Fast, faster, fastest:
Algorithms in cryptography and bioinformatics

Benjamin Burton

School of Mathematics and Physics

The University of Queensland

Benjamin Burton (UQ) Fast, faster, fastest April 2010 1/28

Outline

0 The problem and its applications

e Quadratic algorithms: Brute force

6 Log-linear algorithms: Graphical representations
° A linear algorithm: As good as it gets

e Further reading

Benjamin Burton (UQ) Fast, faster, fastest

The fixed density problem

A bitstream is a sequence of zeroes and ones:
010110101100

Its density = (number of ones / number of digits) € [0, 1]

Problem

Given a bitstream and a ratio 6 € [0, 1], what is the longest substring of
density 07?

Examples:
@ /=04 — 010110101100 (length 5)
@ #=06 — 010110101100 (length 10)
@ # =0.8 — no solution
@09=10 — 010110101100 (length 2)

Benjamin Burton (UQ) Fast, faster, fastest April 2010 3/28

Applications: Cryptography

Randomness testing is important for cryptography: =
@ “Random” number generators produce (\ ‘
cryptographic keys ¥ {

@ Stream ciphers are intended to “look” random

Any unwanted structure or predictability — potential attack

Boztas, Puglisi and Turpin (2009):
@ Developed randomness tests using the fixed density problem
@ I|dentified potential weakness in the DRAGON stream cipher

Benjamin Burton (UQ) Fast, faster, fastest April 2010

4/28

Applications: Bioinformatics

Locating substrings with various density properties is also important
for bioinformatics:

@ DNA consists of T-A pairs (zero bits) and
G—C pairs (one bits)

@ High-density substrings < GC-rich regions

@ GC-richness relates to gene density and
length, recombination rates, patterns of
codon usage, evolution and natural
selection, and more

Potential applications also in image processing.

Benjamin Burton (UQ) Fast, faster, fastest April 2010 5/28

Our aim today

Assumptions:
@ Given a bitstream x4, Xo, ..., x, of length n

@ Givenaratiod = s/t €[0,1]where0<s<t<nand
gcd(s, t) =1

Aim
To find an algorithm that can solve the fixed density problem in
as fast a time as possible.

How do we measure “fast”?

@ Computational complexity: O(n?), O(nlogn), ...
— asymptotic behaviour as n grows large

@ Assume that +, x, ... are constant time operations

Benjamin Burton (UQ) Fast, faster, fastest April 2010

6/28

Quadratic algorithms: Brute force

A naive brute force algorithm is cubic, i.e., O(n®):

Algorithm

procedure BRUTEFORCE(Xq, ..., Xn, 0 = §/t)
best — 0
fora< 1tondo
for b — atondo
Count the ones in x5, ..., Xp > This step is O(n)
if density = 0 then
if b— a+ 1 > best then
best — b—a+ 1

Output best

Outputs just the length, but easily modified to output the substring.

Benjamin Burton (UQ) Fast, faster, fastest April 2010 7/28

Quadratic algorithms: Brute force (ctd.)

A cheap trick can make this quadratic, i.e., O(n?):

Algorithm

procedure POLITEFORCE(Xq,...,Xn, 0 = S/t)
best — 0
fora<— 1tondo
count — 0
for b — ato ndo
if x, = 1 then
count «+— count + 1
if count/(b—a+ 1) =6 then > Density of x5, ..., Xp
if b—a+ 1> best then
best — b—a+ 1
Output best

There are more cheap tricks where that came from!

Benjamin Burton (UQ) Fast, faster, fastest April 2010 8/28

Quadratic algorithms: SKIPMISMATCH

Boztas et al. use their SKIPMISMATCH algorithm:
@ Applies further optimisations to brute force
@ Still O(n?) in the worst case
@ Improves to O(nlog n) in the expected case

Expected case is fine for randomness testing, but perhaps not for
bioinformatics or image processing.

