Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic

DENIS SERBIN
Stevens Institute of Technology

GAGTA 7, City College
May 29, 2013
The talk is based on the results of two preprints:

[GKMS]: “Groups acting on Λ-metric spaces” by Andrei-Paul Grecianu, Alexei Kvaschuk, Alexei Myasnikov, Denis Serbin, 2013.

[MS]: “Hyperbolic length functions on limits of torsion-free hyperbolic groups” by Alexei Myasnikov and Denis Serbin, 2013.
An abelian group Λ is ordered if any $a, b \in \Lambda$ are comparable and for any $c \in \Lambda$:

$$a \leq b \implies a + c \leq b + c$$
Ordered abelian groups

An abelian group Λ is ordered if any $a, b \in \Lambda$ are comparable and for any $c \in \Lambda$:

$$a \leq b \Rightarrow a + c \leq b + c$$

In particular, one can consider $\Lambda = \mathbb{Z}^n$, $n \in \mathbb{N}$ with the right lexicographic order:

$$(a_1, \ldots, a_n) < (b_1, \ldots, b_n)$$

\Leftrightarrow

there exists $k \in [1, n]$ such that $a_k < b_k$ and $a_i = b_i$ for all $i > k$
An abelian group Λ is ordered if any $a, b \in \Lambda$ are comparable and for any $c \in \Lambda$:

$a \leq b \Rightarrow a + c \leq b + c$

In particular, one can consider $\Lambda = \mathbb{Z}^n$, $n \in \mathbb{N}$ with the right lexicographic order:

$$(a_1, \ldots, a_n) < (b_1, \ldots, b_n)$$

\Leftrightarrow

there exists $k \in [1, n]$ such that $a_k < b_k$ and $a_i = b_i$ for all $i > k$

This order on \mathbb{Z}^n is non-archimedean, for example

$t \cdot (a_1, \ldots, a_{n-1}, 0) < (0, \ldots, 0, 1)$

for any $t \in \mathbb{N}$ and $a_1, \ldots, a_{n-1} \in \mathbb{Z}$.

Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic
A Λ-metric space is a non-empty set X equipped with a mapping $d : X \times X \rightarrow \Lambda$ which satisfies the usual metric axioms with \mathbb{R} replaced by Λ:

(i) $\forall x, y \in X : d(x, y) \geq 0$

(ii) $\forall x, y \in X : d(x, y) = 0 \iff x = y$

(iii) $\forall x, y \in X : d(x, y) = d(y, x)$

(iv) $\forall x, y, z \in X : d(x, y) \leq d(x, z) + d(y, z)$

Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic.
A \(\Lambda \)-metric space is a non-empty set \(X \) equipped with a mapping \(d : X \times X \longrightarrow \Lambda \) which satisfies the usual metric axioms with \(\mathbb{R} \) replaced by \(\Lambda \):

(i) \(\forall x, y \in X : d(x, y) \geq 0 \)

(ii) \(\forall x, y \in X : d(x, y) = 0 \iff x = y \)

(iii) \(\forall x, y \in X : d(x, y) = d(y, x) \)

(iv) \(\forall x, y, z \in X : d(x, y) \leq d(x, z) + d(y, z) \)

Examples:

- Any metric space (in the usual sense) is a \(\Lambda \)-metric space for \(\Lambda = \mathbb{R} \).
A **Λ-metric space** is a non-empty set X equipped with a mapping $d : X \times X \rightarrow \Lambda$ which satisfies the usual metric axioms with \mathbb{R} replaced by Λ:

(i) $\forall x, y \in X : d(x, y) \geq 0$

(ii) $\forall x, y \in X : d(x, y) = 0 \iff x = y$

(iii) $\forall x, y \in X : d(x, y) = d(y, x)$

(iv) $\forall x, y, z \in X : d(x, y) \leq d(x, z) + d(y, z)$

Examples:

- Any metric space (in the usual sense) is a Λ-metric space for $\Lambda = \mathbb{R}$.
- $X = \Lambda$ with $d(a, b) = |a - b|$ is a Λ-metric space.
A **Λ-metric space** is a non-empty set X equipped with a mapping $d : X \times X \rightarrow \Lambda$ which satisfies the usual metric axioms with \mathbb{R} replaced by Λ:

(i) $\forall x, y \in X : d(x, y) \geq 0$

(ii) $\forall x, y \in X : d(x, y) = 0 \iff x = y$

(iii) $\forall x, y \in X : d(x, y) = d(y, x)$

(iv) $\forall x, y, z \in X : d(x, y) \leq d(x, z) + d(y, z)$

Examples:

- Any metric space (in the usual sense) is a Λ-metric space for $\Lambda = \mathbb{R}$.
- $X = \Lambda$ with $d(a, b) = |a - b|$ is a Λ-metric space.
- Any Λ-tree is a Λ-metric space.
Let \((X, d)\) be a \(\Lambda\)-metric space and let \(\Lambda_0\) be a convex subgroup of \(\Lambda\).
Let \((X, d)\) be a \(\Lambda\)-metric space and let \(\Lambda_0\) be a convex subgroup of \(\Lambda\).

