Polynomial time cryptanalysis of the Commutator Key Exchange Protocol

Boaz Tsaban

Bar-Ilan University

Symbolic Computations and Post-Quantum Crypto Seminar 18 Oct '12

Alice and Bob wish to communicate over an insecure channel.

Alice and Bob wish to communicate over an insecure channel.

∃ Efficient & secure methods if they share a secret ("key"): Symmetric encryption (AES,...).

Alice and Bob wish to communicate over an insecure channel.

∃ Efficient & secure methods if they share a secret ("key"): Symmetric encryption (AES,...).

How to decide a shared secret key over an insecure channel?

Alice and Bob wish to communicate over an insecure channel.

∃ Efficient & secure methods if they share a secret ("key"): Symmetric encryption (AES,...).

How to decide a shared secret key over an insecure channel?

Diffie-Hellman 1976. Key Exchange Protocol.

The most important breakthrough in cryptography.

Alice and Bob wish to communicate over an insecure channel.

∃ Efficient & secure methods if they share a secret ("key"): Symmetric encryption (AES,...).

How to decide a shared secret key over an insecure channel?

Diffie-Hellman 1976. Key Exchange Protocol.

The most important breakthrough in cryptography.

In this lecture: Only passive adversaries.

The kernel on which more involved PKC is built.

The Diffie-Hellman KEP

The Diffie-Hellman KEP

Alice Public Bob
$$a \in \{0, 1, \dots, p-1\} \qquad G = \langle g \rangle, \ |G| = p \qquad b \in \{0, 1, \dots, p-1\}$$

$$g^{b}$$

$$K = \left[g^b\right]^a = g^{ab}$$
 $K = \left[g^a\right]^b = g^{ab}$

The Diffie-Hellman KEP

Alice

$$a \in \{0, 1, \dots, p-1\}$$
 $G = \langle g \rangle, |G| = p$ $b \in \{0, 1, \dots, p-1\}$

$$g^{b}$$

Bob

Public

$$K = \left[g^b\right]^a = g^{ab}$$
 $K = \left[g^a\right]^b = g^{ab}$

$$\underbrace{g^{x} \mapsto x}_{\text{Discrete Logarithm Problem}} \geq \underbrace{\left(g^{a}, g^{b}\right) \mapsto g^{ab}}_{\text{Diffie-Hellman Problem (DHP)}}$$

Discrete Logarithm Problem. $g^x \mapsto x$.

Discrete Logarithm Problem. $g^x \mapsto x$.

Discrete Logarithm Problem. $g^x \mapsto x$.

$$G = (\mathbb{Z}_p, +).$$
 $g = 1.$ " g^{x} " $= x \cdot g = x \cdot 1 = x.$

Discrete Logarithm Problem. $g^x \mapsto x$.

$$G = (\mathbb{Z}_p, +)$$
. $g = 1$. " g^{x} " = $x \cdot g = x \cdot 1 = x$.

$$G \leq (\mathbb{Z}_p^*, \cdot)$$
. Quite, but not enough, hard:

NFS.
$$n := \log_2(p)$$
: 2 $(1.33 + o(1))n^{1/3}(\log_2 n)^{2/3}$

Discrete Logarithm Problem. $g^x \mapsto x$.

$$G = (\mathbb{Z}_p, +)$$
. $g = 1$ " g^{x} " = $x \cdot g = x \cdot 1 = x$.

$$G \leq (\mathbb{Z}_p^*, \cdot)$$
. Quite, but not enough, hard:

NFS.
$$n := \log_2(p)$$
: 2 $(1.33 + o(1))n^{1/3}(\log_2 n)^{2/3}$

n	NFS Work Prediction	Year Broken	
525	2 ⁴⁷	2002	
578	2^{49}	2003	
664	2^{52}	2005	
768	2 ⁵⁵	2009	
1024	2 ⁶²	2016?	

Discrete Logarithm Problem. $g^x \mapsto x$.

