Automata generating free products of groups of order 2

Dmytro Savchuk (joint with Yaroslav Vorobets)

Binghamton University

May 13, 2010

The space we act on

Action on a rooted tree T.

$$V(T)=X^*$$
, $X=\{0,\ldots,d-1\}$ – alphabet

G < Aut T

Action given by finite Mealy type automaton

Definition (By Example)

$$S_2 = \{ \varepsilon = id, \sigma = (01) \}$$
 acts on $X = \{0, 1\}$.

 \mathcal{A} — noninitial automaton, \mathcal{A}_q — initial automaton, $q \in \{a, b, id\}$.

 A_a acts on X^* (and on T)

Definition of automaton group

Given an automaton A every state q defines an automorphism A_q of X^*

Definition

The automaton (or self-similar) group generated by automaton A is a group $\langle A_q | q$ is a state of $A > Aut X^*$. This group is denoted by G(A).

Definition of automaton group

Given an automaton A every state q defines an automorphism A_q of X^*

Definition

The automaton (or self-similar) group generated by automaton A is a group $\langle A_q | q$ is a state of $A > Aut X^*$. This group is denoted by G(A).

Example

 $a(w) = \overline{w}$. Thus $a^2 = 1$ and $G(A) \simeq C_2$.

There is a convenient way to represent the element f of $\operatorname{Aut} X^*$ in the form

$$f=(f_0,f_1,\ldots,f_{d-1})\alpha_f,$$

where

 $f_i \in \operatorname{Aut} X^*$ describe how f acts on the i-th subtree, i.e.

$$f(iu) = jw \Leftrightarrow f_i(u) = w$$

 $\alpha_f \in \operatorname{Sym}(X)$ describes how f acts on the 1-st letter.

Example

C_2	Basilica	\mathbb{Z} (Adding Machine)
0,1		
$a=(a,a)\sigma$	$egin{aligned} a &= (b,1)\sigma \ b &= (a,1) \ 1 &= (1,1) \end{aligned}$	$a=(1,a)\sigma$

Example

C_2	Basilica	\mathbb{Z} (Adding Machine)
0,1		
$a=(a,a)\sigma$	$egin{aligned} a &= (b,1)\sigma \ b &= (a,1) \ 1 &= (1,1) \end{aligned}$	$oldsymbol{a} = (1,oldsymbol{a})\sigma$

lf

$$g = (g_1, g_2, \dots, g_d)\pi_g,$$

 $h = (h_1, h_2, \dots, h_d)\pi_h,$

then

$$gh = (g_1 h_{\pi_g(1)}, \dots, g_d h_{\pi_g(d)}) \pi_g \pi_h.$$

Source of Counterexamples

- Burnside problem on infinite periodic groups
- Milnor problem on groups of intermediate growth
- Day problem on amenability
- Atiyah conjecture on L^2 Betti numbers
- Connection to holomorphic dynamics via Iterated Monodromy Groups

What known groups are generated by automata?

- $GL_n(\mathbb{Z})$
- Baumslag-Solitar groups BS(1, n)
- Free groups
- Free products of some groups

• Aleshin (1983) - F₃, proof is unclear

- Aleshin (1983) F₃, proof is unclear
- Brunner-Sidki (1998) $GL_n(Z)$ (and, hence, F_2) can be generated by automata)

- Aleshin (1983) F₃, proof is unclear
- Brunner-Sidki (1998) $GL_n(Z)$ (and, hence, F_2) can be generated by automata)
- Oliynyk (1999) $C_2 * C_2 * \cdots * C_2$

- Aleshin (1983) F₃, proof is unclear
- Brunner-Sidki (1998) $GL_n(Z)$ (and, hence, F_2) can be generated by automata)
- Oliynyk (1999) $C_2 * C_2 * \cdots * C_2$
- Glasner, Mozes (2003) F_7 over 6-letter alphabet and F_3 over 14-letter alphabet

