Vladimir Shpilrain
The City College of New York

Public key exchange using semidirect product of (semi)groups

November 15, 2012
1. Alice and Bob agree on a public (finite) cyclic group G and a generating element g in G. We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends g^a to Bob.

3. Bob picks a random natural number b and sends g^b to Alice.

4. Alice computes $K_A = (g^b)^a = g^{ba}$.

5. Bob computes $K_B = (g^a)^b = g^{ab}$.

Since $ab = ba$ (because \mathbb{Z} is commutative), both Alice and Bob are now in possession of the same group element $K = K_A = K_B$ which can serve as the shared secret key.
Exponentiation by “square-and-multiply”:

\[g^{22} = (((g^2)^2)^2)^2 \cdot (g^2)^2 \cdot g^2 \]

Complexity of computing \(g^n \) is therefore \(O(\log n) \), times complexity of reducing \(mod \ p \) (more generally, reducing to a “normal form”).
Exponentiation by “square-and-multiply”:

\[g^{22} = (((g^2)^2)^2)^2 \cdot (g^2)^2 \cdot g^2 \]

Complexity of computing \(g^n \) is therefore \(O(\log n) \), times complexity of reducing \(\mod p \) (more generally, reducing to a “normal form”).
Exponentiation by “square-and-multiply”:

\[g^{22} = (((g^2)^2)^2)^2 \cdot (g^2)^2 \cdot g^2 \]

Complexity of computing \(g^n \) is therefore \(O(\log n) \), times complexity of reducing \(mod \) \(p \) (more generally, reducing to a “normal form”).
Security assumptions

To recover g^{ab} from (g, g^a, g^b) is hard.

To recover a from (g, g^a) (discrete log problem) is hard.
Security assumptions

To recover g^{ab} from (g, g^a, g^b) is hard.

To recover a from (g, g^a) (discrete log problem) is hard.
1. Alice and Bob agree on a (finite) cyclic group G and a generating element g in G. We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends g^a to Bob.

3. Bob picks a random natural number b and sends g^b to Alice.

4. Alice computes $K_A = (g^b) \cdot (g^a) = g^{b+a}$.

5. Bob computes $K_B = (g^a) \cdot (g^b) = g^{a+b}$.

Obviously, $K_A = K_B = K$, which can serve as the shared secret key.

Drawback: anybody can obtain K the same way!
1. Alice and Bob agree on a (finite) cyclic group \(G \) and a generating element \(g \) in \(G \). We will write the group \(G \) multiplicatively.

2. Alice picks a random natural number \(a \) and sends \(g^a \) to Bob.

3. Bob picks a random natural number \(b \) and sends \(g^b \) to Alice.

4. Alice computes \(K_A = (g^b) \cdot (g^a) = g^{b+a} \).

5. Bob computes \(K_B = (g^a) \cdot (g^b) = g^{a+b} \).

Obviously, \(K_A = K_B = K \), which can serve as the shared secret key.

Drawback: anybody can obtain \(K \) the same way!
Using matrices

There is a public ring (or a semiring) \(R \) and public \(n \times n \) matrices \(S, M_1, \) and \(M_2 \) over \(R \). The ring \(R \) should have a non-trivial commutative subring \(C \). One way to guarantee that would be for \(R \) to be an algebra over a field \(K \); then, of course, \(C = K \) will be a commutative subring of \(R \).

1. Alice chooses polynomials \(p_A(x), q_A(x) \in C[x] \) and sends the matrix \(U = p_A(M_1) \cdot S \cdot q_A(M_2) \) to Bob.

2. Bob chooses polynomials \(p_B(x), q_B(x) \in C[x] \) and sends the matrix \(V = p_B(M_1) \cdot S \cdot q_B(M_2) \) to Alice.

