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Questions

Gromov wrote

‘[O]ne may suspect that there exist word hyperbolic
groups Γ with arbitrarily large dim ∂Γ (here, large is ≥ 1)
where every proper subgroup is free.’

Question (The Surface Subgroup Problem)

Does every one-ended hyperbolic group have a surface subgroup?

Question (The Non-free Subgroup Problem)

Does every one-ended non-surface hyperbolic group have a
non-free subgroup of infinite index?



Context

The Surface Subgroup Problem is motivated by the famous
case that Γ is the fundamental group of a closed hyperbolic
3-manifold, recently answered affirmatively by Kahn–Markovic.

For 3-manifolds, The Non-Free Subgroup Problem is just as
hard, by Scott’s Theorem that 3-manifold groups are coherent
and Dehn’s Lemma.

These questions remain open for some very easy groups, eg
the ‘Baumslag double’ of a free group

D(w) = F ∗〈w〉 F .

D(w) is hyperbolic when w is not a proper power and
one-ended when F does not split as A ∗B with w contained in
a free factor. These last sort of examples will concern us
today.



Known results on Surface Subgroups

Calegari proved that a hyperbolic graph of free groups with
cyclic edge groups contains a surface subgroup if b2 > 0. This
reduces the problem to finding subgroups with second
homology.

Gordon–W. found necessary conditions for many doubles to
contain surface subgroups.

Kim–W. found further necessary conditions.

Kim–Oum found surface subgroups in all doubles of free
groups of rank two.



Non-free subgroups

The main result of this talk is to solve the Non-Free Subgroup
Problem for graphs of free groups with cyclic edge groups.

Theorem (W.)

If a one-ended hyperbolic group Γ ∼= F ∗〈w〉 F ′ or Γ ∼= F∗〈w〉, where
F ,F ′ are free groups, then either Γ is the fundamental group of a
closed surface or Γ has a finitely generated non-free subgroup of
infinite index.

Since these are the only non-trivial cases, this shows that one
cannot construct such an example by gluing along cyclic subgroups.

Corollary

If Γ is hyperbolic and splits over a virtually cyclic subgroup then
either Γ is the fundamental group of a surface or Γ has a finitely
generated non-free subgroup of infinite index.



Other classes of groups

Limit groups arise in the study of algebraic geometry over free
groups. They either contain Z2 or they are hyperbolic, and they
always split over a cyclic subgroup. Therefore:

Corollary

Any limit group is either the fundamental group of a surface or
contains a finitely generated non-free subgroup of infinite index.

The class of special groups was introduced by Haglund and Wise.
Limit groups and graphs of free groups are known to be (virtually)
special. It should be possible to extend the main theorem to apply
to special groups.



Peripheral structures

This result also has some bearing on the Surface Subgroup
Problem. To state this, we need some definitions.

A peripheral structure [w ] on a free group F is a finite set of
conjugacy classes of maximal cyclic subgroups 〈wi 〉.
If F̂ ⊆ F is a subgroup, there is a natural pullback peripheral
structure [ŵ ] on F̂ .

A peripheral structure [u] on F̂ is compatible with [w ] if
[u] ⊆ [ŵ ].

A pair (F , [w ]) is called freely indecomposable, or one-ended,
if F does not split freely as A ∗ B, in which the elements of
[w ] are conjugate into A or B.

A pair (F , [w ]) is called acylindrical if F does not split as
A ∗Z B in which the elements of [w ] are conjugate into A or B.



The poset of commensurability classes

Given (F , [w ]), let (H, [u]) and (K , [v ]) be non-abelian
subgroups of F equipped with compatible peripheral
structures.

Let [û] be the peripheral structure on H ∩ K induced by [u].

Write
(H, [u]) ≤ (K , [v ])

if |H : H ∩ K | <∞ and [û] is compatible with [v ].

Pairs (H, [u]) and (K , [v ]) are commensurable if
(H, [u]) ≤ (K , [v ]) and (H, [u]) ≥ (K , [v ]).

Commensurability is an equivalence relation, and the relation
≤ descends to a partial order on equivalence classes.

Definition

Let P(w) be the poset of commensurability classes of non-abelian
one-ended (H, [u]) compatible with (F , [w ]).



Minimal elements

These techniques characterise surfaces among all free groups with
peripheral structures.

Theorem (W.)

The commensurability class of a pair (F , [w ]) is minimal if and
only if (F , [w ]) ∼= (π1Σ, ∂Σ) for Σ a compact surface.

Proof.

Apply the main theorem to the double of F along w .

Could it be possible to find surface subgroups using Zorn’s Lemma?

Question

Does every chain in P(w) have a lower bound?



Outline of the proof

A Shenitzer-style theorem detects non-freeness.

Theorem (Folklore, cf. Shenitzer)

If a graph of groups with cyclic edge groups splits freely then some
vertex group splits freely relative to its incident edge groups.