- Aleshin (1983) F₃, proof is unclear
- Brunner-Sidki (1998) $GL_n(Z)$ (and, hence, F_2) can be generated by automata)
- Oliynyk (1999) $C_2 * C_2 * \cdots * C_2$
- Glasner, Mozes (2003) F_7 over 6-letter alphabet and F_3 over 14-letter alphabet
- Bellaterra automaton (2004) $C_2 * C_2 * C_2$ as self-similar, F_2 as self-similar over 2-letter alphabet

- Aleshin (1983) F₃, proof is unclear
- Brunner-Sidki (1998) $GL_n(Z)$ (and, hence, F_2) can be generated by automata)
- Oliynyk (1999) $C_2 * C_2 * \cdots * C_2$
- Glasner, Mozes (2003) F_7 over 6-letter alphabet and F_3 over 14-letter alphabet
- Bellaterra automaton (2004) $C_2 * C_2 * C_2$ as self-similar, F_2 as self-similar over 2-letter alphabet
- Vorobets, Vorobets (2005) Aleshin automaton indeed generates F₃

- Aleshin (1983) F₃, proof is unclear
- Brunner-Sidki (1998) $GL_n(Z)$ (and, hence, F_2) can be generated by automata)
- Oliynyk (1999) $C_2 * C_2 * \cdots * C_2$
- Glasner, Mozes (2003) F_7 over 6-letter alphabet and F_3 over 14-letter alphabet
- Bellaterra automaton (2004) $C_2 * C_2 * C_2$ as self-similar, F_2 as self-similar over 2-letter alphabet
- Vorobets, Vorobets (2005) Aleshin automaton indeed generates F₃
- Vorobets, Vorobets (2006) Series of Aleshin and Bellaterra type automata generating F_{2n+1} and $*_{i=1}^{2n+1} C_2$

- Aleshin (1983) F₃, proof is unclear
- Brunner-Sidki (1998) $GL_n(Z)$ (and, hence, F_2) can be generated by automata)
- Oliynyk (1999) $C_2 * C_2 * \cdots * C_2$
- Glasner, Mozes (2003) F_7 over 6-letter alphabet and F_3 over 14-letter alphabet
- Bellaterra automaton (2004) $C_2 * C_2 * C_2$ as self-similar, F_2 as self-similar over 2-letter alphabet
- \bullet Vorobets, Vorobets (2005) Aleshin automaton indeed generates F_3
- Vorobets, Vorobets (2006) Series of Aleshin and Bellaterra type automata generating F_{2n+1} and $*_{i=1}^{2n+1} C_2$
- Steinberg, Vorobets, Vorobets (2006) Series of Aleshin and Bellaterra type automata generating F_{2n} and $*_{i=1}^{2n} C_2$

- Aleshin (1983) F₃, proof is unclear
- Brunner-Sidki (1998) $GL_n(Z)$ (and, hence, F_2) can be generated by automata)
- Oliynyk (1999) $C_2 * C_2 * \cdots * C_2$
- Glasner, Mozes (2003) F_7 over 6-letter alphabet and F_3 over 14-letter alphabet
- Bellaterra automaton (2004) $C_2 * C_2 * C_2$ as self-similar, F_2 as self-similar over 2-letter alphabet
- \bullet Vorobets, Vorobets (2005) Aleshin automaton indeed generates F_3
- Vorobets, Vorobets (2006) Series of Aleshin and Bellaterra type automata generating F_{2n+1} and $*_{i=1}^{2n+1} C_2$
- Steinberg, Vorobets, Vorobets (2006) Series of Aleshin and Bellaterra type automata generating F_{2n} and $*_{i=1}^{2n} C_2$
- Gupta-Gupta-Oliynyk (2007) free products of finite groups

Aleshin's automaton (1983, 2005) F_3

Bellaterra automaton (2004) $C_2 * C_2 * C_2$

Generalizations

Theorem (M. Vorobets, Ya. Vorobets (2006))

The automaton

generates the free product of 2n + 1 groups of order 2.

