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Key Exchange Protocols (KEPs)

Alice and Bob wish to communicate over an insecure channel.

3 Efficient & secure methods if they share a secret (“key"):
Symmetric encryption (AES,...).

How to decide a shared secret key over an insecure channel?
Diffie-Hellman 1976. Key Exchange Protocol.
The most important breakthrough in cryptography.

In this lecture: Only passive adversaries.
The kernel on which more involved PKC is built.
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Alice Public Bob
ae{0,1,...,p—1} G={g), |G|=p be{0,1,...,p—1}
gb

K=|gt| =g K:b:gab

Discrete Logarithm Problem  Diffie-Hellman Problem (DHP)

g x > (g%,8%) — g
—_———
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The Discrete Logarithm Problem

Discrete Logarithm Problem. g* — x.
Depends on the group!

G=(Zp,+) g=1."g"=x-g=x-1=x.
G < (Zp,-). Quite, but not enough, hard:

NFS. n:=logy(p): 2 (1.33 4+ o(1))n'/3(log, n)2/3.

n NFS Work Prediction Year Broken

525 247 2002
578 249 2003
664 252 2005
768 2% 2009
1024 262 20167

10,000 bits prime for “eternal” security? Impractical.
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The future of cryptography

G < Elliptic Curve. Nothing better than 21/2 Yet.

ECC. Rich mathematics — --- — algorithmic breakthroughs?
Quantum Computers. Break all Diffie—~Hellman KEPs.
Theoretic.

But what is your alternative?

Rivest-Shamir-Adleman (RSA, 1978). As easy as DLP in Zj,.
Lattice-based? Maybe.

How about noncommutative groups?
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Diffie—Hellman KEP 1976.

Alice Public Bob

ae{0,1,...,p—1} G={g), |G|=p be{0,1,...,p—1}




The Braid Diffie=Hellman KEP

Ko—-Lee—-Cheon-Han-Kang—Park 2000. G noncommutative.

g¥ = x"lgx.
Alice Public Bob
acA AB<G,geG,[ABl=1 beB
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The braid group By

For our purposes, By is a group with elements

(ivplw"apf):

i€Z,0e NU{0}, p1,...,p¢ € Sn,
satisfying certain properties.

Multiplication rule: Algorithm of complexity N¢2.
We always ignore logarithmic factors.
Inversion: Even faster.

Security parameters: m:= |i| + ¢, N.
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The Braid Diffie=Hellman KEP

G = By.

Alice Public Bob
acA A B<G,geG,[AB]=1 beB
gb

a b

BDH Problem. (g2, g%) — g (a € A, b € B).
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Faithful representation of By

Lawrence—Krammer. LK: By — GL(N)(Z[til, %])
2

Bigelow 2001 (JAMS), Krammer 2002 (Annals):
LK representation is faithful for all V.

Cheon—Jun 2003. LK Evaluation: Fast. Inversion: N® (acceptable).

.. May work in the image of By in GL(N)(Z[til,% ).
2
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Cheon—Jun 2003. Let x = (i, p1,...,p¢) € By, m=|i| + .
1. The degrees of t in LK(x) € GL(w )(Z[ti1 1) isin [-m, m].
2. The coefficients 55 in LK(x) satisfy: [c| < oN*m 14| < 2Nm.
> (22Nmem) LK (x) € GL( )(Z[t])

> |coefficients| < oN?(m-te).

» Degree of t < 2m.

- For prime p > 2M°™ and irreducible £(t) of degree > 2m,

(228mem) - LK(x) = (229mem) - LK(x) mod (p. (1)) € GLw) (Z1£]/{p. F(2)).
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Reducing to a matrix group (cont.)

BDH Problem. (g2,g%) +— g?* (a € A, b € B).
BDH KEP. K = g2 = a~1b~1gab.

Let K = (i, p1,...,pe) € By, m=|i| + ¢, p=2Vm,
deg(f(t)) = 2m.

F=Z[t]/{p,f(t)) = Z[t*", 51/ {p, f(t)).

[ is a finite field. Field operations: m3N?.
(22Nmem) L LK(K) € GL () (F).
2

.. Suffices to break BDH KEP over
G = LK[Bu]/(p. f(2)) < GLw)(F).

n:= (g’) roughly N2. Henceforth, G < GL,(F).
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BDH Problem. (g2, g%) — g (a € A, b € B).
Cheon—Jun 2003. Representation attack.

Assume G 22t matrix group. Think G is a matrix group.

Solve

{a' - e = 3 € My(F) s.t. {5'
a-B = B-a

Then gb — gb5 — géb — (gé)b —
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Cheon—Jun 2003. Representation attack.

Assume G cveff

Solve

(-

g
a-B = B-a

- ~ ~ b
Then | g°| = g% = g% = (g%)" = =

matrix group. Think G is a matrix group.
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Solve
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Then gb — gba :gab — (ga)b : :gab —
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BDH Problem. (g2, g%) — g (a € A, b € B).
Cheon—Jun 2003. Representation attack.

Assume G 22t matrix group. Think G is a matrix group.

Solve

(-

g
a-B = B-a

= x . b
Then gb :gba:gab:(ga)b: — gab — K|

[\ 1

e
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BDH Problem. (g2, g%) — g (a € A, b € B).
Cheon—Jun 2003. Representation attack.

Assume G 22t matrix group. Think G is a matrix group.