The JSJ decomposition of Γ allows us to reduce to
acylindrical pairs.

Theorem (Bowditch)

Any hyperbolic, one-ended Γ has a graph-of-groups decomposition
in which every vertex group is acylindrical or a surface.



Outline of the proof, continued

We prove a Local Theorem about acylindrical pairs.

Theorem (W.)

Suppose (F , [w ]) is acylindrical. If F̂ ⊆ F is a sufficiently deep
finite-index subgroup of F and ŵi ∈ ŵ then (F̂ , [ŵ r ŵi ]) is
one-ended.

Finally, we glue the pieces provided by the Local Theorem
together carefully to produce a non-free subgroup of infinite
index.

In the remainder of this talk, I will try to say something about the
proof of the Local Theorem. The key tool is the Whitehead graph
of w .



Whitehead graphs

Let w be a set of non-trivial elements of F , written as cyclic
words. The Whitehead graph is a combinatorial tool that allows us
to recognise splittings of the pair (F , [w ]).

Definition

Fix an identification of the free group F with the fundamental
group of a handlebody H. The set of words w can be represented
by a 1-dimensional submanifold N ⊆ H. A basis B for F
corresponds to a set of properly embedded discs that cut H into a
ball. After cutting, each disc corresponds to two discs on the
surface of the ball, and the submanifold consists of arcs between
these discs. Crushing the discs to points, the resulting graph
WB(w) is the Whitehead graph of w .



An example

a+

-

b+

b-

Figure: The word b−1aba−2 realised as a submanifold of a handlebody.



Recognising splittings

We can use Whitehead graphs to recognise one-ended and
acylindrical pairs.

Lemma

If (F , [w ]) splits freely then WB(w) contains a cut vertex. If in
addition B minimises the length of w then WB(w) is disconnected.

Lemma

If WB(w) has a separating pair of edges then (F , [w ]) splits
cyclically. If WB(w) is separated by the removal of a vertex and an
edge then either WB(w) has a separating pair of edges or B does
not minimise the length of w.



Splicing

We need to understand what happens to Whitehead graphs when
we pass to a subgroup F̂ of finite index in F .

Definition (Manning)

If G1,G2 are graphs and vi ∈ Gi are vertices with equal valence
then any graph G obtained by deleting the vi and gluing the
resulting edges according to some bijection is said to be obtained
by splicing.

Lemma (Manning)

If F̂ ⊆ F is a subgroup of finite index and ŵ is the pullback of w
to F̂ then for some suitable basis B̂ of F̂ , the Whitehead graph
WbB(ŵ) is obtained by splicing finitely many copies of WB(w).



Splicing continued

Figure: The lift of b−1aba−2 to a cover of degree two. Deleting the grey
disc corresponds to splicing.



Splittings of finite-index subgroups

Manning’s observation makes it easy to study finite-index
subgroups combinatorially.

Remark

If G1 and G2 are connected graphs without cut vertices and G is
obtained by splicing G1 and G2 then G is also connected without
cut vertices.

Combining this with the Shenitzer-style theorem, we can reprove
Stallings’s Ends Theorem in the special case of graphs of free
groups with cyclic edge groups.

Proposition

Let Γ be the fundamental group of a graph of free groups with
cyclic edge groups and Γ̂ a subgroup of finite index. If Γ̂ splits
freely then so does Γ.



Clean subgroups

We can finally explain the ‘sufficiently deep’ subgroups mentioned
in the statement of the Local Theorem.

Definition

Fix a system of discs D in H representing a basis for F . A
subgroup F̂ of finite index in F corresponds to a covering space Ĥ
of H. The space Ĥ can be constructed by gluing together a finite
set of copies {Bi} of the ball H r D. The subgroup F̂ is clean if
every component of the submanifold representing the pullback ŵ
intersects each ball Bi in a single arc.

An easy application of Marshall Hall’s Theorem ensures that there
are many clean subgroups.

Lemma

If F is any subgroup of finite index in F then there is a clean
subgroup F̂ of finite index in F .



Clean subgroups continued

Figure: One component of the pullback of a word to a clean cover.



Proof of the Local Theorem

Theorem (Local Theorem)

Suppose (F , [w ]) is acylindrical. If F̂ ⊆ F is any clean subgroup of
finite index in F and ŵi ∈ ŵ then (F̂ , [ŵ r ŵi ]) is one-ended.

Proof.

Let B be chosen to minimise the length of w and let
W ≡WB(w). Then WB̂(ŵ) is constructed by splicing together

some copies W1, . . . ,Wn of W . Because F̂ is clean, ŵj intersects
each Wi in a single edge, so WB̂(ŵ r ŵi ) is obtained by splicing
together W ′

1, . . . ,W
′
n where W ′

j is Wj with a single edge deleted.
Because (F , [w ]) is acylindrical, it follows that W ′

j has no cut
vertices, as required.