3. Alice computes
 \[
 K_A = p_A(M_1) \cdot V \cdot q_A(M_2) = p_A(M_1) \cdot p_B(M_1) \cdot S \cdot q_B(M_2) \cdot q_A(M_2).
 \]

4. Bob computes
 \[
 K_B = p_B(M_1) \cdot U \cdot q_B(M_2) = p_B(M_1) \cdot p_A(M_1) \cdot S \cdot q_A(M_2) \cdot q_B(M_2).
 \]

Since any two polynomials in the same matrix commute, one has \(K = K_A = K_B \), the shared secret key.
Using matrices

There is a public ring (or a semiring) R and public $n \times n$ matrices S, M_1, and M_2 over R. The ring R should have a non-trivial commutative subring C. One way to guarantee that would be for R to be an algebra over a field K; then, of course, $C = K$ will be a commutative subring of R.

1. Alice chooses polynomials $p_A(x), q_A(x) \in C[x]$ and sends the matrix $U = p_A(M_1) \cdot S \cdot q_A(M_2)$ to Bob.

2. Bob chooses polynomials $p_B(x), q_B(x) \in C[x]$ and sends the matrix $V = p_B(M_1) \cdot S \cdot q_B(M_2)$ to Alice.

3. Alice computes $K_A = p_A(M_1) \cdot V \cdot q_A(M_2) = p_A(M_1) \cdot p_B(M_1) \cdot S \cdot q_B(M_2) \cdot q_A(M_2)$.

4. Bob computes $K_B = p_B(M_1) \cdot U \cdot q_B(M_2) = p_B(M_1) \cdot p_A(M_1) \cdot S \cdot q_A(M_2) \cdot q_B(M_2)$.

Since any two polynomials in the same matrix commute, one has $K = K_A = K_B$, the shared secret key.
Note: The whole ring R should not be commutative because otherwise, the Cayley-Hamilton theorem kills large powers of a matrix.
Let G, H be two groups, let $\text{Aut}(G)$ be the group of automorphisms of G, and let $\rho : H \to \text{Aut}(G)$ be a homomorphism. Then the semidirect product of G and H is the set
\[
\Gamma = G \rtimes_{\rho} H = \{(g, h) : g \in G, \ h \in H\}
\]
with the group operation given by
\[
(g, h)(g', h') = (g^\rho(h) \cdot g', \ h \cdot h').
\]
Here $g^\rho(h)$ denotes the image of g under the automorphism $\rho(h)$.
If \(H = \text{Aut}(G) \), then the corresponding semidirect product is called the holomorph of the group \(G \). Thus, the holomorph of \(G \), usually denoted by \(\text{Hol}(G) \), is the set of all pairs \((g, \phi) \), where \(g \in G \), \(\phi \in \text{Aut}(G) \), with the group operation given by

\[
(g, \phi) \cdot (g', \phi') = (\phi'(g) \cdot g', \phi \cdot \phi').
\]

It is often more practical to use a subgroup of \(\text{Aut}(G) \) in this construction.

Also, if we want the result to be just a semigroup, not necessarily a group, we can consider the semigroup \(\text{End}(G) \) instead of the group \(\text{Aut}(G) \) in this construction.
If $H = Aut(G)$, then the corresponding semidirect product is called the holomorph of the group G. Thus, the holomorph of G, usually denoted by $Hol(G)$, is the set of all pairs (g, ϕ), where $g \in G$, $\phi \in Aut(G)$, with the group operation given by

$$(g, \phi) \cdot (g', \phi') = (\phi'(g) \cdot g', \phi \cdot \phi').$$

It is often more practical to use a subgroup of $Aut(G)$ in this construction.

Also, if we want the result to be just a semigroup, not necessarily a group, we can consider the semigroup $End(G)$ instead of the group $Aut(G)$ in this construction.
If $H = Aut(G)$, then the corresponding semidirect product is called the holomorph of the group G. Thus, the holomorph of G, usually denoted by $Hol(G)$, is the set of all pairs (g, ϕ), where $g \in G$, $\phi \in Aut(G)$, with the group operation given by

$$(g, \phi) \cdot (g', \phi') = (\phi'(g) \cdot g', \phi \cdot \phi').$$

It is often more practical to use a subgroup of $Aut(G)$ in this construction.

