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ABSTRACT
In this paper, we present the first average-case analysis proving an
expected polynomial running time for an exact algorithm for the
0/1 knapsack problem. In particular, we prove, for various input
distributions, that the number of dominating solutions (i.e., Pareto-
optimal knapsack fillings) to this problem is polynomially bounded
in the number of available items. An algorithm by Nemhauser and
Ullmann can enumerate these solutions very efficiently so that a
polynomial upper bound on the number of dominating solutions
implies an algorithm with expected polynomial running time.

The random input model underlying our analysis is very general
and not restricted to a particular input distribution. We assume ad-
versarial weights and randomly drawn profits (or vice versa). Our
analysis covers general probability distributions with finite mean,
and, in its most general form, can even handle different proba-
bility distributions for the profits of different items. This feature
enables us to study the effects of correlations between profits and
weights. Our analysis confirms and explains practical studies show-
ing that so-called strongly correlated instances are harder to solve
than weakly correlated ones.

Categories and Subject Descriptors
G.1.6 [Optimization]: Integer Programming; F.2.0 [Analysis of
Algorithms and Problem Complexity]: Miscellaneous

General Terms
Algorithms
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1. INTRODUCTION
The 0/1 knapsack problem is one of the most intensively studied

combinatorial optimization problems having a wide range of ap-
plications in industry and financial management, e.g., cargo load-
ing, cutting stock, budget control. The problem is defined as fol-
lows. Given n items with positive weights w1, . . . ,wn and prof-
its p1, . . . , pn and a knapsack capacity c, find a subset S ⊆ [n] :=
{1,2, . . . ,n} such that ∑i∈S wi ≤ c and ∑i∈S pi is maximized. This
problem is of special interest not only from a practical point of view
but also for theoretical reasons as it can be seen as the simplest
possible 0/1 linear program because the set of feasible solutions is
described by a single constraint only. Starting with the pioneering
work of Dantzig [4], the problem has been studied extensively in
practice as well as in theory. In this paper, we are concerned with
the average-case analysis of exact algorithms for this problem. The
major motivation for our study is the gap between the theoretically
proven high worst-case complexity and the observed efficiency of
some algorithms on various practical instances.

The knapsack problem is one of those optimization problems for
which NP-hardness theory concludes that it is hard to solve in the
worst case. Despite the exponential worst-case running times of all
known knapsack algorithms, several large scale instances can be
solved to optimality very efficiently [1, 7, 10, 11, 19]. In particular,
randomly generated instances seem to be quite easy to solve. In or-
der to explain the observed efficiency on random instances, several
theoretical studies investigate the structure and complexity of ran-
dom knapsack instances [12, 14, 15, 2, 6].1 Although significant
progress has been made in understanding the structure and com-
plexity of random knapsack instances, until now there has been no
proof that the knapsack problem can be solved in expected polyno-
mial time under any reasonable stochastic input model.

The best known result on the running time of an exact algorithm
for the knapsack problem was shown by Goldberg and Marchetti-
Spaccamela [12].2 They investigate a so-called core algorithm, an
algorithmic concept suggested by Balas and Zemel [1]. The idea
is to start with the optimal fractional solution containing at most
one fractional item and then to exchange some of the items until an
optimal integral solution is found. The set of items that are candi-
dates to be exchanged, is called the core set, and the hope is that

1Related work deals with the hardness of random instances for
knapsack cryptosystems [5, 8, 13]. These cryptosystems, however,
are based on the hardness of random subset sum which is not di-
rectly affected by our results.
2This work was later extended to the multidimensional knapsack
problem by Dyer and Frieze [6].
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the size of the core set is relatively small for “typical instances”. In
their average-case analysis, Goldberg and Marchetti-Spaccamela
study the size and structure of the core set assuming that profits
and weights of all items are drawn independently and uniformly at
random from the interval [0,1]. As a first step towards analyzing
core algorithms, Lueker proved an upper bound on the expected
gap between the optimal integral and the optimal fractional solu-
tion [14]. Based on this result, Goldberg and Marchetti-Spaccamela
were able to prove structural properties of the core set resulting in
the following bound on the running time of a Las Vegas type core
algorithm. For every fixed k > 0, with probability at least 1−1/k,
the running time of the algorithm does not exceed a specified up-
per bound that is polynomial in the number of items. However, the
degree of this polynomial is quite large, the leading constant in the
exponent is at least a three digit number, and, more dramatically,
the degree grows with the reciprocal of the failure probability like√

k log(k). Unfortunately, such a result does not allow to conclude
a sub-exponential upper bound on the expected running time of the
algorithm.

In this paper, we present the first average-case analysis prov-
ing expected polynomial running time for an exact algorithm for
the 0/1 knapsack problem. We improve the result of Goldberg and
Marchetti-Spaccamela in several other aspects as well. In particu-
lar, our random input model is not restricted to the uniform distri-
bution. We assume that the weights of the items are chosen by an
adversary and their profits are chosen according to arbitrary proba-
bility distributions with finite mean (or vice versa). Moreover, the
profits of different items can follow different distributions. This
enables us to study the effects of correlations between profits and
weights, which is also a major aspect in the more recent practi-
cal studies [10, 11, 19]. Furthermore, our analysis does not involve
large constants. The degree of the polynomials in our upper bounds
on the running time ranges from 3 to 5 depending on the underlying
probability distribution.

Our analysis is based on an elegant algorithm presented by Nem-
hauser and Ullmann [17] in 1969. This algorithm can be viewed as
a sparse dynamic programming approach. Its efficiency on practi-
cal instances was already mentioned by Nemhauser and Ullmann
in their seminal paper but until now this efficiency has been shown
only within experimental studies, see e.g. [11]. Before we turn
to a more detailed presentation and discussion of our results and
techniques, let us introduce this algorithm.

1.1 The Nemhauser/Ullmann algorithm
A brute force method to solve the knapsack problem is to enu-

merate all possible subsets over the n items. In order to reduce
the search space, a domination concept is used which is usually at-
tributed to Weingartner and Ness [22]. A subset S⊆ [n] with weight
w(S) = ∑i∈S wi and profit p(S) = ∑i∈S pi dominates another subset
T ⊆ [n] if w(S) ≤ w(T ) and p(S) ≥ p(T ). For simplicity assume
that no two subsets have the same profit. Then no subset dominated
by another subset can be an optimal solution to the knapsack prob-
lem, regardless of the specified knapsack capacity. Consequently,
it suffices to consider those sets that are not dominated by any other
set, the so-called dominating sets. In other terminology, dominat-
ing sets are Pareto-optimal solutions, i.e., solutions that cannot be
improved in weight and profit simultaneously by other solutions.

Nemhauser and Ullmann [17] introduce the following elegant
algorithm computing a list of all dominating sets in an iterative
manner. For i ∈ [n], let S(i) be the sequence of dominating subsets
over the items 1, . . . , i. The sets in S(i) are assumed to be listed in
increasing order of their weights. Given S(i), the sequence S(i+1)
can be computed from S(i) as follows: First duplicate all subsets in

S(i) and then add item i +1 to each of the duplicated sets. In this
way we obtain two ordered sequences of sets. Now we merge the
two sequences by removing the sets dominated by any other set in
the union of the two sequences. The result is the ordered sequence
S(i+1) of dominating sets over the items 1, . . . , i+1.