For any point \(x \in X\) we can consider the “\(\Lambda_0\)-neighborhood” of \(x\)

\[\{y \in X \mid d(x, y) \in \Lambda_0\} \subseteq X\]
Let (X, d) be a Λ-metric space and let Λ_0 be a convex subgroup of Λ.

For any point $x \in X$ we can consider the “Λ_0-neighborhood” of x

$$\{ y \in X \mid d(x, y) \in \Lambda_0 \} \subseteq X$$

This is a Λ_0-metric space (w.r.t the metric induced from X) and we call it a Λ_0-metric subspace of X.
Let \((X, d)\) be a \(\Lambda\)-metric space and let \(\Lambda_0\) be a convex subgroup of \(\Lambda\).

For any point \(x \in X\) we can consider the “\(\Lambda_0\)-neighborhood” of \(x\)

\[\{y \in X \mid d(x, y) \in \Lambda_0\} \subseteq X\]

This is a \(\Lambda_0\)-metric space (w.r.t the metric induced from \(X\)) and we call it a \(\Lambda_0\)-metric subspace of \(X\).

For \(x, y \in X\) we write “\(x \sim_{\Lambda_0} y\)” if \(x\) and \(y\) belong to the same \(\Lambda_0\)-metric subspace of \(X\).
Let \((X, d)\) be a \(\Lambda\)-metric space and let \(\Lambda_0\) be a convex subgroup of \(\Lambda\).

For any point \(x \in X\) we can consider the “\(\Lambda_0\)-neighborhood” of \(x\)

\[\{y \in X \mid d(x, y) \in \Lambda_0\} \subseteq X \]

This is a \(\Lambda_0\)-metric space (w.r.t the metric induced from \(X\)) and we call it a \(\Lambda_0\)-metric subspace of \(X\).

For \(x, y \in X\) we write “\(x \sim_{\Lambda_0} y\)” if \(x\) and \(y\) belong to the same \(\Lambda_0\)-metric subspace of \(X\).

The set \(Y = X/ \sim\) is a \(\Lambda/\Lambda_0\)-metric space:
Let \((X, d)\) be a \(\Lambda\)-metric space and let \(\Lambda_0\) be a convex subgroup of \(\Lambda\).

For any point \(x \in X\) we can consider the “\(\Lambda_0\)-neighborhood” of \(x\)

\[\{ y \in X \mid d(x, y) \in \Lambda_0 \} \subseteq X \]

This is a \(\Lambda_0\)-metric space (w.r.t the metric induced from \(X\)) and we call it a \(\Lambda_0\)-metric subspace of \(X\).

For \(x, y \in X\) we write “\(x \sim_{\Lambda_0} y\)” if \(x\) and \(y\) belong to the same \(\Lambda_0\)-metric subspace of \(X\).

The set \(Y = X/\sim\) is a \(\Lambda/\Lambda_0\)-metric space:

- \(\Lambda/\Lambda_0\) is an ordered abelian group since \(\Lambda_0\) is convex.
Let \((X, d) \) be a \(\Lambda \)-metric space and let \(\Lambda_0 \) be a convex subgroup of \(\Lambda \).

For any point \(x \in X \) we can consider the “\(\Lambda_0 \)-neighborhood” of \(x \)

\[
\{ y \in X \mid d(x, y) \in \Lambda_0 \} \subseteq X
\]

This is a \(\Lambda_0 \)-metric space (w.r.t the metric induced from \(X \)) and we call it a \(\Lambda_0 \)-metric subspace of \(X \).

For \(x, y \in X \) we write “\(x \sim_{\Lambda_0} y \)” if \(x \) and \(y \) belong to the same \(\Lambda_0 \)-metric subspace of \(X \).

The set \(Y = X/ \sim \) is a \(\Lambda/\Lambda_0 \)-metric space:
- \(\Lambda/\Lambda_0 \) is an ordered abelian group since \(\Lambda_0 \) is convex,
- the metric \(d_Y \) on \(Y \) is defined by \(d_Y([x], [y]) = d(x, y) + \Lambda_0 \).
Let \((X, d)\) be a \(\Lambda\)-metric space.
Let \((X, d)\) be a \(\Lambda\)-metric space. Take a point \(v \in X\) and for \(x, y \in X\) define

\[
(x \cdot y)_v = \frac{1}{2} (d(x, v) + d(y, v) - d(x, y)).
\]
Let \((X, d)\) be a \(\Lambda\)-metric space. Take a point \(v \in X\) and for \(x, y \in X\) define

\[
(x \cdot y)_v = \frac{1}{2}(d(x, v) + d(y, v) - d(x, y)).
\]