Furthermore, performance of SKIPMISMATCH depends heavily on 0:
0 ~ } is bad, and 6 = } becomes O(n?).

— We should aim for O(nlog n) or better even in the worst case.

Benjamin Burton (UQ) Fast, faster, fastest April 2010 9/28

Log-linear algorithms: Graphical representations
Not sure what to do? Try drawing the problem!
Definition
Grid representation for a bitstream:
@ Start at (0,0)

@ Move one unit right for every 0 and one unit up for every 1

The grid representation for 010110101100:

A

L End
| Movements:
0 —
Ly
Start “SEP S .
(origin) x

Benjamin Burton (UQ) Fast, faster, fastest April 2010 10/28

Log-linear algorithms: Graphical representations (ctd.)

How do substrings of density # appear graphically?
Observation

A substring has density 0 if and only if the line joining its start and end
points in the grid representation has gradient %

Examples in 010110101100 with density § = 0.6:

9 0 9
o0 o8 o)
5 / Gradient 1349 =15
Benjamin Burton (UQ) Fast, faster, fastest

April 2010 11/28

Log-linear algorithms: Working with slopes
How does this help with algorithms?

@ Density becomes a property of the start and end points only.

Observation
Draw a line Ly through (0,0) with gradient +2;.

A substring has density 6 if and only if the start and end points in the
grid representation are the same distance from this line.

’

Start @ :
(origin)

Benjamin Burton (UQ) Fast, faster, fastest April 2010 12/28

Log-linear algorithms: Building an algorithm

An algorithm is becoming clear:
Compute distances, and look for repetitions.

We are now processing individual points, not pairs of points!
— Can we escape from O(n?)?

Use a map structure from computer science:
@ Stores key — value pairs
@ Searching for a key is O(log n)
@ Inserting a new pair is O(log n)

Benjamin Burton (UQ) Fast, faster, fastest April 2010

13/28

Log-linear algorithms: Building an algorithm (ctd.)

Our map will contain pairs
distance — position in string.

Each time we process a new point, see if the distance is already a key
in our map.
@ If so, we have a substring of density 6.

@ If not, insert the distance — position pair into our map.

We have n + 1 steps, each with time O(log n):

Theorem
Our new algorithm runs in O(nlog n) time, even in the worst case! J

Benjamin Burton (UQ) Fast, faster, fastest April 2010 14/28

A linear algorithm: As good as it gets

Log-linear is nice, but can we do better?
Aim for linear, i.e., O(n). This is the best we can possibly do.

Our new strategy:
@ Use the map-based algorithm as a starting point

@ Replace the generic map with a specialised data structure,
designed specifically for the task at hand

Benjamin Burton (UQ) Fast, faster, fastest April 2010 15/28

Step 1: The distance sequence
We begin by turning distances into integers.
The distance sequence is just distance from the line Ly, but rescaled:

Definition
Recall that 0 = s/t, where gcd(s, t) = 1.

For a bitstream xq, ..., X, we define the distance sequence
do,d1,...,dn by:
dx =(t—58)-(#onesinxy,...,xx) —s- (# zeroes in xy, ..., Xg).

From our earlier observations, we obtain:

Lemma
A substring xa, . .., Xp has density 0 if and only if d,_1 = dp. J

Benjamin Burton (UQ) Fast, faster, fastest April 2010 16/28

Using the distance sequence

Recall that distances are keys in our map.

That is, we store pairs di — k (distances — positions in the bitstream).
Our keys are now integers. . . but not just any integers!

Observation

Each successive key (distance) is always obtained by adding +(t — s)
or —s to the previous key.

Can we use this to speed up our O(log n) map operations?

Can we “jump” from one key to the next in constant time, without
requiring a full O(log n) search?

Benjamin Burton (UQ) Fast, faster, fastest April 2010 17/28

Step 2: A lattice of integers

Pull the integer number line out into a two-dimensional grid, so that
both +(t — s) and —s are simple local operations.

We use infinitely many columns but only (f — s) rows.
@ The operation +(t — s) becomes a single step to the right.