For the purpose of illustration and a better understanding, let us
take a different view on this algorithm. For i∈ [n], let fi :�→� be
a mapping from weights to profits such that fi(t) is the maximum
profit over all subsets of [i] with weight at most t. Observe that fi is
a non-decreasing step function changing its value at those weights
that correspond to dominating subsets. In particular, the number of
steps in fi equals the number of dominating sets over the items in
[i]. Figure 1 (a) shows such a step function for a small instance, (b)
shows a step function fi and the copy of this step function which
is implicitly generated in the algorithm described above, finally,
(c) illustrates how the two step functions are merged: the graph of
the resulting step function fi+1 is simply the upper envelope of the
graph fi and its shifted copy.

For the model of computation, let us assume a uniform RAM that
can add and compare numbers in constant time. Then the sequence
Si+1 can be calculated from the sequence Si in time linear in the
length of Si, that is, linear in the number of dominating subsets over
the items 1, . . . , i. Since the optimal knapsack filling is described by
one of the subsets in the list Sn, namely the subset with the largest
weight not exceeding the capacity, generating Sn basically solves
the knapsack problem. This yields the following lemma:

LEMMA 1. For every i ∈ [n], let q(i) denote an upper bound on
the (expected) number of dominating sets over the items in 1, . . . , i,
and assume q(i + 1) ≥ q(i). The Nemhauser/Ullmann algorithm
computes an optimal knapsack filling in (expected) time

O(∑n
i=1 q(i)) = O(n ·q(n)).

In the worst case, the number of dominating sets is 2n. This
case occurs when profits and weights are identical. In fact, this
instance is also the worst case for the core algorithm of Gold-
berg and Marchetti-Spaccamela. In general, the running time of
the Nemhauser/Ullmann algorithm can be bounded from above by
O(∑n

i=1 2i) = O(2n). However, if weights and profits are indepen-
dent or only weakly correlated, experiments show that the number
of dominating sets and, hence, the running time, is much smaller
[11]. Furthermore, if the input numbers are positive integers, then
the running time of the algorithm can be bounded pseudo-polynomi-
ally as, in this case, step function fi can have at most iP steps, with
P denoting the maximum profit of an individual item. At this point,
let us remark that the dominating set algorithm can also be seen as
a sparse dynamic programming approach.

Horowitz and Sahni [18] present a nice variation of the algo-
rithm above achieving a better worst-case performance by splitting
the set of items into two groups and processing each of them sepa-
rately. In this way, they can achieve a square root improvement on
the worst-case running time, that is, the worst-case running time is
reduced to O(2n/2). This improvement, however, does not trans-
late to the average case and, therefore, we will not further follow
this approach but focus on the original algorithm by Nemhauser
and Ullmann. The challenge in the analysis of this algorithm is to
estimate the number of dominating sets over a set of items with ran-
domly drawn profits and to determine how the correlation between
profits and weights influences the number of dominating sets.
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Figure 1: (a) Profits and weights of all subsets over 12 items and corresponding step function f . Weight and profit of each item are independent
random numbers from [0,1]. (b) Shift step function fi by vector (wi+1, pi+1). (c) Upper envelope gives step function fi+1.

1.2 Our contribution
In this paper, we present the first average-case analysis proving

expected polynomial running time for an exact algorithm solving
the 0/1 knapsack problem. Our analysis is very robust and can be
applied to several random input models. In general, we assume that
the weights of the items and the capacity of the knapsack are spec-
ified by an adversary. The profits are chosen according to various
classes of continuous as well as discrete probability distributions.3

In particular, we consider the following classes of continuous
probability distributions:

• The uniform distribution: Suppose profits are chosen inde-
pendently, uniformly at random from the interval [0,1]. Let
q denote the number of dominating sets over n items. We
prove E [q] = O(n3). Combining this bound with Lemma 1
immediately implies an upper bound of O(n4) on the ex-
pected running time of the Nemhauser/Ullmann algorithm.
More details are explained in Section 2.

• The exponential and other long tailed distributions: If prof-
its are chosen according to the exponential distribution, then
E [q] = O(n2) and, hence, E [T ] = O(n3). Furthermore, we
can generalize this upper bound towards all continuous dis-
tributions with finite mean whose tails (under appropriate
normalization) are not shorter than the tail of the exponen-
tial distribution. For example, for the Pareto distribution
with parameter a > 1, E [q] = O( a

a−1 n2) and, hence, E [T ] =
O( a

a−1 n3). Moreover, our analysis allows even a heteroge-
neous mix of long-tailed distributions, that is, different dis-
tributions for the profits of different items. For more details
about these results, see Section 3.

• Distributions with non-increasing density: For these distri-
butions we can show a lower bound. Suppose profits are
chosen according to an arbitrary probability distribution with
non-increasing density function. We prove that there is a way
to choose the weights such that E [q] = Ω(n2). Thus our up-
per bound for the exponential distribution is tight. Further
detailscan be found in Section 4.

3Symmetrically, our analysis can be applied to adversarial profits
and random weights, too. Details will be explained in a full version
of this paper.

• General, continuous distributions: Suppose profits are cho-
sen according to arbitrary, possibly different probability dis-
tributions with finite mean. Let µ denote the maximum ex-
pected profit over all items and φ the maximum density, i.e.,
the maximum value taken by any of the density functions
describing the probability distributions for the profits. Then
E [q] = O(µφn4) and E [T ] = O(µφn5). This very general
result is presented in Section 5.

The result for general distributions allows to study the influence
of the degree of randomness in the problem specification on the
complexity of the knapsack problem. Let us normalize the specified
profit distributions by multiplying all profits with 1

µ . In this way the
maximum expected profit is 1 and the upper bound on the expected
number of dominating sets simplifies to E [q] = O(φn4). Under this
normalization, the maximum density φ can be seen as a parameter
describing how much randomness is available. For φ → ∞ the ran-
domness in the specification of the profits goes to zero and, in this
case, an adversary can specify an input such that the expected num-
ber of dominating sets is exponential. In contrast, if φ is bounded
from above by some constant term (as, e.g., in the case of all dis-
tributions mentioned above), then the described instances inhabit a
high degree of randomness and the expected number of dominating
sets is polynomial.