:a—lga <—> a.:g.a

Solve

(-

g-a
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Representation attack

BDH Problem. (g2, g%) — g (a € A, b € B).
Cheon—Jun 2003. Representation attack.

Assume G 22t matrix group. Think G is a matrix group.

:a_lga <~ a-:g-a

Solve

(-

g-a
a-B = B-a

a 5 . < b
Then gb :gba:gab:(ga)b: :gab:K!

Possibly, & ¢ G, but this works ! Complexity: (n?)® = N2,

[\ 1

e
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Second Braid Diffie=Hellman KEP
Cha—Ko—-Lee—Han—Cheon 2001.

Alice Public

a1 € A, a2 € A2 A1,A2, B, B < G, g€ G

Bob

bl S Bl,bg € Bz

Cheon—Jun 2003. Similar representation attack:

C=aigar <= |4

-C=g-ap.

K = bi[agal
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Finding an invertible solution

Problem. Find an invertible matrix in a subspace of M,(F).
Cheon—Jun Heuristic. Pick “random” elements until invertible.

Ts. Assume span{Ai,...,An} NGL,(F) # 0. Then

Pr(jar A1 + - + amAm| £0) > 1 — %.

Proof: f(x1,...,xm) = |x1A1+ -+ 4+ xmAm| € Flx1,..., xm],
nonzero, degree n.

Schwartz 1980—-Zippel 1989 Lemma.
f(x1,...,%m) € F[x1,..., xm] nonzero degree n.

Pr(f(x1,...,xm) #£0) >1— ﬁ

In our case, |F| > 2" > n.
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The Commutator Key Exchange Protocol

Anshel-Anshel-Goldfeld 1999.

Alice Public Bob
V(X1,...,Xk)€Fk (al,...,ak>§G W(X1, ..,Xk)EFk
a=v(a,...,ak) (b1,...,bx) < G b=w(bi,...,bx)

blaa s bka
alb, ooy akb
K=alv(a?,...,a") K =w(b?...,b7°)7 b
atv(a®,.. . a)=atab =a b lab=(b)"tb = w(bi?,..., b)) b
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Linear Centralizer approach (Ts)
Assume G < M = M,(F) (eq., eff. representable).

Key observations.

1. Can't constraint solutions of linear equations to groups,
can constraint solutions to subspaces of M!

2. H={(g1,...,80) < G = Cc(H) S Cu(H) = Cula, .., &)
.. Cy(H) computable by solving

X8 = g&iX

X8k = BkX

linear equations in the n? entries of x, kn® operations.
3. Cuml(gi,---,8k) is a vector subspace of M.
4. Ci(Cu(H)) computable: dim(Cy(H)) < n? equations.

5. Complexity: kn® 4 n?n® = n®.
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ac <a1,...,ak>,b€ <b1,...,bk> <G<L GL,,(F).
Commutator KEP Problem. (b1?,...,b% a1?,...,a%) — a~ b~ Lab.
Attack (Ts):

1. Compute a basis for Cy(Cpi(b1, - .-, bk)).
2. Solve

bia = a- ab = b-|la?
bka : a' akb : b-akb

with a invertible, b € Cp(Cp (b1, ..., bx)) invertible.
3. 3 solution: (a, b). Let (3, b) be one.
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Complexity

n® for computing Ciy(Cu(b1,- .-, bx)).

Can be preprocessed!

kn® for solving the equations.

Field operations: m3N? = m3n.

Total: n°m = N8m? offlien; kn”m3 = kN**m3 online.
Using w = log, 7: N'68m3 offlien; kn"m3 = kN> m? online.

Not practical: 100168 = 2111 (times m® and logarithmic factors...).
But:

1. Worst-case polytime.
2. First provable attack for small braid index N.

3. Just cubic in m. )
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Alice Public Bob
a1 €eG geaG b e G
B < Cs(ar)

A< Cg(bg)

a A by € B
a18a2
b1gbg

K = alblgb232 K = b131g32b2
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g,a1,b0 € G, B< Cg(a1), A< Cg(br), a2 € A, by € B.
Shpilrain-Ushakov Problem. (a1gaz, bighs) — a1bigasbo.
€A== a € Cu(Cu(A) <= a,* € Cu(Cu(A)).
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~ ~ | ~
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5. Complexity N'68m?3,
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The end of braid-based cryptography?

Not quite:

1. Attack impractical for practical values of N.

2. There are additional braid-PKC proposals
(Dehornoy et al., Kalka, Kurt ...).

3. The other problems (CSP, Multiple CSP,...) on which
braid-based PKC may be based.
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Alice Public Bob
A A A Xi X
a,ar, az, X1, X2 [ I . <G ¥1,y2, b1, b2, b
Y. Yo B B B
axy |, X1_131X2 y X2_182
-1 -1
blyl | V1 b2.y2 | Yo b
a byy1 |ax y1_1b2y2 a0 y2_1b = abjaibyarb = axy by X1_131X2 by x2_1a2 b

~~
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Alice

a7a17a27X17X2

d b1y1

Public Bob
A A A X1 X3
R <G Y1, ¥2, b1, ba, b
Yl Y2 Bl B2 B
axt |y| X tarxe || x; T a
-1 1
blyl B4 b2.y2 5| Vo b
a1 y; tbayo 3o vy Th| = abiarbrash =| axy |bi| x; taixz ba| x5 tan b

~~

K
THANK YOU!