Let \(\delta \in \Lambda\) with \(\delta \geq 0\). Then \((X, d)\) is \(\delta\)-hyperbolic with respect to \(v\) if, for all \(x, y, z \in X\),

\[
(x \cdot y)_v \geq \min\{(x \cdot z)_v, (z \cdot y)_v\} - \delta.
\]
Let (X, d) be a Λ-metric space. Take a point $v \in X$ and for $x, y \in X$ define

$$(x \cdot y)_v = \frac{1}{2}(d(x, v) + d(y, v) - d(x, y)).$$

Let $\delta \in \Lambda$ with $\delta \geq 0$. Then (X, d) is δ-hyperbolic with respect to v if, for all $x, y, z \in X$,

$$(x \cdot y)_v \geq \min\{(x \cdot z)_v, (z \cdot y)_v\} - \delta.$$

Fact. If (X, d) is δ-hyperbolic with respect to v, and t is any other point of X, then (X, d) is 2δ-hyperbolic with respect to t.

Limits of hyperbolic groups are $\mathbb{Z}^{\mathbb{N}}$-hyperbolic.
Examples

Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic
Examples

- Any δ-hyperbolic metric space (in the usual sense) is Λ-hyperbolic for $\Lambda = \mathbb{R}$.

Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic.
Examples

- Any δ-hyperbolic metric space (in the usual sense) is Λ-hyperbolic for $\Lambda = \mathbb{R}$.

- Any Λ-tree is a 0-hyperbolic Λ-metric space.
Examples

- Any δ-hyperbolic metric space (in the usual sense) is Λ-hyperbolic for $\Lambda = \mathbb{R}$.

- Any Λ-tree is a 0-hyperbolic Λ-metric space.

- If (X, d) is a Λ-metric space and $\delta \in \Lambda$ is chosen to be “big enough” then (X, d) becomes δ-hyperbolic.

Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic.
Examples

- Any δ-hyperbolic metric space (in the usual sense) is Λ-hyperbolic for $\Lambda = \mathbb{R}$.

- Any Λ-tree is a 0-hyperbolic Λ-metric space.

- If (X, d) is a Λ-metric space and $\delta \in \Lambda$ is chosen to be “big enough” then (X, d) becomes δ-hyperbolic.

 For example, let (X, d) be a \mathbb{Z}^2-metric space. For $x, y \in X$ write $x \sim y$ if $d(x, y) \in \mathbb{Z}$ and assume that $Y = X/ \sim$ is a \mathbb{Z}-tree.
Any δ-hyperbolic metric space (in the usual sense) is Λ-hyperbolic for $\Lambda = \mathbb{R}$.

Any Λ-tree is a 0-hyperbolic Λ-metric space.

If (X, d) is a Λ-metric space and $\delta \in \Lambda$ is chosen to be “big enough” then (X, d) becomes δ-hyperbolic.

For example, let (X, d) be a \mathbb{Z}^2-metric space. For $x, y \in X$ write $x \sim y$ if $d(x, y) \in \mathbb{Z}$ and assume that $Y = X/ \sim$ is a \mathbb{Z}-tree.

X is δ-hyperbolic for $\delta \in \mathbb{Z}$ only if all \mathbb{Z}-subspaces of X are δ-hyperbolic.
Examples

- Any δ-hyperbolic metric space (in the usual sense) is Λ-hyperbolic for $\Lambda = \mathbb{R}$.

- Any Λ-tree is a 0-hyperbolic Λ-metric space.

- If (X, d) is a Λ-metric space and $\delta \in \Lambda$ is chosen to be “big enough” then (X, d) becomes δ-hyperbolic.

 For example, let (X, d) be a \mathbb{Z}^2-metric space. For $x, y \in X$ write $x \sim y$ if $d(x, y) \in \mathbb{Z}$ and assume that $Y = X/ \sim$ is a \mathbb{Z}-tree.

 X is δ-hyperbolic for $\delta \in \mathbb{Z}$ only if all \mathbb{Z}-subspaces of X are δ-hyperbolic.

 X is δ'-hyperbolic for $\delta' = (0, 1) \in \mathbb{Z}^2 - \mathbb{Z}$.