Furthermore, this result enables us to study the effects of cor-
relations between profits and weights. (This aspect has also been
considered in several recent practical studies [10, 11, 19].) For this
purpose, let us present our result for general distributions in form
of a so-called “smoothed analysis”. Spielman and Teng [21] intro-
duced the following random input model that allows to perform a
mix of worst-case and average-case analysis. The idea is to initially
start with a worst-case instance and then to introduce randomiza-
tion by perturbing the profits according to the Gaussian distribution
with small standard deviation. More precisely, initially all profits
and weights are specified by an adversary such that all these num-
bers fall into the interval [0,1]. Then profits are perturbed using
the Gaussian distribution with some specified standard deviation
σ. Of course, for our application, the random perturbation might
produce a small number of negative profits. These profits, how-
ever, can be removed immediately as they obviously do not belong
to the optimal knapsack filling. The resulting distributions for the
profits of the surviving items have mean µ ≤ 1 + σ and maximum
density φ ≤ 1/

√
2πσ2 < 1/σ. For such a perturbed instance, our
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analysis immediately implies E [q] = O(n4/σ + n4). We observe
that if the adversary chooses profits equal to weights, then the un-
perturbed instance is completely correlated and has 2n dominating
sets. Now perturbing the profits decreases the correlation. In par-
ticular, a small correlation corresponds to a large standard devia-
tion σ and this in turn implies a small upper bound on the expected
number of dominating sets. In other words, the complexity of the
problem diminishes when decreasing the correlation between prof-
its and weights.

Finally, we want to point out that our results can also be gener-
alized towards discrete probability distributions. Interestingly, this
gives a complete tradeoff ranging from pseudo-polynomial running
time for worst-case inputs without randomness to polynomial run-
ning time for fully random instances. For more details refer to Sec-
tion 6.

2. THE UNIFORM DISTRIBUTION
In this section, profits are assumed to be chosen uniformly at

random from [0,1] and, as in all of our analyses, weights are cho-
sen by an adversary. The following upper bound on the expected
number of dominating sets combined with the result in Lemma 1
implies an upper bound of O(n4) on the expected running time of
the Nemhauser/Ullmann algorithm.

THEOREM 2. Suppose the weights are arbitrary positive num-
bers and profits are chosen according to the uniform distribution
over [0,1]. Let q denote the number of dominating sets over all n
items. Then E[q] = O(n3).

PROOF. Let m = 2n and let S1, . . . ,Sm denote the sequence of all
subsets of [n] listed in non-decreasing order of their weights. Let
the profit of subset Su be Pu = ∑i∈Su

pi. For any 2 ≤ u ≤ m, define
∆u = maxv∈[u] Pv −maxv∈[u−1] Pv ≥ 0. Observe that S1 is always
a dominating set. For all u ≥ 2, Su is dominating if and only if
∆u > 0. The following lemma shows that the expected increase in
profit at dominating sets is Ω(n−2). In other words, the expected
height of the steps in the step function fn is quite large.

LEMMA 3. For every u ∈ {2, . . . ,m}, E [∆u |∆u > 0] ≥ 1
32n2 .

PROOF. Fix u ∈ {2, . . . ,m}. Observe that

E [∆u |∆u > 0] ≥ Pr
[

∆u ≥ 1
16n2

∣∣∣ ∆u > 0
]
· 1

16n2 .

Hence, it suffices to show Pr
[

∆u ≥ 1
16n2

∣∣∣ ∆u > 0
]
≥ 1

2 . For every

v ∈ [u−1], define Xv = Su \Sv and Yv = Sv \Su . It holds

Pr
[

∆u ≥ 1
16n2

∣∣∣∣ ∆u > 0

]
(1)

= Pr

[
∀v : ∑

i∈Su

pi ≥ ∑
i∈Sv

pi +
1

16n2

∣∣∣∣∣∀v : ∑
i∈Su

pi > ∑
i∈Sv

pi

]

= Pr

[
∀v : ∑

i∈Xv

pi ≥ ∑
i∈Yv

pi +
1

16n2

∣∣∣∣∣∀v : ∑
i∈Xv

pi ≥ ∑
i∈Yv

pv

]
,

where the universal quantifier ranges over all elements v ∈ [u−1].
Since we consider continuous probability distributions, the relax-
ation of the strict inequality in the conditioning part does not effect
the probability. W.l.o.g., Su = [k]. We distinguish two classes of
random variables, namely {p1, . . . , pk} and {pk+1, . . . , pn}. Ob-
serve that the Xv’s are subsets of the first class and the Yv’s are
subsets of the second class. For a moment, let us assume that the
variables in the second class are fixed arbitrarily. We investigate

the variables in the first class under this assumption. Regardless of
how the variables in the second class are fixed, it is unlikely that
one of the variables in the first class is much smaller than n−1. In
particular,

Pr

[
∃ j ∈ [k] : p j ≤ 1

4n

∣∣∣∣∣ ∀v : ∑
i∈Xv

pi ≥ ∑
i∈Yv

pi

]

≤ ∑
j∈[k]

Pr

[
p j ≤ 1

4n

∣∣∣∣∣ ∀v : ∑
i∈Xv

pi ≥ ∑
i∈Yv

pi

]

≤ ∑
j∈[k]

Pr
[

p j ≤ 1
4n

]
=

k
4n

≤ 1
4

.

From now on, we assume p j ≥ 1
4n , for every j ∈ [k]. Let Lv =

∑i∈Xv
pi. Under our assumption, Lv ≥ 1

4n , for every v ∈ [u− 1],
because each set Xv contains at least one element of size at least
1

4n . In the following we will assume that the Lv’s are fixed in a
way satisfying this property but, otherwise, arbitrarily. (We will
not consider the variables p1, . . . , pk anymore.) Under our assump-

tion on the Lv’s, we analyze Pr
[
∆u < 1

16n2 |∆u > 0
]
. In order to

compensate for the case when our assumption fails, we prove that
this probability is at most 1

4 instead of 1
2 . In particular, using the

definition of the Lv’s to rewrite Equation 1, we prove

Pr

[
∀v : ∑

i∈Yv

pi ≤ Lv − 1
16n2

∣∣∣∣∣ ∀v : ∑
i∈Yv

pi ≤ Lv

]
≥ 3

4
,

for arbitrarily fixed Lv ≥ 1
4n , where the probability refers solely to

the random choices for the variables pk+1, . . . , pn.
Let us now switch to a geometric interpretation. Consider the

(n−k)-dimensional polytopes.

A =

{
(pk+1 × . . .× pn) ∈ [0,1]n−k

∣∣∣∣∣ ∀v : ∑
i∈Yv

pi ≤ Lv − 1
16n2

}
,

B =

{
(pk+1 × . . .× pn) ∈ [0,1]n−k

∣∣∣∣∣ ∀v : ∑
i∈Yv

pi ≤ Lv

}
.

Figure 2 illustrates the definition of these two polytopes. Clearly,
A ⊆ B . As we investigate the uniform distribution,

Pr
[

∆u ≥ 1
16n2

∣∣∣∣ ∆u > 0

]
=

vol(A ∩B)
vol(B)

=
vol(A)
vol(B)

,

with vol(·) specifying the volume of the corresponding polytopes.
In terms of these volumes, we have to show vol(A) ≥ 3

4 vol(B).
At first view, it might seem that the ratio vol(A)/vol(B) depends

on the number of facets of these polytopes. This number, however,
can be exponential, since facets correspond to subsets of [n]. For-
tunately, however, the following argument shows that the ratio be-
tween the two volumes can be estimated in terms of the number of
dimensions rather than the number of facets. The idea is to shrink
the polytope B uniformly over all dimensions until the shrunken
polytope is contained in polytope A . For ε ∈ [0,1], we define

Bε =

{
(pk+1 × . . .× pn) ∈ [0,1− ε](n−k)

∣∣∣∣∣ ∀v : ∑
i∈Yv

pi ≤ (1− ε)Lv

}
.