Depends on the group!

$$G = (\mathbb{Z}_p, +)$$
. $g = 1$. " g^{x} " = $x \cdot g = x \cdot 1 = x$.

$$G \leq (\mathbb{Z}_p^*, \cdot)$$
. Quite, but not enough, hard:

NFS.
$$n := \log_2(p)$$
: 2 $(1.33 + o(1))^{n^{1/3}} (\log_2 n)^{2/3}$

n	NFS Work Prediction	Year Broken	
525	2 ⁴⁷	2002	
578	2^{49}	2003	
664	2^{52}	2005	
768	2 ⁵⁵	2009	
1024	2^{62}	2016?	

10,000 bits prime for "eternal" security? Impractical.

 $G \leq \text{Elliptic Curve.}$ Nothing better than $2^{n/2}$. Yet.

 $G \leq \text{Elliptic Curve}$. Nothing better than $2^{n/2}$. Yet.

ECC. Rich mathematics $\rightarrow \cdots \rightarrow$ algorithmic breakthroughs?

 $G \leq \text{Elliptic Curve}$. Nothing better than $2^{n/2}$. Yet.

ECC. Rich mathematics $\rightarrow \cdots \rightarrow$ algorithmic breakthroughs?

Quantum Computers. Break all Diffie-Hellman KEPs.

 $G \leq \text{Elliptic Curve.}$ Nothing better than $2^{n/2}$. Yet.

ECC. Rich mathematics $\rightarrow \cdots \rightarrow$ algorithmic breakthroughs?

Quantum Computers. Break all Diffie-Hellman KEPs.

Theoretic.

 $G \leq \text{Elliptic Curve.}$ Nothing better than $2^{n/2}$. Yet.

ECC. Rich mathematics $\rightarrow \cdots \rightarrow$ algorithmic breakthroughs?

Quantum Computers. Break all Diffie-Hellman KEPs.

Theoretic.

But what is your alternative?

 $G \leq \text{Elliptic Curve}$. Nothing better than $2^{n/2}$. Yet.

ECC. Rich mathematics $\rightarrow \cdots \rightarrow$ algorithmic breakthroughs?

Quantum Computers. Break all Diffie-Hellman KEPs.

Theoretic.

But what is your alternative?

Rivest-Shamir-Adleman (RSA, 1978). As easy as DLP in \mathbb{Z}_p^* .

 $G \leq \text{Elliptic Curve}$. Nothing better than $2^{n/2}$. Yet.

ECC. Rich mathematics $\rightarrow \cdots \rightarrow$ algorithmic breakthroughs?

Quantum Computers. Break all Diffie-Hellman KEPs.

Theoretic.

But what is your alternative?

Rivest-Shamir-Adleman (RSA, 1978). As easy as DLP in \mathbb{Z}_p^* .

Lattice-based? Maybe.

 $G \leq \text{Elliptic Curve.}$ Nothing better than $2^{n/2}$. Yet.

ECC. Rich mathematics $\rightarrow \cdots \rightarrow$ algorithmic breakthroughs?

Quantum Computers. Break all Diffie-Hellman KEPs.

Theoretic.

But what is your alternative?

Rivest-Shamir-Adleman (RSA, 1978). As easy as DLP in \mathbb{Z}_p^* .

Lattice-based? Maybe.

How about noncommutative groups?

The Braid Diffie-Hellman KEP

Diffie-Hellman KEP 1976.