Generalizations

Theorem (B. Steinberg, M. Vorobets, Ya. Vorobets (2006))

The automaton

where the number of nontrivial σ_i is odd, generates the free product of 2n groups of order 2.

Motivating example

is the smallest not covered by Vorobets, Vorobets, Steinberg series

What we prove

Theorem

The automaton

where σ_i are chosen arbitrarily, generates the free product of n groups of order 2.

Brave conjecture

Any automaton from the family

where at least one σ_i is nontrivial generates the free product of groups of order 2

Starting Point: 4-state automaton

$$a = (c, b),$$

$$b = (b, c),$$

$$c = (d, d)\sigma,$$

$$d = (a, a)\sigma.$$

Theorem

$$G_A \cong C_2 * C_2 * C_2 * C_2$$

Dual Automata Motivation

One more way to define a self-similar group is by its action on X^* .

a = (c,b),	a(0w) = 0c(w) $a(1w) = 1b(w)$
b = (b,c),	b(0w) = 0b(w) $b(1w) = 1c(w)$
$c = (d,d)\sigma,$	c(0w) = 1d(w) $c(1w) = 0d(w)$
$d = (a, a)\sigma,$	d(0w) = 1a(w) d(1w) = 0a(w)

Dual Automata Motivation

It's easy to compute gw:=g(w) for $g\in G$ and $w\in X^*$.

$$egin{aligned} a0 &
ightarrow 0c \ a1 &
ightarrow 1b \ b0 &
ightarrow 0b \ b1 &
ightarrow 1c \ c0 &
ightarrow 1d \ c1 &
ightarrow 0d \ d0 &
ightarrow 1a \ d1 &
ightarrow 0a \end{aligned}$$

*dbd*001*

It's easy to compute gw:=g(w) for $g\in G$ and $w\in X^*$.

$$a0 \rightarrow 0c$$
 $a1 \rightarrow 1b$
 $b0 \rightarrow 0b$
 $b1 \rightarrow 1c$
 $c0 \rightarrow 1d$
 $c1 \rightarrow 0d$
 $d0 \rightarrow 1a$
 $d1 \rightarrow 0a$

dbd001* db1a01*

It's easy to compute gw := g(w) for $g \in G$ and $w \in X^*$.

a0
ightarrow 0c a1
ightarrow 1b b0
ightarrow 0b b1
ightarrow 1c c0
ightarrow 1d c1
ightarrow 0d d0
ightarrow 1a d1
ightarrow 0a

dbd001*
db1a01*
db10c1*

It's easy to compute gw := g(w) for $g \in G$ and $w \in X^*$.

 $egin{aligned} a0 &
ightarrow 0c \ a1 &
ightarrow 1b \ b0 &
ightarrow 0b \ b1 &
ightarrow 1c \ c0 &
ightarrow 1d \ c1 &
ightarrow 0d \ d0 &
ightarrow 1a \ d1 &
ightarrow 0a \end{aligned}$

dbd001* db1a01* db10c1* db100d*

It's easy to compute gw := g(w) for $g \in G$ and $w \in X^*$.

```
a0 	o 0c
a1 	o 1b
b0 	o 0b
b1 	o 1c
c0 	o 1d
c1 	o 0d
d0 	o 1a
d1 	o 0a
```