Also, if we want the result to be just a semigroup, not necessarily a group, we can consider the semigroup $End(G)$ instead of the group $Aut(G)$ in this construction.
Let G be a group (or a semigroup). An element $g \in G$ is chosen and made public as well as an arbitrary automorphism (or an endomorphism) ϕ of G. Bob chooses a private $n \in \mathbb{N}$, while Alice chooses a private $m \in \mathbb{N}$. Both Alice and Bob are going to work with elements of the form (g, ϕ^k), where $g \in G$, $k \in \mathbb{N}$.

1. Alice computes $(g, \phi)^m = (\phi^{-1}(g) \cdots \phi^2(g) \cdot \phi(g) \cdot g, \phi^m)$ and sends only the first component of this pair to Bob. Thus, she sends to Bob only the element $a = \phi^{-1}(g) \cdots \phi^2(g) \cdot \phi(g) \cdot g$ of the group G.

2. Bob computes $(g, \phi)^n = (\phi^{-1}(g) \cdots \phi^2(g) \cdot \phi(g) \cdot g, \phi^n)$ and sends only the first component of this pair to Alice: $b = \phi^{-1}(g) \cdots \phi^2(g) \cdot \phi(g) \cdot g$.

3. Alice computes $(b, x) \cdot (a, \phi^m) = (\phi^m(b) \cdot a, x \cdot \phi^m)$. Her key is now $K_A = \phi^m(b) \cdot a$. Note that she does not actually “compute” $x \cdot \phi^m$ because she does not know the automorphism x; recall that it was not transmitted to her. But she does not need it to compute K_A.

Key exchange using extensions by automorphisms
(Habeeb-Kahrobaei-Koupparis-Shpilrain)

Let G be a group (or a semigroup). An element $g \in G$ is chosen and made public as well as an arbitrary automorphism (or an endomorphism) ϕ of G. Bob chooses a private $n \in \mathbb{N}$, while Alice chooses a private $m \in \mathbb{N}$. Both Alice and Bob are going to work with elements of the form (g, ϕ^k), where $g \in G$, $k \in \mathbb{N}$.

1. Alice computes $(g, \phi)^m = (\phi^{m-1}(g) \cdot \phi^2(g) \cdot \phi(g) \cdot g, \phi^m)$ and sends only the first component of this pair to Bob. Thus, she sends to Bob only the element $a = \phi^{m-1}(g) \cdot \phi^2(g) \cdot \phi(g) \cdot g$ of the group G.

2. Bob computes $(g, \phi)^n = (\phi^{n-1}(g) \cdot \phi^2(g) \cdot \phi(g) \cdot g, \phi^n)$ and sends only the first component of this pair to Alice: $b = \phi^{n-1}(g) \cdot \phi^2(g) \cdot \phi(g) \cdot g$.

3. Alice computes $(b, x) \cdot (a, \phi^m) = (\phi^m(b) \cdot a, x \cdot \phi^m)$. Her key is now $K_A = \phi^m(b) \cdot a$. Note that she does not actually “compute” $x \cdot \phi^m$ because she does not know the automorphism x; recall that it was not transmitted to her. But she does not need it to compute K_A.
Let G be a group (or a semigroup). An element $g \in G$ is chosen and made public as well as an arbitrary automorphism (or an endomorphism) ϕ of G. Bob chooses a private $n \in \mathbb{N}$, while Alice chooses a private $m \in \mathbb{N}$. Both Alice and Bob are going to work with elements of the form (g, ϕ^k), where $g \in G$, $k \in \mathbb{N}$.

1. Alice computes $(g, \phi)^m = (\phi^{m-1}(g) \cdots \phi^2(g) \cdot \phi(g) \cdot g, \phi^m)$ and sends only the first component of this pair to Bob. Thus, she sends to Bob only the element $a = \phi^{m-1}(g) \cdots \phi^2(g) \cdot \phi(g) \cdot g$ of the group G.