Obviously, B = B0 and, in general, Bε can be obtained by shrink-
ing B in each dimension by a factor of 1− ε. As the number of
dimensions is n−k, it holds vol(Bε) = (1− ε)n−k vol(B).

Next we investigate how to choose ε such that Bε is contained
in A . Observe that Lv(1− 1

4n ) ≤ Lv − 1
16n2 because Lv ≥ 1

4n . Thus
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Figure 2: Example for 2-dimensional polytopes A ,B and Bε

setting ε = 1
4n implies Bε ⊆ A . As a consequence,

vol(A) ≥ vol(Bε) = (1− ε)(n−k) vol(B)

≥ (1− ε(n−k)) vol(B) ≥ 3
4

vol(B) ,

which completes the proof of Lemma 3.

The lemma above shows that at every dominating set the profit
increases by at least 1

32n2 on expectation. On the other hand, the
expected profit of the knapsack containing all items is n/2 as each
individual item has profit 1/2 on expectation. It might be intuitively
clear that this implies that the expected number of dominating sets
is at most 16n3. The following calculation proves this statement
in a formal way. Recall that Pm = ∑i∈[n] pi and P1 = ∑i∈S1

pi = 0
since S1 = /0. On the one hand,

E [Pm] = P1 +
m

∑
u=2

E [∆u] =
m

∑
u=2

Pr [∆u > 0] ·E [∆u | ∆u > 0]

≥
m

∑
u=2

Pr [∆u > 0] · 1
32n2 .

On the other hand, E [Pm] = n/2. Consequently,

E [q] = 1+
m

∑
u=2

Pr [∆u > 0] ≤ 1+32n2 E [Pm] ≤ 16n3 +1 .

The additional 1 is due to the empty set S1, which is always a dom-
inating set. Thus Theorem 2 is shown.

3. LONG-TAILED DISTRIBUTIONS
One can classify continuous probability distributions by compar-

ing their tails with the tail of the exponential distribution. In princi-
ple, if the tail function of a distribution can be lower-bounded by the
tail function of the exponential function, then we say the distribu-
tion has a “long tail”, and if the tail function can be upper-bounded
by the exponential tail function, then we talk about “short tails”.
In this section, we investigate the expected number of dominating
sets under long-tailed profit distributions. In fact, we can prove a
slightly better bound for these distributions than for the short-tailed
uniform distribution. Moreover, our analysis can handle heteroge-
neous distributions. We want to point out that the results we prove
for the long-tailed distributions are important tools in the subse-
quent analysis for general probability distributions.

We need to define the term “long-tailed distribution” more for-
mally. Of special interest for us is the behavior of the tail func-
tion under a logarithmic scale. Given any continuous probability
distribution with density function f : �≥0 → �≥0, the tail func-
tion T : �≥0 → [0,1] is defined by T (t) =

� ∞
t f (x)dx. We define

the slope of T at x ∈ �≥0 to be the first derivative of the func-
tion − ln(T (·)) at x, i.e., slopeT (x) = −[ln(T (x)]′. For example,
the tail function of the exponential distribution with parameter λ is
T (x) = exp(−λx) so that the slope of this function is slopeT (x) = λ,
for every x ≥ 0. In general, slopeT (x) is a not necessarily continu-
ous function with non-negative real values. The tail of a continuous
probability distribution is defined to be long if there exists α > 0
such that slopeT (x) ≤ α, for every x ∈�≥0.

According to this definition, the exponential distribution has long
tails. However, the uniform distribution over [0,1] (or any other
interval) does not have long tails because slopeT (x) = 1/(1− x),
which grows to ∞ for x → 1. Observe that any distribution with
a bounded domain cannot have long tails. A typical example for
a distribution with long tails is the Pareto distribution. The tail
function of the Pareto distribution with parameter a > 0 is T (x) =
(1+x)−a. These tails are long because slopeT (x) = [a ln(1+x)]′ =

a
1+x ≤ a, for every x ≥ 0.

3.1 Analysis
We assume that profits are chosen independently at random ac-

cording to possibly different long-tailed distributions with finite
mean. Weights must be positive but apart from that can be cho-
sen arbitrarily.

THEOREM 4. For i ∈ [n], let profit pi be a random variable with
tail function Ti : �≥0 → [0,1]. Define µi = E [pi] and let αi be
an appropriate positive real number satisfying slopeTi

(x) ≤ αi for
every x≥ 0, i∈ [n]. Let α = maxi∈[n] αi and µ = maxi∈[n] µi. Finally,
let q denote the number of dominating sets over the elements in [n].
Then

E [q] ≤
(

∑
i∈[n]

µi · ∑
i∈[n]

αi

)
+1 ≤ αµn2 +1.

PROOF. We use an approach similar to the proof of Theorem 2.
The bounds that we can prove, however, are slightly better, as we
can exploit the Markovian properties of the exponential distribution
lower-bounding the long tailed distributions under consideration.

Let m = 2n and let S1, . . . ,Sm denote the sequence of all subsets
of [n] listed in non-decreasing order of their weights. Fix u ∈ [m],
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u ≥ 2. For every v ∈ [u− 1], define Xv = Su \ Sv and Yv = Sv \ Su.
If Su is a dominating set, then the expected increase in profit is
E [∆u |∆u > 0 ] corresponding to

E

[
min

v∈[u−1]

(
∑

i∈Xv

pi − ∑
i∈Yv

pi

) ∣∣∣∣∣ min
v∈[u−1]

(
∑

i∈Xv

pi − ∑
i∈Yv

pi

)
> 0

]

=
� ∞

0
Pr

[
∀v : ∑

i∈Xv

pi − ∑
i∈Yv

pi ≥ t

∣∣∣∣∣ ∀v : ∑
i∈Xv

pi ≥ ∑
i∈Yv

pi

]
dt .

Let k = |Su| be the number of element in Su. W.l.o.g., assume Su =
[k]. Observe that Xv ⊆ [k] and Yv ⊆ [n] \ [k], for every v ∈ [u− 1].
Our next goal is to isolate the random variables p1, . . . , pk. For this
purpose, we partition the set [u−1] into disjoint groups G1, . . . ,Gk
satisfying the following property: ∀ j ∈ [k] : v ∈ G j ⇒ j ∈ Xv. Let
E j(t) denote the event ∀v ∈ G j : ∑i∈Xv

pi ≥ ∑i∈Yv
pi + t. Then

E [∆u |∆u > 0 ] =
� ∞

0
Pr


 �

i∈[k]

Ei(t)

∣∣∣∣∣
�

i∈[k]

Ei(0)


dt

=
� ∞

0

k

∏
j=1

Pr


 E j(t)

∣∣∣∣∣
j−1�
i=1

Ei(t)∧
�

i∈[k]

Ei(0)


dt .