Limits of hyperbolic groups are $\mathbb{Z}^\mathbb{N}$-hyperbolic.
Suppose X is a δ-hyperbolic Λ-metric space. An isometry $\gamma : X \to X$ can be...
Suppose X is a δ-hyperbolic Λ-metric space. An isometry $\gamma : X \rightarrow X$ can be

- **elliptic**: $\{\gamma^n x \mid n \in \mathbb{Z}\}$ has the diameter bounded by $K\delta$ for some $x \in X$ and $K \in \mathbb{N}$,
Suppose X is a δ-hyperbolic Λ-metric space. An isometry $\gamma : X \to X$ can be

- **elliptic**: $\{\gamma^n x \mid n \in \mathbb{Z}\}$ has the diameter bounded by $K\delta$ for some $x \in X$ and $K \in \mathbb{N}$,
- **parabolic**: $\{\gamma^n x \mid n \in \mathbb{Z}\}$ is unbounded and has one accumulation point $a \in \partial X$ fixed by γ,

Suppose X is a δ-hyperbolic Λ-metric space. An isometry $\gamma : X \to X$ can be

- **elliptic:** $\{\gamma^n x \mid n \in \mathbb{Z}\}$ has the diameter bounded by $K\delta$ for some $x \in X$ and $K \in \mathbb{N}$,

- **parabolic:** $\{\gamma^n x \mid n \in \mathbb{Z}\}$ is unbounded and has one accumulation point $a \in \partial X$ fixed by γ,

- **hyperbolic:** $\{\gamma^n x \mid n \in \mathbb{Z}\}$ is unbounded and has two accumulation points $a, b \in \partial X$ fixed by γ.
Suppose X is a δ-hyperbolic Λ-metric space. An isometry $\gamma : X \to X$ can be

- **elliptic**: $\{\gamma^n x | n \in \mathbb{Z}\}$ has the diameter bounded by $K\delta$ for some $x \in X$ and $K \in \mathbb{N}$,

- **parabolic**: $\{\gamma^n x | n \in \mathbb{Z}\}$ is unbounded and has one accumulation point $a \in \partial X$ fixed by γ,

- **hyperbolic**: $\{\gamma^n x | n \in \mathbb{Z}\}$ is unbounded and has two accumulation points $a, b \in \partial X$ fixed by γ,

- **inversion**: there exist $a, b \in \partial X$ such that $\gamma a = b$ and $\gamma b = a$.

Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic
Suppose X is a δ-hyperbolic Λ-metric space. An isometry $\gamma : X \to X$ can be

- **elliptic:** $\{\gamma^n x \mid n \in \mathbb{Z}\}$ has the diameter bounded by $K\delta$ for some $x \in X$ and $K \in \mathbb{N}$,

- **parabolic:** $\{\gamma^n x \mid n \in \mathbb{Z}\}$ is unbounded and has one accumulation point $a \in \partial X$ fixed by γ,

- **hyperbolic:** $\{\gamma^n x \mid n \in \mathbb{Z}\}$ is unbounded and has two accumulation points $a, b \in \partial X$ fixed by γ,

- **inversion:** there exist $a, b \in \partial X$ such that $\gamma a = b$ and $\gamma b = a$.

Theorem [GKMS]. If X is geodesic then every minimal isometry of X is either elliptic, or parabolic, or hyperbolic, or an inversion.
We say that a group G acts freely (without inversions) on a δ-hyperbolic Λ-metric space (X, d) if every $g \in G$ acts on X as a hyperbolic isometry.

In this case we call G Λ-hyperbolic.
We say that a group G acts freely (without inversions) on a δ-hyperbolic Λ-metric space (X, d) if every $g \in G$ acts on X as a hyperbolic isometry. In this case we call G Λ-hyperbolic.

Examples

- Any torsion-free word-hyperbolic group is \mathbb{Z}-hyperbolic.
We say that a group G acts freely (without inversions) on a δ-hyperbolic Λ-metric space (X, d) if every $g \in G$ acts on X as a hyperbolic isometry.

In this case we call G Λ-hyperbolic.

Examples

- Any torsion-free word-hyperbolic group is \mathbb{Z}-hyperbolic.

- Any subgroup of a word-hyperbolic group is \mathbb{Z}-hyperbolic.
We say that a group G acts freely (without inversions) on a δ-hyperbolic Λ-metric space (X, d) if every $g \in G$ acts on X as a hyperbolic isometry. In this case we call G Λ-hyperbolic.

Examples

- Any torsion-free word-hyperbolic group is \mathbb{Z}-hyperbolic.

- Any subgroup of a word-hyperbolic group is \mathbb{Z}-hyperbolic.

- Any Λ-free group is Λ-hyperbolic.
We say that a group G acts freely (without inversions) on a δ-hyperbolic Λ-metric space (X, d) if every $g \in G$ acts on X as a hyperbolic isometry.

In this case we call G Λ-hyperbolic.

Examples

- Any torsion-free word-hyperbolic group is \mathbb{Z}-hyperbolic.

- Any subgroup of a word-hyperbolic group is \mathbb{Z}-hyperbolic.

- Any Λ-free group is Λ-hyperbolic.
What about limits of hyperbolic groups?

Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic.
What about limits of hyperbolic groups?

Idea:

- $\delta = 0$
Idea:

\[\delta = 0 \]

Free groups are 0-hyperbolic.
What about limits of hyperbolic groups?

Idea:

- $\delta = 0$

Free groups are 0-hyperbolic.