2. Bob computes $(g, \phi)^n = (\phi^{n-1}(g) \cdots \phi^2(g) \cdot \phi(g) \cdot g, \phi^n)$ and sends only the first component of this pair to Alice: $b = \phi^{n-1}(g) \cdots \phi^2(g) \cdot \phi(g) \cdot g$.

3. Alice computes $(b, x) \cdot (a, \phi^m) = (\phi^m(b) \cdot a, x \cdot \phi^m)$. Her key is now $K_A = \phi^m(b) \cdot a$. Note that she does not actually “compute” $x \cdot \phi^m$ because she does not know the automorphism x; recall that it was not transmitted to her. But she does not need it to compute K_A.
4. Bob computes \((a, y) \cdot (b, \phi^n) = (\phi^n(a) \cdot b, y \cdot \phi^n)\). His key is now \(K_B = \phi^n(a) \cdot b\). Again, Bob does not actually “compute” \(y \cdot \phi^n\) because he does not know the automorphism \(y\).

5. Since \((b, x) \cdot (a, \phi^m) = (a, y) \cdot (b, \phi^n) = (g, \phi)^{m+n}\), we should have \(K_A = K_B = K\), the shared secret key.

Special case: Diffie-Hellman

\[G = \mathbb{Z}_p^* \]

\[\phi(g) = g^k \text{ for all } g \in G \text{ and a fixed } k, \ 1 < k < p - 1. \]

Then \((g, \phi)^m = (\phi^{m-1}(g) \cdots \phi(g) \cdot \phi^2(g) \cdot g, \ \phi^m). \]

The first component is equal to \(g^{km-1 + \cdots + k+1} = g^{k^{m-1}}. \)

The shared key \(K = g^{k^{m+n-1}}. \)

“The Diffie-Hellman type problem” would be to recover the shared key \(K = g^{k^{m+n-1}}\) from the triple \((g, g^{k^{m-1}}, g^{k^{n-1}}). \) Since \(g\) and \(k\) are public, this is equivalent to recovering \(g^{k^{m+n}}\) from the triple \((g, g^k, g^n), \) i.e., this is exactly the standard Diffie-Hellman problem.
Special case: Diffie-Hellman

\[G = \mathbb{Z}_p^* \]
\[\phi(g) = g^k \text{ for all } g \in G \text{ and a fixed } k, 1 < k < p - 1. \]

Then \((g, \phi)^m = (\phi^{m-1}(g) \cdots \phi(g) \cdot \phi^2(g) \cdot g, \phi^m)\).
The first component is equal to \(g^{k^m-1 + \cdots + k+1} = g^{\frac{k^m-1}{k-1}}\).
The shared key \(K = g^{\frac{k^m+n-1}{k-1}}\).

“The Diffie-Hellman type problem” would be to recover the shared key \(K = g^{\frac{k^m+n-1}{k-1}}\) from the triple \((g, g^{\frac{k^m-1}{k-1}}, g^{\frac{k^n-1}{k-1}})\). Since \(g\) and \(k\) are public, this is equivalent to recovering \(g^{k^m+n}\) from the triple \((g, g^k, g^n)\), i.e., this is exactly the standard Diffie-Hellman problem.
Special case: Diffie-Hellman

\[G = \mathbb{Z}_p^* \]
\[\phi(g) = g^k \text{ for all } g \in G \text{ and a fixed } k, 1 < k < p - 1. \]

Then \((g, \phi)^m = (\phi^{m-1}(g) \cdot \phi(g) \cdot \phi^2(g) \cdot g, \phi^m) \).

The first component is equal to \(g^{k^{m-1} + \cdots + k + 1} = g^{\frac{k^{m-1}}{k-1}} \).

The shared key \(K = g^{\frac{k^{m+n-1}}{k-1}} \).