Alice Public Bob
$$\mathbf{a} \in \{0,1,\dots,p-1\} \qquad G = \langle g \rangle, \ |G| = p \qquad \mathbf{b} \in \{0,1,\dots,p-1\}$$

$$\boxed{\mathbf{g}^{\mathbf{a}}}$$

$$K = \left[g^b\right]^a = g^{ab}$$

$$K = \left[g^{a}\right]^{b} = g^{ab}$$

The Braid Diffie-Hellman KEP

Ko-Lee-Cheon-Han-Kang-Park 2000. G noncommutative.

$$g^x := x^{-1}gx.$$

Alice	Public	Bob
a ∈ A	$A,B \leq G,g \in G,[A,B] = 1$	b ∈ B
	g ^a	—— >
<	g b	

$$K = \left[g^b \right]^a = g^{ba}$$

$$K = \left[g^a\right]^b = g^{ab}$$

The braid group \mathbf{B}_N

For our purposes, B_N is a group with elements

$$(i, p_1, \ldots, p_\ell),$$

 $i \in \mathbb{Z}, \ell \in \mathbb{N} \cup \{0\}, p_1, \dots, p_\ell \in S_N$, satisfying certain properties.

For our purposes, B_N is a group with elements

$$(i, p_1, \ldots, p_\ell),$$

 $i \in \mathbb{Z}, \ell \in \mathbb{N} \cup \{0\}, p_1, \dots, p_\ell \in S_N$, satisfying certain properties.

Multiplication rule: Algorithm of complexity $N\ell^2$.

For our purposes, B_N is a group with elements

$$(i, p_1, \ldots, p_\ell),$$

 $i \in \mathbb{Z}, \ell \in \mathbb{N} \cup \{0\}, p_1, \dots, p_\ell \in S_N$, satisfying certain properties.

Multiplication rule: Algorithm of complexity $N\ell^2$.

We always ignore logarithmic factors.

For our purposes, \mathbf{B}_N is a group with elements

$$(i, p_1, \ldots, p_\ell),$$

 $i \in \mathbb{Z}, \ell \in \mathbb{N} \cup \{0\}, p_1, \dots, p_\ell \in S_N$, satisfying certain properties.

Multiplication rule: Algorithm of complexity $N\ell^2$.

We always ignore logarithmic factors.

Inversion: Even faster.

For our purposes, \mathbf{B}_N is a group with elements

$$(i, p_1, \ldots, p_\ell),$$

 $i \in \mathbb{Z}, \ell \in \mathbb{N} \cup \{0\}, p_1, \dots, p_\ell \in S_N$, satisfying certain properties.

Multiplication rule: Algorithm of complexity $N\ell^2$.

We always ignore logarithmic factors.

Inversion: Even faster.

Security parameters: $m := |i| + \ell$, N.

The Braid Diffie-Hellman KEP

The Braid Diffie-Hellman KEP

$$G = \mathbf{B}_N$$
.

Alice

Public

$$a \in A$$

$$A, B \leq G, g \in G, [A, B] = 1$$

$$b \in B$$

$$K = \left[g^{b}\right]^{a} = g^{ba}$$

$$K = \left[g^{a}\right]^{b} = g^{ab}$$

The Braid Diffie-Hellman KEP

$$G = \mathbf{B}_N$$
.

Public

$$a \in A$$

$$A, B \leq G, g \in G, [A, B] = 1$$

$$b \in B$$

$$K = \left[g^{b}\right]^{a} = g^{ba}$$

$$K = \left[g^{a} \right]^{b} = g^{ab}$$

BDH Problem.
$$(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$$
.

Lawrence-Krammer. LK: $B_N \longrightarrow GL_{\binom{N}{2}}(\mathbb{Z}[t^{\pm 1}, \frac{1}{2}]).$

Lawrence-Krammer. LK: $\mathsf{B}_N \longrightarrow \mathsf{GL}_{\binom{N}{2}}(\mathbb{Z}[t^{\pm 1}, \frac{1}{2}]).$

Bigelow 2001 (JAMS), Krammer 2002 (Annals):

LK representation is faithful for all $\it N$.

Lawrence–Krammer. LK: $B_N \longrightarrow GL_{\binom{N}{2}}(\mathbb{Z}[t^{\pm 1}, \frac{1}{2}]).$

Bigelow 2001 (JAMS), Krammer 2002 (Annals):

LK representation is faithful for all N.

Cheon-Jun 2003. LK Evaluation: Fast. Inversion: N^6 (acceptable).