Now fix some j ∈ [k] and let us assume that the values of all random
variables except for p j are fixed as well. Define

A j = max
v∈Gj

(
∑
i∈Yv

pi − ∑
i∈Xv\{ j}

pi

)
.

Notice that A j is independent of p j and, therefore, A j is also fixed.
This way, the expression E j(t) is equivalent to the expression p j ≥
A j + t. Furthermore, as E j(0) corresponds to p j ≥ A j, the expres-

sion
� j−1

i=1 Ei(t)∧�i∈[k] Ei(0) is equivalent to p j ≥ A′
j, for some

A′
j ≥ A j. Consequently,

Pr


 E j(t)

∣∣∣∣∣
j−1�
i=1

Ei(t)∧
�

i∈[n]

Ei(0)


= Pr

[
p j ≥ A j + t | p j ≥ A′

j

]
≥ Pr

[
p j ≥ A j + t | p j ≥ A j

]
.

Now recall that Tj is the tail function for the random variable p j.

Hence, Pr
[
p j ≥ A j + t|p j ≥ A j

]
= Tj(A j+t)

Tj(A j)
. For the exponential

distribution with parameter α, it holds Tj(A j+t)
Tj(A j)

= Tj(t) = e−α t .

Here the first equality corresponds to the so-called Markovian or
memoryless property of the exponential distribution. For other
long-tailed distributions we need a slightly more complicated cal-
culation. Recall, for all i ∈ [n], x ∈ �≥0, we assume slopeTi

(x) =
−[ln(Ti(x)]′ ≤ αi. This yields

ln

(
Tj(x+ t)

Tj(x)

)
= ln(Tj(x+ t))− ln(Tj(x))

≥ (ln(Tj(x))−α jt)− ln(Tj(x)) = −α jt

so that Pr
[
p j ≥ A j + t|p j ≥ A j

]
= Tj(A j+t)

Tj(A j)
≥ e−α j t , regardless of

the outcome of A j. Putting all together,

E [∆u |∆u > 0] ≥
� ∞

0
∏
j∈[k]

e−α j t dt ≥
� ∞

0
∏
j∈[n]

e−α j t dt =
1

∑ j∈[n] α j
,

for every u ∈ {2, . . . ,n}. On the other hand, E [Pm] = ∑i∈[n] µi.
Thus, analogous to the proof of Theorem 2, we are now able to

bound the expected number of dominating sets by

E [q] ≤ 1+
E [Pm]

minm
u=2(E [∆u | ∆u > 0])

≤ 1+ ∑
i∈[n]

α j · ∑
j∈[n]

µ j.

This completes the proof of Theorem 4.

3.2 Applications
In this section, we illustrate the power of Theorem 4 by investi-

gating E [q], the expected number of dominating sets, for some spe-
cific long-tailed probability distributions. Recall that the expected
running time of the Nemhauser/Ullmann algorithm is O(nq(n)),
where q(n) is a non-decreasing upper bound on E [q]. In order to
simplify the presentation of the results, let us assume that all profits
follow the same distribution.

COROLLARY 5. If profits are chosen according to the exponen-
tial distribution, then E [q] = O(n2).

This result is tight. In Section 4 we show a corresponding lower
bound. Observe that the result for the exponential distribution does
not depend on the parameter of this distribution as the mean µ is re-
ciprocal of the slope α, regardless of the choice for the parameter of
this distribution. This is slightly different in the case of the Pareto
distribution. For the Pareto distribution with parameter a > 1, α = a
and µ = 1

a−1 . This gives the following upper bound on the running
time.

COROLLARY 6. If profits are chosen according to the Pareto
distribution with parameter a > 1 then E [q] = O( a

a−1 n2).

Observe that the Pareto distribution has finite mean only for pa-
rameter a > 1 so that our proof technique works only for a > 1.

4. LOWER BOUND
In this section we prove a lower bound for the number of domi-

nating sets for continuous distributions with non-increasing density
functions. This result shows that our upper bound for the exponen-
tial distribution is tight.

THEOREM 7. Suppose profits are drawn independently at ran-
dom according to a continuous probability distribution with non-
increasing density function f :�≥0 →�≥0. Then there is a vector
of weights w1, . . . ,wn for which E [q] = Ω(n2).

PROOF. If the density function is non-increasing, then the dis-
tribution function F :�≥0 → [0,1] is concave as F ′ = f . Further-
more, F(0) = 0. Observe that such a function is sub-additive, that
is, F(a + b) ≤ F(a)+ F(b), for every a,b ≥ 0. This is the crucial
property that we need in the following analysis.

Let wi = 2i be the weight for the ith item and pi its profit. For
every j ∈ [n], define Pj = ∑ j

i=1 pi. Consider the sequence S( j−1)
of dominating sets for items 1, . . . , j−1 (see Section 1.1). Notice,
that all these sets have weight less than 2 j . All sets containing
item j, however, have weight at least 2 j and, therefore, these sets
cannot dominate the sets in S( j−1). Hence S( j) contains all sets
from S( j − 1). Furthermore, those sets S ∈ S( j − 1) with profit
p(S) ∈ (Pj−1 − p j,Pj−1] create new dominating sets in S( j) with
profit p(S)+ p j > Pj−1.

For any given α > 0, let X j
α be the number of dominating sets

in S( j) with profit at least Pj −α, not counting the last set [ j] in

this sequence. By induction we show E
[
X j

α

]
≥ F(α) j. Clearly,
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E
[
X1

α
]
= F(α). For j > 1, it holds

E
[
X j

α

]
= Pr

[
p j ≤ α

](
E
[
X j−1

pj

]
+E

[
X j−1

α−pj

]
+1
)

+Pr
[
p j > α

]
E
[
X j−1

α

]
≥ Pr

[
p j ≤ α

]
(F(p j)( j−1)+F(α− p j)( j−1)+1)

+Pr
[
p j > α

]
F(α)( j−1)

(*)
≥Pr

[
p j ≤ α

]
(F(α)( j−1)+1)+Pr

[
p j > α

]
F(α)( j−1)

= F(α)( j−1)+F(α) = F(α) j ,

where inequality (*) follows from F(a)+ F(b) ≥ F(a + b). Now
let Yj = |S( j)| − |S( j− 1)| denote the number of new dominating

sets in S( j). Observe that Yj = X j−1
pj + 1. The additive 1 is due

to the fact that the set [ j − 1] is not counted in X j−1
pj but yields

a new set in S( j). Since p j and X j−1
α are independent, we get

E
[
Yj
]

= E
[
X j−1

pj +1
]
. Furthermore, the number of dominating

sets in S(n) is q = ∑n
j=1 Yj and, therefore,

E [q] =
n

∑
j=1

E
[
Yj
]

=
n

∑
j=1

E
[
X j−1

pj +1
]

≥
n

∑
j=1

E
[
F(p j)( j−1)+1

] ≥
n

∑
j=1

E
[
F(p j)

]
j .

In order to evaluate E
[
F(p j)

]
, we need to examine the distribu-

tion function of the random variable F(p j). Let F (·) denote this
distribution function. Recall that p j is a random variable with dis-
tribution function F .