dbd001* db1a01* db10c1* db100d* d1c00d*

```
egin{aligned} a0 & 
ightarrow 0c \ a1 & 
ightarrow 1b \ b0 & 
ightarrow 0b \ b1 & 
ightarrow 1c \ c0 & 
ightarrow 1d \ c1 & 
ightarrow 0d \ d0 & 
ightarrow 1a \ d1 & 
ightarrow 0a \end{aligned}
```

```
a0 	o 0c
a1 	o 1b
b0 	o 0b
b1 	o 1c
c0 	o 1d
c1 	o 0d
d0 	o 1a
d1 	o 0a
```

```
dbd001*
db1a01*
db10c1*
db100d*
d1c00d*
d11d0d*
d111ad*
```

```
egin{aligned} a0 & 
ightarrow 0c \ a1 & 
ightarrow 1b \ b0 & 
ightarrow 0b \ b1 & 
ightarrow 1c \ c0 & 
ightarrow 1d \ c1 & 
ightarrow 0d \ d0 & 
ightarrow 1a \ d1 & 
ightarrow 0a \end{aligned}
```

```
dbd001*
db1a01*
db10c1*
db100d*
d1c00d*
d11d0d*
d111ad*
0a11ad*
```

```
egin{array}{ll} a0 
ightarrow 0c \ a1 
ightarrow 1b \ b0 
ightarrow 0b \ b1 
ightarrow 1c \ c0 
ightarrow 1d \ c1 
ightarrow 0d \ d0 
ightarrow 1a \ d1 
ightarrow 0a \end{array}
```

```
dbd001*
db1a01*
db10c1*
db100d*
d1c00d*
d11d0d*
d111ad*
0a11ad*
01b1ad*
```

```
egin{aligned} 	extit{a0} & 	extit{o} c \ 	extit{a1} & 	extit{o} 1 b \end{aligned}
                                                dbd001*
                                                db1a01*
b0 \rightarrow 0b
                                                db10c1*
b1 	o 1c
                                                db100d*
c0 \rightarrow 1d
                                                d1c00d*
c1 \rightarrow 0d
                                                d11d0d*
d0 
ightarrow 1a d1 
ightarrow 0a
                                                d111ad*
                                                0a11ad*
                                                01b1ad*
                                                011cad*
```

$$egin{array}{l} a0
ightarrow 0c \ a1
ightarrow 1b \ b0
ightarrow 0b \ b1
ightarrow 1c \ c0
ightarrow 1d \ c1
ightarrow 0d \ d0
ightarrow 1a \ d1
ightarrow 0a \end{array}$$

```
dbd001*
db10c1*
db100d*
d1c00d*
d11d0d*
d111ad*
0a11ad*
01b1ad*
011cad*
```

```
Hence
db1a01* d(b(d(001))) = dbd(001) = 011
                      and
                 (dbd)|_{001} = dac
```

It's easy to compute gw := g(w) for $g \in G$ and $w \in X^*$.

```
a0 
ightarrow 0c a1 
ightarrow 1b
                                   dbd001*
                                                                 Hence
                                   db1a01* d(b(d(001))) = dbd(001) = 011
b0 \rightarrow 0b
                                   db10c1*
                                                                 and
b1 	o 1c
                                  db100d*
                                                          (dbd)|_{001} = dac
c0 \rightarrow 1d
                                  d1c00d*
c1 \rightarrow 0d
                                  d11d0d*
d0 
ightarrow 1a d1 
ightarrow 0a
                                  d111ad*
                                  0a11ad*
                                  01b1ad*
                                  011cad*
```

Question: Who acts on whom?

Idea of the proof

Definition

For $\mathcal{A}=(Q,X,\pi,\lambda)$ its dual automaton $\hat{\mathcal{A}}$ is defined by "flipping the roles" of the set of states Q and alphabet X. I.e. $\hat{\mathcal{A}}=(X,Q,\hat{\lambda},\hat{\pi})$, where

$$\hat{\lambda}(x,q) = \lambda(q,x),$$

 $\hat{\pi}(x,q) = \pi(q,x)$

The dual group Γ is generated by dual automaton

$$O = (O, O, 1, 1)(a, c, d),
1 = (1, 1, O, O)(a, b, c, d),$$

 Γ acts on 4-ary tree leaving the red subtree \hat{T} invariant:

Let $G = \langle S \rangle$ be an automaton semigroup acting on X^* . And let \hat{G} be its dual semigroup acting on S^* . Then for any $g \in G$ and $v \in X^*$

$$g|_{v}=v(g)$$

Each level of the tree \hat{T} contains at least one nontrivial element of G_A . One can take abab \cdots abc or abab \cdots abac.