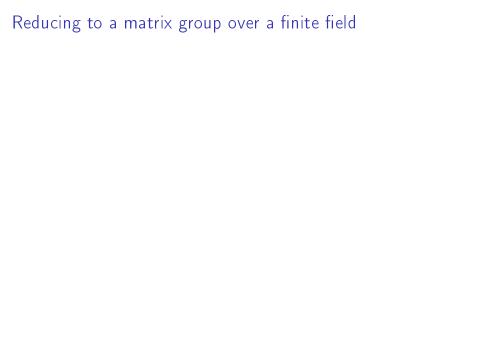
Lawrence–Krammer. LK: $B_N \longrightarrow GL_{\binom{N}{2}}(\mathbb{Z}[t^{\pm 1}, \frac{1}{2}]).$

Bigelow 2001 (JAMS), Krammer 2002 (Annals):

LK representation is faithful for all N.

Cheon-Jun 2003. LK Evaluation: Fast. Inversion: N^6 (acceptable).

 \therefore May work in the image of B_N in $GL_{\binom{N}{2}}(\mathbb{Z}[t^{\pm 1},\frac{1}{2}])$.



Cheon-Jun 2003. Let $x = (i, p_1, \dots, p_\ell) \in B_N$, $m = |i| + \ell$.

Cheon-Jun 2003. Let
$$x = (i, p_1, ..., p_{\ell}) \in \mathbf{B}_N, m = |i| + \ell$$
.

- 1. The degrees of t in $LK(x) \in GL_{\binom{N}{2}}(\mathbb{Z}[t^{\pm 1}, \frac{1}{2}])$ is in [-m, m].
- 2. The coefficients $\frac{c}{2d}$ in LK(x) satisfy: $|c| \le 2^{N^2m}, |d| \le 2Nm$.

Cheon-Jun 2003. Let
$$x = (i, p_1, ..., p_{\ell}) \in B_N, m = |i| + \ell$$
.

- 1. The degrees of t in $LK(x) \in GL_{\binom{N}{2}}(\mathbb{Z}[t^{\pm 1}, \frac{1}{2}])$ is in [-m, m].
- 2. The coefficients $\frac{c}{2^d}$ in LK(x) satisfy: $|c| \le 2^{N^2m}, |d| \le 2Nm$.
- $(2^{2Nm}t^m) \cdot \mathsf{LK}(\mathsf{x}) \in \mathsf{GL}_{\binom{N}{2}}(\mathbb{Z}[t]);$
- ▶ |coefficients| $\leq 2^{N^2(m+\epsilon)}$;
- ▶ Degree of $t \le 2m$.

Cheon-Jun 2003. Let
$$x = (i, p_1, ..., p_{\ell}) \in \mathbf{B}_N, m = |i| + \ell$$
.

- 1. The degrees of t in $LK(x) \in GL_{\binom{N}{2}}(\mathbb{Z}[t^{\pm 1}, \frac{1}{2}])$ is in [-m, m].
- 2. The coefficients $\frac{c}{2d}$ in LK(x) satisfy: $|c| \leq 2^{N^2m}, |d| \leq 2Nm$.
- $(2^{2Nm}t^m) \cdot \mathsf{LK}(\mathsf{x}) \in \mathsf{GL}_{\binom{N}{2}}(\mathbb{Z}[t]);$
- ▶ |coefficients| $\leq 2^{N^2(m+\epsilon)}$;
- ▶ Degree of $t \le 2m$.

 \therefore For prime $p\gtrsim 2^{N^2m}$ and irreducible f(t) of degree $\gtrsim 2m$,

$$(2^{2Nm}t^m)\cdot\mathsf{LK}(x)=(2^{2Nm}t^m)\cdot\mathsf{LK}(x)\bmod(p,f(t))\in\mathsf{GL}_{\binom{N}{2}}(\mathbb{Z}[t]/\langle p,f(t)\rangle).$$

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

BDH KEP. $K = g^{ab} = a^{-1}b^{-1}gab$.