F (x) = Pr
[
F(p j) ≤ x

]
= Pr

[
p j ≤ F−1(x)

]
= F(F−1(x)) = x.

Thus F(p j) is uniformly distributed in [0,1] so that E
[
F(p j)

]
= 1

2 .
Consequently, E [q] ≥ 1

2 ∑n
j=1 j = Ω(n2).

The theorem shows that our analysis of the expected number of
dominating sets for the exponential distribution is tight. The same
is true for all long-tailed distributions with finite mean and non-
increasing density function. For the uniform distribution, however,
lower and upper bound deviate by a factor Θ(n). Experimental
results let us believe that the lower bound is tight and the truth for
this distribution is Θ(n2) as well.

5. GENERAL DISTRIBUTIONS
In this section, we extend our result towards general, continuous

distributions over �≥0 with finite mean. The following theorem
shows that the expected number of dominating sets increases only
linearly with the maximum expected profit and the maximum den-
sity over all items. In Section 6 we show how this result can be
generalized towards discrete probability distributions.

THEOREM 8. For every i ∈ [n], let profit pi be a non-negative
random variable with density function fi : �≥0 → �≥0. Suppose
µ ≥ maxi∈[n] (E [pi]) and φ ≥ maxi∈[n]

(
maxx∈�≥0 fi(x)

)
. Then the

expected number of dominating sets is E [q] = O(φµn4).

PROOF. Unfortunately, the analysis presented in the previous
section fails for distributions with short tails. In particular, the idea
to lower-bound the increase in profit at every dominating set does
not work for short-tailed distributions. In fact, one can define a col-
lection of short-tailed distributions for which the expected increase
in profit at some sets, if they become dominating sets, is arbitrarily

small. The point is, however, that those sets are very unlikely to
become dominating sets. This property needs to be exploited in the
following analysis.

Let Ti(x) =
� ∞

x fi(t)dt denote the tail function for the profit of
item i ∈ [n]. For each pi we define an auxiliary random variable
xi = Ti(pi). Observe that the xi’s are uniformly distributed over
[0,1]. Furthermore, we introduce a cascade of events on which we
want to condition. For k ≥ 0, let Xk denote the event ∀i ∈ [n] : xi ≥
2−k/n. Observe that Xk−1 ⊆ Xk, for every k ≥ 1. By conditioning
on this cascade of events, we obtain the following upper bound on
the expected number of dominating sets:

E [q] = Pr [X0] ·E [q | X0]+
∞

∑
k=1

Pr [Xk ∧¬Xk−1] ·E [q | Xk ∧¬Xk−1]

≤ E [q | X0]+
∞

∑
k=1

Pr [¬Xk−1] ·E [q | Xk ∧¬Xk−1]

≤ E [q | X0]+
∞

∑
k=1

E [q | Xk ∧¬Xk−1]
2k−1 , (2)

where the last inequality follows because

Pr [¬Xk−1] = Pr
[
∃i ∈ [n] : xi < 2−k+1/n

]
≤ 2−k+1.

Unfortunately, placing conditions in such a direct way does not
yield longer tails but shorter tails as conditioning on Xk simply
cuts the tail function at position T−1

i (2−k/n). The following trick
avoids this kind of unwanted effects by masking the short tails. For
a subset M ⊆ [n], let q(M) denote the number of dominating sets
over the items in M. For every k ≥ 0 and M ⊆ [n], we define an
auxiliary random variable qk(M) as follows.

qk(M) =
{

q(M) if Xk ,

0 otherwise .

For qk(M) we also write qk. The variables qk(M) masks domi-
nating sets in case of ¬Xk. The following lemma shows that this
masking technique enables us to get rid of conditional probabili-
ties so that our analysis for long tails can be applied to estimate the
unconditioned qk variables subsequently.

LEMMA 9. For every k ≥ 0, E [q]≤∑∞
k=0 2−k+5 E [qk(Mk)], for

some Mk ⊆ [n].

We want to remark that the parameterization of the variables qk
with the sets Mk is only a technicality that can be dropped when
assuming that removing an element does not increase the expected
number of dominating sets, i.e., ∀M ⊆ [n] : E [q([n])] ≥ E [q(M)].

PROOF. Here we only sketch the ideas. A full proof of this
lemma with all details can be found in the Appendix. First we
rewrite Equation 2 in terms of the qk variables, that is,

E [q] ≤ E [q0 | X0]+
∞

∑
k=1

E [qk | Xk ∧¬Xk−1]
2k−1 .

Next we give upper bounds for E [q0 | X0] and E [qk | Xk ∧¬Xk−1],
and use them in this equation. The first term can be estimated by

E [q0 | X0] ≤ E [q0]
Pr [X0]

≤ 4E [q0] .

Analogously, the second term can be estimated by

E [qk | Xk ∧¬Xk−1] ≤ E [qk | ¬Xk−1]
Pr [Xk | ¬Xk−1]

≤ 4E [qk | ¬Xk−1] .
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Finally, we need to get rid of the conditioning on ¬Xk−1. This
condition states that at least one of the profit variables has a very
large value. Roughly speaking, only one variable will be affected
by this condition. The idea is now to make use of the fact that every
individual profit variable can increase the number of dominating
sets only by a factor of two. Using this idea in a formal way, we
can show E [qk|¬Xk−1] ≤ 4E [qk(Mk)], for some Mk ⊆ [n], so that
E [qk|Xk ∧¬Xk−1] ≤ 16E [qk(M)]. Now substituting these bounds
back into the upper bound on E [q] yields the lemma.

Next we apply our analysis for the long tailed distributions to the
qk variables.

LEMMA 10. For every k ≥ 0, E [qk]≤min{n32kφµ+n+1,2n}.

PROOF. The bound E [qk] ≤ 2n holds trivially because there are
at most 2n different subsets over n elements. The bound E [qk] ≤
n32kφµ + n + 1 can be shown with the help of Theorem 4. De-
fine Bi,k = T−1

i (2−k/n). Remember that qk counts only dominat-
ing sets under Xk. Therefore, the behavior of the tail function for
values larger that Bi,k is irrelevant for qk and we can modify the
tail function for values larger than Bi,k without affecting qk . In fact,
changing Ti(x), for x > Bi,k, enables us to bound the slope of the
tail function as needed for the application of Theorem 4.

Consider the following variants of our tail function. We cut the
tail functions Ti at position Bi,k and replace the original, possibly
short tails by long, exponential tails. For i ∈ [n] and k ≥ 0, define

Ti,k(t) =

{
Ti(t) if t ≤ Bi,k ,

exp(−φn(t −Bi,k))/(n2k) if t > Bi,k .

The slope of this tail function can be bounded as follows. For t ≤
Bi,k,

slopeTi,k
(t) = [− ln(Ti(t))]′ =

−[Ti(t)]′

Ti(t)
≤ φn2k

because −[Ti(t)]′ = fi(t) ≤ φ and Ti(t) ≥ 2−k/n since t ≤ Bi,k =
T−1(2−k/n). The same upper bound holds also for t > Bi,k since,
in this case,

slopeTi,k
(t) =

[
− ln

(
exp(−nφ(t −Bi,k))

n2k

)]′
= φn ≤ φn2k .

