follows, for words w, generators g:-

ρ(w) := w if w ∈ L.

Let w ∈ L,wg 6∈ L.
If wg is freely reduced, then
ρ(wg) := w′ in case (1) of the proposition, ρ(wg) := w′′ in case (2),
and otherwise ρ(wg) is the free reduction of wg.

More generally ρ(wg) := ρ(ρ(w)g).

We prove that ρ(wgg−1) = w, ρ(w(xi, xj)mij) = ρ(w(xj, xi)mij),
and so whenever v =G w, ρ(v) = ρ(w). So L contains a unique repre-
sentative for each element of G, consists only of shortlex minimal reps.



Verifying FFTP

It is enough to verify FFTP for minimally non-geodesic words vg. This is
trivial to do if vg freely reduces.
So we may suppose that vg is freely reduced, i.e. that l[v] 6= g−1. For
such a word vg,
v′ is a geodesic rep for vg iff v′g−1 is a geodesic rep for v.

So the FFTP follows from the following.

Proposition (Holt, Rees)
∃k such that if v, w are geodesics in G with l[v] 6= l[w], and v =G w,
then

∃w′, w′ =G v, l[w′] = l[w], w′ ∼k v.

Proof: We examine the process of reduction to shortlex minimal form.



Verifying rapid decay

We verify rapid decay by verifying the property

∀φ, ψ ∈ CG, k, l,m ∈ N,
|k − l| ≤ m ≤ k + l, ⇒ ||(φk ∗ ψl)m||2 ≤ P (k)||φk||2||ψl||2.

where φk means the restriction of φ to elements of word length k, and
we similarly interpret the subscripted l and m.

Verification of the property requires understanding of the possible ways in
which elements of length m can be factorised as products of elements of
length k, l.