@ The operation —s becomes a single step down (the bottom wraps
back around to the top).

For s/t =5/8 we have t — s = 3 rows:

—6 -3 0 3 6 9 12
—11 —8 —5 —2 1 4 7
—16 —13 —10 =7 —4 -1 2

Benjamin Burton (UQ) Fast, faster, fastest April 2010 18/28

Using the lattice

The lattice becomes a matrix:
@ Keys (distances) become cells of the matrix
@ Values (positions in the bitstream) become entries in the matrix

We cannot store the entire matrix!
@ Infinitely many cells in theory
@ Still O(n?) potential keys in practice

However, our matrix is sparse:
@ Only n+ 1 keys are used for any given bitstream

We can store only the cells that we visit.

Benjamin Burton (UQ) Fast, faster, fastest April 2010 19/28

Step 3: Compressing the sparse matrix
But. .. we don’t even need to store that!

A string of horizontal steps:

l 19—10 22—11 25—12

107 138 1699 l

can be replaced by just two points:

This might seem frivolous, but it turns out to be critical for achieving
O(n) running time.

Benjamin Burton (UQ) Fast, faster, fastest April 2010 20/28

Step 4: Pointers, pointers, pointers

So...how to store our sparse matrix in memory?
@ We can’t use a standard table/array, since this would be too large.

@ Store our “important” cells in arbitrary memory locations, but store
pointers in our cells that show where to find related cells.

Benjamin Burton (UQ) Fast, faster, fastest April 2010 21/28

Step 4: Pointers, pointers, pointers (ctd.)

For each cell, we store:
@ Left/right pointers to adjacent “important” cells in the same row;
@ A downward pointer into the next row, only if we have travelled
down from this point before;

@ For each downward pointer, we also keep a pointer to the next
downward pointer in the same row.

Benjamin Burton (UQ) Fast, faster, fastest April 2010 22/28

Stepping through the matrix
How do we step to the right?
@ Easy—this is a local operation involving just the immediate

left/ right pointers.

How do we step down?
@ Could be difficult—we might need to take a long walk. ..

This is definitely not constant time!

Benjamin Burton (UQ) Fast, faster, fastest April 2010

23/28

Dealing with the difficult case
The miracle:
Theorem

Although a single downward step could potentially take O(n) time,
the sum of all downward steps also takes O(n) time.

In other words, a downward step might not take constant time, but it
lakes amortised constant time.

Essentially, we can have some slow steps but we can prove that there
are so few of them that it does not matter.

Benjamin Burton (UQ) Fast, faster, fastest April 2010 24/28

But...does it really work?

Mean running time (sec)

1000 3000

30 100 300

10

Comparison of running times for n = 100,000,000

e —o— SkipMisMatch
—0— DistMap
—O0— Linear
o o
\ /O
o
/O\ - °
o [} o

o o o o 8
o— o
1/2 1/3 2/5 1/5 50/101 31/101 1/101
Theta

Benjamin Burton (UQ) Fast, faster, fastest April 2010

25/28

Further Reading

Cryptographic applications for the fixed density problem:

@ Serdar Boztas, Simon J. Puglisi, and Andrew Turpin, Testing
stream ciphers by finding the longest substring of a given density,
Information Security and Privacy, Lecture Notes in Comput. Sci.,
vol. 5594, Springer, 2009, pp. 122—133.

This work, plus algorithms for the related bounded density problem:

@ B.B., Searching a bitstream for the longest substring of any given
density, arXiv:0910.3503, Preprint, 2009.

An excellent book on algorithms and complexity:

@ Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein, Introduction to algorithms, 2nd ed., MIT Press,
2001.

Benjamin Burton (UQ) Fast, faster, fastest April 2010 26/28

faster, fastest

faster, fastest

	The problem and its applications
	Quadratic algorithms: Brute force
	Log-linear algorithms: Graphical representations
	A linear algorithm: As good as it gets
	Further reading