Every group discriminated by a free group acts freely on 0-hyperbolic \mathbb{Z}^n-metric space (\mathbb{Z}^n-tree) for an appropriate n.
What about limits of hyperbolic groups?

Idea:

- \(\delta = 0 \)

 Free groups are 0-hyperbolic.

 Every group discriminated by a free group acts freely on 0-hyperbolic \(\mathbb{Z}^n \)-metric space (\(\mathbb{Z}^n \)-tree) for an appropriate \(n \).

- \(\delta \neq 0 \)
What about limits of hyperbolic groups?

Idea:

- $\delta = 0$

 Free groups are 0-hyperbolic.

 Every group discriminated by a free group acts freely on 0-hyperbolic \mathbb{Z}^n-metric space (\mathbb{Z}^n-tree) for an appropriate n.

- $\delta \neq 0$

 A torsion-free hyperbolic group G acts freely on δ-hyperbolic \mathbb{Z}-metric space (its Cayley graph).
What about limits of hyperbolic groups?

Idea:

- $\delta = 0$
 - Free groups are 0-hyperbolic.
 - Every group discriminated by a free group acts freely on 0-hyperbolic \mathbb{Z}^n-metric space (\mathbb{Z}^n-tree) for an appropriate n.

- $\delta \neq 0$
 - A torsion-free hyperbolic group G acts freely on δ-hyperbolic \mathbb{Z}-metric space (its Cayley graph).
 - Do groups discriminated by G act freely on δ-hyperbolic \mathbb{Z}^n-metric spaces?
Theorem [Kharlampovich, Myasnikov, 2010]. Every finitely generated group discriminated by a torsion-free word-hyperbolic group G embeds into the Lyndon’s completion $G^\mathbb{Z}[t]$ of G.
Theorem [Kharlampovich, Myasnikov, 2010]. Every finitely generated group discriminated by a torsion-free word-hyperbolic group G embeds into the Lyndon’s completion $G^{\mathbb{Z}[t]}$ of G.

Lyndon’s completion $G^{\mathbb{Z}[t]}$ of a group G is the union of the infinite chain of groups

$$G = G_0 < G_1 < \cdots < G_n < \cdots$$

where G_{n+1} is obtained from G_n by extension of all cyclic centralizers in G_n.

Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic.
Theorem [Kharlampovich, Myasnikov, 2010]. Every finitely generated group discriminated by a torsion-free word-hyperbolic group G embeds into the Lyndon’s completion $G^{\mathbb{Z}[t]}$ of G.

Lyndon’s completion $G^{\mathbb{Z}[t]}$ of a group G is the union of the infinite chain of groups

$$G = G_0 < G_1 < \cdots < G_n < \cdots$$

where G_{n+1} is obtained from G_n by extension of all cyclic centralizers in G_n.

Here, to construct G_{n+1} from G_n let $\{\langle u_i \rangle \mid i \in I \}$ be the set of representatives of conjugacy classes of proper cyclic centralizers in G_n. Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic.
Theorem [Kharlampovich, Myasnikov, 2010]. Every finitely generated group discriminated by a torsion-free word-hyperbolic group G embeds into the Lyndon’s completion $G^{\mathbb{Z}[t]}$ of G.

Lyndon’s completion $G^{\mathbb{Z}[t]}$ of a group G is the union of the infinite chain of groups

$$G = G_0 < G_1 < \cdots < G_n < \cdots$$

where G_{n+1} is obtained from G_n by extension of all cyclic centralizers in G_n.

Here, to construct G_{n+1} from G_n let $\{\langle u_i \rangle \mid i \in I\}$ be the set of representatives of conjugacy classes of proper cyclic centralizers in G_n. Then

$$G_{n+1} = \langle G_n, s_{i,j} \ (i \in I, j \in \mathbb{N}) \mid [s_{i,j}, u_i] = [s_{i,j}, s_{i,k}] = 1, (i \in I, j, k \in \mathbb{N}) \rangle$$
Given a torsion-free word-hyperbolic group G and its Cayley graph Γ with respect to a finite generating set, we would like to construct a δ-hyperbolic $\mathbb{Z}[t]$-metric space $\Gamma^{\mathbb{Z}[t]}$ which $G^{\mathbb{Z}[t]}$ (as well as all its subgroups) acts freely upon.
Scheme of the proof

Given a torsion-free word-hyperbolic group G and its Cayley graph Γ with respect to a finite generating set, we would like to construct a δ-hyperbolic $\mathbb{Z}[t]$-metric space $\Gamma^{\mathbb{Z}[t]}$ which $G^{\mathbb{Z}[t]}$ (as well as all its subgroups) acts freely upon.