“The Diffie-Hellman type problem” would be to recover the shared key
\(K = g^{\frac{k^{m+n-1}}{k-1}} \) from the triple \((g, g^{\frac{k^{m-1}}{k-1}}, g^{\frac{k^{n-1}}{k-1}}) \). Since \(g \) and \(k \) are public, this is equivalent to recovering \(g^{k^{m+n}} \) from the triple \((g, g^k, g^n) \), i.e., this is exactly the standard Diffie-Hellman problem.
Our general protocol can be used with any non-commutative group G if ϕ is selected to be an inner automorphism. Furthermore, it can be used with any non-commutative semigroup G as well, as long as G has some invertible elements; these can be used to produce inner automorphisms. A typical example of such a semigroup would be a semigroup of matrices over some ring.

We use the semigroup of 3×3 matrices over the group ring $\mathbb{Z}_7[A_5]$, where A_5 is the alternating group on 5 elements. Then the public key consists of two matrices: the (invertible) conjugating matrix H and a (non-invertible) matrix M. The shared secret key then is:

$$K = H^{-(m+n)}(HM)^{m+n}.$$
Our general protocol can be used with any non-commutative group G if ϕ is selected to be an inner automorphism. Furthermore, it can be used with any non-commutative semigroup G as well, as long as G has some invertible elements; these can be used to produce inner automorphisms. A typical example of such a semigroup would be a semigroup of matrices over some ring.

We use the semigroup of 3×3 matrices over the group ring $\mathbb{Z}_7[A_5]$, where A_5 is the alternating group on 5 elements.
Then the public key consists of two matrices: the (invertible) conjugating matrix H and a (non-invertible) matrix M. The shared secret key then is:

$$K = H^{-(m+n)}(HM)^{m+n}.$$
To recover $H^{-m}(HM)^m$ from $(M, H, H^{-m}(HM)^m, H^{-n}(HM)^n)$ is hard.

To recover m from $H^{-m}(HM)^m$ is hard.
Security assumptions

To recover $H^{- (m+n)} (HM)^{m+n}$ from $(M, H, H^{-m} (HM)^m, H^{-n} (HM)^n)$ is hard.

To recover m from $H^{-m} (HM)^m$ is hard.
Conclusions

- Even though the parties do compute a large power of a public element (as in the classical Diffie-Hellman protocol), they do not transmit the whole result, but rather just part of it.

- Since the classical Diffie-Hellman protocol is a special case of our protocol, breaking our protocol even for any cyclic group would imply breaking the Diffie-Hellman protocol.
Conclusions

• Even though the parties do compute a large power of a public element (as in the classical Diffie-Hellman protocol), they do not transmit the whole result, but rather just part of it.

• Since the classical Diffie-Hellman protocol is a special case of our protocol, breaking our protocol even for any cyclic group would imply breaking the Diffie-Hellman protocol.
If the platform (semi)group is not commutative, then we get a new security assumption. In the simplest case, where the automorphism used for extension is inner, attacking a private exponent amounts to recovering an integer n from a product $g^{-n}h^n$, where g, h are public elements of the platform (semi)group. In the special case where $g = 1$ this boils down to recovering n from h^n, with public h (“discrete log” problem).

On the other hand, in the particular instantiation of our protocol, which is based on a non-commutative semigroup extended by an inner automorphism, recovering the shared secret key from public information is based on a different security assumption than the classical Diffie-Hellman protocol is.
Conclusions

• If the platform (semi)group is not commutative, then we get a new security assumption. In the simplest case, where the automorphism used for extension is inner, attacking a private exponent amounts to recovering an integer n from a product $g^{-n}h^n$, where g, h are public elements of the platform (semi)group. In the special case where $g = 1$ this boils down to recovering n from h^n, with public h (“discrete log” problem).

On the other hand, in the particular instantiation of our protocol, which is based on a non-commutative semigroup extended by an inner automorphism, recovering the shared secret key from public information is based on a different security assumption than the classical Diffie-Hellman protocol is.
Thank you