Each level of the tree \hat{T} contains at least one nontrivial element of G_A . One can take abab \cdots abc or abab \cdots abac.

Corollary

Transitivity of Γ on $\hat{T} \Rightarrow \left[G_{\mathcal{A}} \cong C_2 * C_2 * C_2 * C_2 \right]$.

 $G_{\mathcal{A}} \cong C_2 * C_2 * C_2 * C_2$

 $G_{\mathcal{A}} \cong C_2 * C_2 * C_2 * C_2$

Γ acts level transitively

$$G_{\mathcal{A}} \cong C_2 * C_2 * C_2 * C_2$$

Γ acts level transitively

Family of automata

Theorem

The groups $G^{(n)}$ generated by automata from the family above are isomorphic to the free products of n groups of order 2

The dual group $\Gamma^{(n)} = \langle \mathbb{O}_n, \mathbb{1}_n \rangle$ acts on n-ary tree $T^{(n)}$:

$$\mathbb{O}_{n} = (\mathbb{O}_{n}, \mathbb{O}_{n}, \mathbb{1}_{n}, \mathbb{K}_{n1}, \dots, \mathbb{K}_{n,n-4}, \mathbb{1}_{n})(a_{n} c_{n} q_{n1} \dots q_{n,n-4} d_{n}),
\mathbb{1}_{n} = (\mathbb{1}_{n}, \mathbb{1}_{n}, \mathbb{O}_{n}, \mathbb{L}_{n1}, \dots, \mathbb{L}_{n,n-4}, \mathbb{O}_{n})(a_{n} b_{n} c_{n} q_{n1} \dots q_{n,n-4} d_{n}),$$

where $\mathbb{K}_{n,i} = \mathbb{O}_n$ and $\mathbb{L}_{n,i} = \mathbb{1}_n$ if $\sigma_{n,i} = id$, and $\mathbb{K}_{n,i} = \mathbb{1}_n$ and $\mathbb{L}_{n,i} = \mathbb{O}_n$ otherwise.

$$\alpha_n = (\alpha_n, \alpha_n, \beta_n, \gamma_{n1}, \dots, \gamma_{n,n-4}, \beta_n) \quad (a_n b_n)(c_n q_{n1} \dots q_{n,n-4} d_n),$$

$$\beta_n = (\beta_n, \beta_n, \alpha_n, \delta_{n1}, \dots, \delta_{n,n-4}, \alpha_n) \quad (c_n q_{n1} \dots q_{n,n-4} d_n),$$

where $\gamma_{n,i} = \alpha_n$ and $\delta_{n,i} = \beta_n$ if $\sigma_{n,i} = id$, and $\gamma_{n,i} = \beta_n$ and $\delta_{n,i} = \alpha_n$ otherwise.

Proposition

$$\Gamma^{(n)} = \langle \alpha_n, \beta_n, \overline{(b_n c_n)} \rangle.$$

From the base case we know that $\Gamma^{(4)} = \Gamma$ acts transitively on $\hat{T}^{(4)}$

Lemma

For any $v \in \Gamma$ there exists $v' \in \Gamma^{(n)}$ with the following property. For any word g over $\{a_n, b_n, c_n\}$ such that v(g) is also a word over $\{a_n, b_n, c_n\}$, we have v(g) = v'(g).

The proof of transitivity of $\Gamma^{(n)}$ on the levels of $\hat{T}^{(n)}$ follows by induction on level.

$$g_1g_2g_3\dots g_{k-1}g_k, \quad g_i\in \{a_n,b_n,c_n,q_1,\dots,d_n\}$$
 \downarrow induction assumption
 $a_nb_na_n\dots a_nb_nt, \quad t\in \{a_n,c_n,q_1,\dots,d_n\}$
 $\downarrow \beta_n^j$
 $a_nb_na_n\dots a_nb_nt', \quad t'\in \{a_n,c_n\}$
 \downarrow transitivity of Γ
 $a_nb_na_n\dots a_nb_na_n$