It is going to imply that every finitely generated group discriminated by G is \mathbb{Z}^n-hyperbolic for an appropriate $n \in \mathbb{N}$.
Given a torsion-free word-hyperbolic group \(G \) and its Cayley graph \(\Gamma \) with respect to a finite generating set, we would like to construct a \(\delta \)-hyperbolic \(\mathbb{Z}[t] \)-metric space \(\Gamma^{\mathbb{Z}[t]} \) which \(G^{\mathbb{Z}[t]} \) (as well as all its subgroups) acts freely upon.

It is going to imply that every finitely generated group discriminated by \(G \) is \(\mathbb{Z}^n \)-hyperbolic for an appropriate \(n \in \mathbb{N} \).

Denote \(\Gamma_0 = \Gamma \). Then \(\Gamma_1 \) is a \(\delta \)-hyperbolic \(\mathbb{Z}[t] \)-metric space obtained as the union of the chain

\[
\Gamma_0 = \Gamma_0^\mathbb{Z} \subset \Gamma_0^{\mathbb{Z}^2} \subset \cdots \subset \Gamma_0^{\mathbb{Z}^n} \subset \cdots
\]

where \(\Gamma_0^{\mathbb{Z}^n} \) is obtained from \(\Gamma_0^{\mathbb{Z}^{n-1}} \) by the construction described below. The group \(G_1 \) acts freely on \(\Gamma_1 \).
Scheme of the proof

Given a torsion-free word-hyperbolic group \(G \) and its Cayley graph \(\Gamma \) with respect to a finite generating set, we would like to construct a \(\delta \)-hyperbolic \(\mathbb{Z}[t] \)-metric space \(\Gamma^{\mathbb{Z}[t]} \) which \(G^{\mathbb{Z}[t]} \) (as well as all its subgroups) acts freely upon.

It is going to imply that every finitely generated group discriminated by \(G \) is \(\mathbb{Z}^n \)-hyperbolic for an appropriate \(n \in \mathbb{N} \).

Denote \(\Gamma_0 = \Gamma \). Then \(\Gamma_1 \) is a \(\delta \)-hyperbolic \(\mathbb{Z}[t] \)-metric space obtained as the union of the chain

\[
\Gamma_0 = \Gamma_0^\mathbb{Z} \subset \Gamma_0^{\mathbb{Z}^2} \subset \cdots \subset \Gamma_0^{\mathbb{Z}^n} \subset \cdots
\]

where \(\Gamma_0^{\mathbb{Z}^n} \) is obtained from \(\Gamma_0^{\mathbb{Z}^{n-1}} \) by the construction described below. The group \(G_1 \) acts freely on \(\Gamma_1 \).

Similarly we construct \(\Gamma_2 \) starting from \(\Gamma_1 \) so that \(G_2 \) acts freely on \(\Gamma_2 \) etc.
Given a torsion-free word-hyperbolic group G and its Cayley graph Γ with respect to a finite generating set, we would like to construct a δ-hyperbolic $\mathbb{Z}[t]$-metric space $\Gamma^{\mathbb{Z}[t]}$ which $G^{\mathbb{Z}[t]}$ (as well as all its subgroups) acts freely upon.

It is going to imply that every finitely generated group discriminated by G is \mathbb{Z}^n-hyperbolic for an appropriate $n \in \mathbb{N}$.

Denote $\Gamma_0 = \Gamma$. Then Γ_1 is a δ-hyperbolic $\mathbb{Z}[t]$-metric space obtained as the union of the chain

$$\Gamma_0 = \Gamma_0^{\mathbb{Z}} \subset \Gamma_0^{\mathbb{Z}^2} \subset \cdots \subset \Gamma_0^{\mathbb{Z}^n} \subset \cdots$$

where $\Gamma_0^{\mathbb{Z}^n}$ is obtained from $\Gamma_0^{\mathbb{Z}^{n-1}}$ by the construction described below. The group G_1 acts freely on Γ_1.

Similarly we construct Γ_2 starting from Γ_1 so that G_2 acts freely on Γ_2 etc. Eventually,

$$\Gamma^{\mathbb{Z}[t]} = \bigcup_{n \in \mathbb{N}} \Gamma_n$$

Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic.
Let $\mathcal{C} = \{C_i \mid i \in I\}$ be a set of representatives of conjugacy classes of proper cyclic centralizers in G, that is, every proper cyclic centralizer in G is conjugate to one from \mathcal{C}, and no two centralizers from \mathcal{C} are conjugate. Denote by U the set of generators of centralizers from \mathcal{C}.
Let $C = \{C_i \mid i \in I\}$ be a set of representatives of conjugacy classes of proper cyclic centralizers in G, that is, every proper cyclic centralizer in G is conjugate to one from C, and no two centralizers from C are conjugate. Denote by U the set of generators of centralizers from C.

For any $u \in U$ there exist $u_-, u_+ \in \partial \Gamma_0$ fixed by u and denote by ∂U the set

$$\{gu_- \mid u \in U, \ g \in G\} \cup \{gu_+ \mid u \in U, \ g \in G\}$$

which is a subset of $\partial \Gamma_0$.

Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic
Let $\mathcal{C} = \{C_i \mid i \in I\}$ be a set of representatives of conjugacy classes of proper cyclic centralizers in G, that is, every proper cyclic centralizer in G is conjugate to one from \mathcal{C}, and no two centralizers from \mathcal{C} are conjugate. Denote by U the set of generators of centralizers from \mathcal{C}.

For any $u \in U$ there exist $u_-, u_+ \in \partial \Gamma_0$ fixed by u and denote by ∂U the set

$$\{gu_- \mid u \in U, \ g \in G\} \cup \{gu_+ \mid u \in U, \ g \in G\}$$

which is a subset of $\partial \Gamma_0$.

Informally, $\Gamma_0^{\mathbb{Z}^2}$ is a \mathbb{Z}-tree

- whose vertices are copies of Γ_0, [Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic]
Let \(\mathcal{C} = \{ C_i \mid i \in I \} \) be a set of representatives of conjugacy classes of proper cyclic centralizers in \(G \), that is, every proper cyclic centralizer in \(G \) is conjugate to one from \(\mathcal{C} \), and no two centralizers from \(\mathcal{C} \) are conjugate. Denote by \(U \) the set of generators of centralizers from \(\mathcal{C} \).

For any \(u \in U \) there exist \(u_-, u_+ \in \partial \Gamma_0 \) fixed by \(u \) and denote by \(\partial U \) the set

\[
\{ gu_- \mid u \in U, g \in G \} \cup \{ gu_+ \mid u \in U, g \in G \}
\]

which is a subset of \(\partial \Gamma_0 \).

Informally, \(\Gamma_0^{\mathbb{Z}^2} \) is a \(\mathbb{Z} \)-tree

- whose vertices are copies of \(\Gamma_0 \),
- each edge \((v_1, v_2)\) corresponds to a pair of ends \((a, b) \in \partial U \times \partial U \subset \partial \Gamma_0(v_1) \times \partial \Gamma_0(v_2)\).
Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic.
Theorem [MS]. $\Gamma_0^{\mathbb{Z}^2}$ is a geodesic \mathbb{Z}^2-metric space which is δ-hyperbolic with respect to 1_ε.
\(\Gamma_0^{\mathbb{Z}^2} \) as a geodesic \(\mathbb{Z}^2 \)-metric space

Theorem [MS]. \(\Gamma_0^{\mathbb{Z}^2} \) is a geodesic \(\mathbb{Z}^2 \)-metric space which is \(\delta \)-hyperbolic with respect to \(1_{\varepsilon} \).

For every point \(x \in \Gamma_0^{\mathbb{Z}^2} \) there exist (infinitely many) paths in \(\Gamma_0^{\mathbb{Z}^2} \) of the form

\[[1_{\varepsilon}, a(e_1)] \cdot [b(e_1), a(e_2)] \cdots [b(e_n), a(e_n)] \cdot [b(e_{n+1}), x], \]

where \(a(e_i), b(e_i) \in \partial U \) and each piece is a quasi-geodesic in the corresponding copy of \(\Gamma_0 \). Denote the set of all such paths by \([x]\).
Theorem [MS]. \(\Gamma_0^{\mathbb{Z}^2} \) is a geodesic \(\mathbb{Z}^2 \)-metric space which is \(\delta \)-hyperbolic with respect to \(1_\varepsilon \).

For every point \(x \in \Gamma_0^{\mathbb{Z}^2} \) there exist (infinitely many) paths in \(\Gamma_0^{\mathbb{Z}^2} \) of the form

\[
[1_\varepsilon, a(e_1)) (b(e_1), a(e_2)) \cdots (b(e_n), a(e_n)) (b(e_{n+1}), x],
\]

where \(a(e_i), b(e_i) \in \partial U \) and each piece is a quasi-geodesic in the corresponding copy of \(\Gamma_0 \). Denote the set of all such paths by \([x]\).

The label of each path \(\gamma \in [x] \) is a \(\mathbb{Z}^2 \)-word of length \(d_2(1_\varepsilon, x) \) over the alphabet \(S \cup S^{-1} \). Since \(\Gamma_0^{\mathbb{Z}^2} \) is homogeneous (in terms of reading \(\mathbb{Z}^2 \)-words over \(S \cup S^{-1} \)), we can translate \(\gamma \) to any point of \(\Gamma_0^{\mathbb{Z}^2} \). Hence, we can concatenate paths and then “reduce” them.
Proposition [MS]. The set \{[x] \mid x \in \Gamma_0^{\mathbb{Z}^2}\} forms a group \(H\): the product \([x][y]\) is equal to \([z]\), where \(z \in \Gamma_0^{\mathbb{Z}^2}\) is obtained as the end-point of any \(\gamma \in [y]\) translated to \(x\).
Proposition [MS]. The set \(\{ [x] \mid x \in \Gamma_0^{\mathbb{Z}^2} \} \) forms a group \(H \): the product \([x][y]\) is equal to \([z]\), where \(z \in \Gamma_0^{\mathbb{Z}^2} \) is obtained as the end-point of any \(\gamma \in [y] \) translated to \(x \).