Furthermore, observe that the expected maximum profit of an item
under the tail function Ti,k is at most µ + (φn22k)−1 because the
added exponential tail increases the original mean value µ by at
most (φn)−1(n2k)−1. Consequently, applying Theorem 4 with αk =
φn2k and µk = µ+(φn22k)−1 yields E [qk]≤αk µk n2 +1 = φµn32k +
n+1.

Now we can complete our calculation for the upper bound on E [q].
Combining Lemma 9 and 10 yields

E [q] ≤
∞

∑
k=0

2−k+5 min{φµn32k +n+1,2n}

≤ 32
n

∑
k=0

(
φµn3 +2−k(n+1)

)
+32

∞

∑
k=n+1

2n−k

≤ 32(φµn4 +2n+3) .

Finally observe, φµ ≥ 1
2 , for every non-negative continuous distri-

bution. Thus E [q] = O(φµn4), which completes the proof of Theo-
rem 8.

6. DISCRETE DISTRIBUTIONS
In this section we generalize our results towards discrete prob-

ability distributions, that is, we assume that profits are randomly
drawn non-negative integers. In this case, we can prove a trade-
off ranging from polynomial to pseudo-polynomial running time,
depending on the degree of randomness of the specified instances.
The proofs rely on the same methods that we used for continuous
distributions. So we will point out only those parts of the proofs
that need to be changed. First, we consider long-tailed and then
general discrete distributions.

6.1 Long-tailed discrete distributions
Let us assume that profits are chosen independently at random

according to possibly different long-tailed distributions with finite
mean. For i ∈ [n], let profit pi be a random variable with tail func-
tion Ti :�0 → [0,1], that is, for every t ∈�0, Pr [pi ≥ t] = Ti(t).

THEOREM 11. Let α be an appropriate positive term satisfy-
ing Ti(t +1)/Ti(t) ≥ e−α for all i ∈ [n] and t ∈�0. Suppose µ ≥
maxi∈[n] (E [pi]). Let q denote the number of dominating sets over

the elements in [n]. Then E [q] ≤ µn(1−e−αn)+1 ≤ µαn2 +1.

For the application of this theorem, it makes sense to assume that
the probability distributions “scale” with the number of items. For
example, consider the following discrete variant of the exponential
distribution. Let Ti(t) = e−αt (t ≥ 0, i ∈ [n]) with α = α(n) being a
function in n, e.g., α(n) = 1

n . The mean µ of this distribution grows
like 1

α(n) . Thus E [q] = O(n2) under the discrete exponential distri-
bution, regardless of the choice of α. In other words, we obtain the
same bound as in the continuous case.

PROOF. We can adapt the proof of Theorem 4 towards discrete
long tailed distributions.

E [∆u |∆u ≥ 1 ]

= E

[
min

v∈[u−1]

(
∑

i∈Xv

pi − ∑
i∈Yv

pi

)∣∣∣∣∣ min
v∈[u−1]

(
∑

i∈Xv

pi − ∑
i∈Yv

pi

)
≥ 1

]

=
∞

∑
t=1

Pr

[
∀v : ∑

i∈Xv

pi ≥ ∑
i∈Yv

pi + t

∣∣∣∣∣ ∀v : ∑
i∈Xv

pi ≥ ∑
i∈Yv

pi +1

]
.

We define the groups G1, . . . ,Gk as in the proof of Theorem 4. Let
E j(t) denote the event ∀v ∈ G j : ∑i∈Xv

pi ≥ ∑i∈Yv
pi + t. Then

E [∆u |∆u ≥ 1] =
∞

∑
t=1

Pr


 �

i∈[k]

Ei(t)

∣∣∣∣∣
�

i∈[k]

Ei(1)




=
∞

∑
t=1

k

∏
j=1

Pr


 E j(t)

∣∣∣∣∣
j−1�
i=1

Ei(t)∧
�

i∈[k]

Ei(1)




≥
∞

∑
t=1

∏
j∈[k]

e−α(t−1) ≥
∞

∑
t=1

e−αn(t−1) =
1

1−e−αn .

We used the fact that Tj(A j + t)/Tj(A j +1) ≥ e−α(t−1) for all j ∈
[k], t ≥ 1 where A j is defined as in the proof of Theorem 4. No-
tice, that the expected increase in profit at dominating sets is lower
bounded by 1 which reflects the integrality of profits. Now we can
bound the number of dominating sets by

E [q] = 1+
m

∑
u=2

Pr [∆u > 0] ≤ 1+
E [Pm]

minn
u=2(E [∆u | ∆u > 0])

≤ µn(1−e−αn)+1.

Applying the inequality 1−e−x ≤ x yields E [q] ≤ µαn2 +1.
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6.2 General discrete distributions
In this section, we analyze the number of dominating sets when

profits are chosen according to general discrete probability distri-
butions over � with finite mean. For every i ∈ [n], we assume that
pi is a positive random variable with probability function fi :�→
[0,1], i.e., fi(t) = Pr [pi = t].

THEOREM 12. Suppose π = maxi∈[n] (maxx∈� ( fi(x))) and µ≥
maxi∈[n] (E [pi]). Then the expected number of dominating sets is

E [q] = O(µn2(1−e−πn2
)) = O(µπn4).

In fact, the term 1 − e−πn2
in the upper bound translates into

a pseudo-polynomial bound if the randomness in the specification
goes to zero. For example, assume that for each item an adversary
specifies an interval from which the profit of this item is drawn
uniformly at random. Let M denote the maximum profit that can
be drawn for any item and � the minimum interval length over all
items. Set µ = M and π = 1

� so that E [q] = O(Mn2(1− e−n2/�)).
Now, if � = Θ(M) then this upper bound simplifies to O(n4) be-
cause 1−e−x ≤ x, for all x ∈�. However, if � = Θ(1), then we are
left with the pseudo-polynomial upper bound E [q] = O(Mn2).

PROOF. We adapt the proof of Theorem 8. Let Ti :�→ [0,1] be
the tail function of pi. To simplify the analysis, we introduce aux-
iliary random variables x1, . . . ,xn. These variables are drawn inde-
pendently and uniformly over the interval [0,1]. Now we assume
that the pi’s are generated from the xi’s by setting pi = max{ j ∈� :
Ti( j) ≥ xi}. In this way, Pr [pi ≥ t] = Ti(t), so that this is a proper
way to generate the profits in order to obtain the same distribu-
tion as described in the theorem. Define auxiliary random variables
qk(M) as before. Lemma 9 from the proof of Theorem 8 transfers
directly to discrete probability distributions. For the convenience
of the reader we state it here again.

LEMMA 13. For every k ≥ 0, E [q] ≤ ∑∞
k=0 2−k+5 E [qk(Mk)],

for some Mk ⊆ [n].

Next we prove the discrete counterpart of Lemma 10.

LEMMA 14. For k≥ 0, E [qk]≤min{µn(1−eπ2k n2
)+n+1,2n}.