Lemma [MS]. \(H \) acts on \(\Gamma_0^{\mathbb{Z}^2} \): if \(h = [x] \in H \) and \(y \in \Gamma_0^{\mathbb{Z}^2} \) then \(h \cdot y = z \), where \([z] = [x][y] \). The action is isometric and free.
Proposition [MS]. The set \([x] \mid x \in \Gamma_0^{\mathbb{Z}^2}\) forms a group \(H\): the product
\([x][y]\) is equal to \([z]\), where \(z \in \Gamma_0^{\mathbb{Z}^2}\) is obtained as the end-point of any \(\gamma \in [y]\) translated to \(x\).

Lemma [MS]. \(H\) acts on \(\Gamma_0^{\mathbb{Z}^2}\): if \(h = [x] \in H\) and \(y \in \Gamma_0^{\mathbb{Z}^2}\) then \(h \cdot y = z\), where \([z] = [x][y]\). The action is isometric and free.

Corollary [MS]. \(H\) is \(\mathbb{Z}^2\)-hyperbolic.
Isometries of $\Gamma_{0}^{\mathbb{Z}^{2}}$

Proposition [MS]. The set $\{[x] \mid x \in \Gamma_{0}^{\mathbb{Z}^{2}}\}$ forms a group H: the product $[x][y]$ is equal to $[z]$, where $z \in \Gamma_{0}^{\mathbb{Z}^{2}}$ is obtained as the end-point of any $\gamma \in [y]$ translated to x.

Lemma [MS]. H acts on $\Gamma_{0}^{\mathbb{Z}^{2}}$: if $h = [x] \in H$ and $y \in \Gamma_{0}^{\mathbb{Z}^{2}}$ then $h \cdot y = z$, where $[z] = [x][y]$. The action is isometric and free.

Corollary [MS]. H is \mathbb{Z}^{2}-hyperbolic.

Theorem [MS]. $H \cong \langle G, \hat{u} \mid \hat{u}, u \rangle = 1$ ($u \in U$)

In other words, H is obtained from G by extending all centralizers of G by \mathbb{Z}. Limits of hyperbolic groups are \mathbb{Z}^{n}-hyperbolic.
Continuing by induction, we obtain the chain of δ-hyperbolic \mathbb{Z}^n-metric spaces

$$
\Gamma_0 = \Gamma_0^0 \subset \Gamma_0^2 \subset \cdots \subset \Gamma_0^n \subset \cdots
$$

whose union we denote Γ_1. Similarly we “complete” Γ_1 to obtain Γ_2 etc. Eventually,

$$
\Gamma^{\mathbb{Z}[t]} = \bigcup_{n \in \mathbb{N}} \Gamma_n
$$
Continuing by induction, we obtain the chain of δ-hyperbolic \mathbb{Z}^n-metric spaces

$$
\Gamma_0 = \Gamma_0^\mathbb{Z} \subset \Gamma_0^\mathbb{Z}^2 \subset \cdots \subset \Gamma_0^\mathbb{Z}^n \subset \cdots
$$

whose union we denote Γ_1. Similarly we “complete” Γ_1 to obtain Γ_2 etc. Eventually,

$$
\Gamma^\mathbb{Z}[t] = \bigcup_{n \in \mathbb{N}} \Gamma_n
$$

Theorem [MS]. $G^\mathbb{Z}[t]$ acts freely on $\Gamma^\mathbb{Z}[t]$.

Limits of hyperbolic groups are \mathbb{Z}^n-hyperbolic.
Continuing by induction, we obtain the chain of δ-hyperbolic \mathbb{Z}^n-metric spaces

$$\Gamma_0 = \Gamma_0^\mathbb{Z} \subset \Gamma_0^\mathbb{Z}^2 \subset \cdots \subset \Gamma_0^\mathbb{Z}^n \subset \cdots$$

whose union we denote Γ_1. Similarly we “complete” Γ_1 to obtain Γ_2 etc. Eventually,

$$\Gamma^\mathbb{Z}[t] = \bigcup_{n \in \mathbb{N}} \Gamma_n$$

Theorem [MS]. $G^\mathbb{Z}[t]$ acts freely on $\Gamma^\mathbb{Z}[t]$.

Theorem [MS]. Any finitely generated group discriminated by G (viewed as a subgroup of $G^\mathbb{Z}[t]$) is \mathbb{Z}^n-hyperbolic.
\[G^{\mathbb{Z}[t]} \text{ acts freely on } \Gamma^{\mathbb{Z}[t]} \]

THANK YOU!