PROOF. The bound E [qk] ≤ 2n holds trivially because there are
at most 2n different subsets over n elements. The other bound can
be shown with the help of Theorem 11. In order to apply this The-
orem, we need to bound the ratio of Ti,k(t + 1) and Ti,k(t) for all
t ∈ �. Define Bi,k = min{ j ∈� : Ti( j) < 2−k/n}. Consider the
following variants of our tail function. We cut the tail functions Ti
at position Bi,k and replace the original, possibly short tails by long,
exponential tails. For i ∈ [n] and k ≥ 0, define

Ti,k(t) =

{
Ti(t) if t < Bi,k,

exp(−πn(t −Bi,k))/(n2k) if t ≥ Bi,k.

Figure 3 illustrates the situation.
For all t ≤ Bi,k −1, Ti,k(t +1) ≥ 2−k/n and Ti,k(t)−Ti,k(t +1)≤

π. In particular, Ti,k(Bi,k −1)−Ti,k(Bi,k) ≤ π, because Ti,k(Bi,k) ≥
T (Bi,k). Therefore Ti,k(t) ≤ Ti,k(t +1)+2kn ·Ti,k(t +1) ·π and

Ti,k(t +1)
Ti,k(t)

≥ 1
1+2knπ

≥ e−2knπ .

The same lower bound holds also for t ≥ Bi,k since, in this case,

Ti,k(t +1)
Ti,k(t)

= e−nπ ≥ e−2knπ .

Bi,k

1
2kn

Ti,k

Ti

Figure 3: We cut the tail Ti at position Bi,k and replace this part
by a long tail Ti,k.

Furthermore, observe that the expected maximum profit of an item
under the tail function Ti,k is at most µ + 1/(2kn(1− e−πn)), be-
cause the added exponential tail increases the original mean value
µ by at most

max
i

∞

∑
t=Bi,k

1
2kn

e−πn(t−Bi,k) =
1

2kn
· 1
(1−e−πn)

.

Applying Theorem 11 with parameters µk = µ+1/(2kn (1−e−πn))
and αk = πn2k yields

E [qk] ≤ µkn(1−e−αk n)+1

= µn(1−e−πn2 2k
)+

1−e−πn22k

2k(1−e−πn)
+1

≤ µn(1−e−πn2 2k
)+n+1 .

Thus, Lemma 14 is shown.

Now we can complete our calculation for the upper bound on
E [q]. Combining Lemma 14 and 13 yields

E [q] ≤
∞

∑
k=0

2−k+5 min
{

µn(1−e−πn2 2k
)+n+1,2n

}

≤ 32

(
n

∑
k=0

µn
(1−e−πn2 2k

)
2k +

n+1
2k

)
+32

∞

∑
k=n+1

2n−k

≤ 32(µn2(1−e−πn2
)+2n+3) .

Finally, we need to show that 2n + 3 = O(µn2(1 − e−πn2
)). As

the considered distributions are positive, µ ≥ 1 and πµ ≥ 1
2 gives

(1− e−πn2
) ≥ (1− e−n2/2µ). The inequality x+ e−n3x/2 ≤ 1 holds

for all 0 ≤ x ≤ 0.5 and n ≥ 2. Substituting x := 1/(µn) yields 1 ≤
µn(1−e−n2/2µ). Thus Theorem 12 is shown.
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APPENDIX

A. FORMAL PROOF OF LEMMA 9
We have to show E [q]≤∑∞

k=0 2−k+5 E [qk], for every k ≥ 0. First
we rewrite Equation 2 in terms of the qk variables, that is,

E [q] ≤ E [q0 | X0]+
∞

∑
k=1

E [qk | Xk ∧¬Xk−1]
2k−1 . (3)

Next we prove upper bounds for E [q |X0] and E [q |Xk ∧¬Xk−1].
The first term can be estimated as follows.

E [q0 |X0] ≤ E [q0]
Pr [X0]

≤ 4E [q0] , (4)

where the last equation follows as Pr [X0] = Pr
[∀i ∈ [n] : xi ≥ 1

n

]
=(

1− 1
n

)n ≥ 1
4 , for n ≥ 2. In order to bound the second term, we

partition the event ¬Xk−1 into n disjoint events Z1, . . . ,Zn with

Z j =
[

x1,x2, . . . ,x j−1 ≥ 1
2k−1n

∧ x j <
1

2k−1n

]
.

Then, for k ≥ 1,

Pr [Xk |¬Xk−1] =
n

∑
j=1

Pr
[
Xk |Z j

] ·Pr
[
Z j | �i∈[n] Zi

]

=
n

∑
j=1

1
2

(
1− 1

2kn

)n− j

Pr
[
Z j |

�
i∈[n] Zi

]

≥ 1
2

(
1− 1

2kn

)n−1 n

∑
j=1

Pr
[
Z j |�i∈[n] Zi

]

=
1
2

(
1− 1

2kn

)n−1

≥ 1
4

.

Thus, we get

E [qk |Xk ∧¬Xk−1] ≤
E [qk |¬Xk−1]
Pr [Xk |¬Xk−1]

≤ 4E [qk |¬Xk−1] . (5)

Finally, we need to get rid of the conditioning on ¬Xk−1. For all
i∈ [n], let Yi denote the event xi < 2−(k−1)/n. As ¬Xk−1 =

�
i∈[n]Yi,

E [qk |¬Xk−1] = E
[
qk

∣∣∣�i∈[n]Yi

]
≤ ∑

j∈[n]
E
[
qk |Yj

] ·Pr
[
Yj

∣∣∣�i∈[n]Yi

]
.

Observe that the last estimation would hold with equality if the
events Y1, . . . ,Yn were disjoint. As these events overlap, however,
the right hand term slightly overestimates the left hand term. Now

Pr
[
Yj
]
= 2−k+1/n and Pr

[�
i∈[n]Yi

]
= 1− (1−2−k+1/n)n ≥ 2−k ,

so that

Pr
[
Yj

∣∣∣�i∈[n]Yi

]
=

Pr
[
Yj
]

Pr
[�

i∈[n]Yi

] ≤ 2−k+1/n

2−k ≤ 2
n

.

As a consequence,

∑
j∈[n]

E
[
qk |Yj

] ·Pr
[
Yj

∣∣∣�i∈[n]Yi

]

≤ max
j∈[n]

(E
[
qk |Yj

]
) ∑

j∈[n]
Pr
[
Yj

∣∣∣�i∈[n]Yi

]

≤ 2 max
j∈[n]

(E
[
qk |Yj

]
) .

Let j denote the element maximizing the last expression. Observe
that E

[
qk |Yj

] ≤ 2E [qk([n]\{ j})] because adding a single item
can increase the number of dominating sets at most by a factor of
two. (To see this, assume that the item is inserted as last element
using the Nemhauser/Ullmann algorithm.) Hence,

E [qk |¬Xk−1] ≤ 2(E
[
qk |Yj

]
) ≤ 4E [qk([n]\{ j})] . (6)

Now substituting the Equations (4), (5), and (6) into Equation (3)
yields Lemma 9.
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