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

BDH KEP. $K = g^{ab} = a^{-1}b^{-1}gab$.

Let $K = (i, p_1, ..., p_\ell) \in B_N$, $m = |i| + \ell$, $p \gtrsim 2^{N^2 m}$, $\deg(f(t)) \gtrsim 2m$.

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

BDH KEP. $K = g^{ab} = a^{-1}b^{-1}gab$.

Let $K = (i, p_1, ..., p_\ell) \in B_N$, $m = |i| + \ell$, $p \gtrsim 2^{N^2 m}$, $\deg(f(t)) \gtrsim 2m$.

 $\mathbb{F} := \mathbb{Z}[t]/\langle \rho, f(t) \rangle = \mathbb{Z}[t^{\pm 1}, \frac{1}{2}]/\langle \rho, f(t) \rangle.$

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

BDH KEP. $K = g^{ab} = a^{-1}b^{-1}gab$.

Let $K = (i, p_1, ..., p_\ell) \in B_N$, $m = |i| + \ell$, $p \gtrsim 2^{N^2 m}$, $\deg(f(t)) \gtrsim 2m$.

 $\mathbb{F} := \mathbb{Z}[t]/\langle \rho, f(t) \rangle = \mathbb{Z}[t^{\pm 1}, \frac{1}{2}]/\langle \rho, f(t) \rangle.$

 \mathbb{F} is a finite field. Field operations: $m^3 N^2$.

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

BDH KEP.
$$K = g^{ab} = a^{-1}b^{-1}gab$$
.

Let $K = (i, p_1, ..., p_\ell) \in B_N$, $m = |i| + \ell$, $p \gtrsim 2^{N^2 m}$, $\deg(f(t)) \gtrsim 2m$.

$$\mathbb{F} := \mathbb{Z}[t]/\langle \rho, f(t) \rangle = \mathbb{Z}[t^{\pm 1}, \frac{1}{2}]/\langle \rho, f(t) \rangle.$$

 \mathbb{F} is a finite field. Field operations: $m^3 N^2$.

$$(2^{2Nm}t^m)\cdot\mathsf{LK}(\frac{\mathsf{K}}{})\in\mathsf{GL}_{\binom{N}{2}}(\mathbb{F}).$$

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

BDH KEP.
$$K = g^{ab} = a^{-1}b^{-1}gab$$
.

Let $K = (i, p_1, ..., p_\ell) \in B_N$, $m = |i| + \ell$, $p \gtrsim 2^{N^2 m}$, $\deg(f(t)) \gtrsim 2m$.

$$\mathbb{F} := \mathbb{Z}[t]/\langle \rho, f(t) \rangle = \mathbb{Z}[t^{\pm 1}, \frac{1}{2}]/\langle \rho, f(t) \rangle.$$

 \mathbb{F} is a finite field. Field operations: $m^3 N^2$.

$$(2^{2Nm}t^m)\cdot\mathsf{LK}(\frac{\mathsf{K}}{\mathsf{K}})\in\mathsf{GL}_{\binom{N}{2}}(\mathbb{F}).$$

 \therefore Suffices to break BDH KEP over $G = I \times [B_N] / (p \cdot f(t)) < GI / (N) (\mathbb{F})$

$$G = \mathsf{LK}[\mathsf{B}_N]/\langle p, f(t) \rangle \leq \mathsf{GL}_{\binom{N}{2}}(\mathbb{F}).$$

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

BDH KEP. $K = g^{ab} = a^{-1}b^{-1}gab$.

Let $K = (i, p_1, ..., p_\ell) \in B_N$, $m = |i| + \ell$, $p \gtrsim 2^{N^2 m}$, $\deg(f(t)) \gtrsim 2m$.

$$\mathbb{F} := \mathbb{Z}[t]/\langle \rho, f(t) \rangle = \mathbb{Z}[t^{\pm 1}, \frac{1}{2}]/\langle \rho, f(t) \rangle.$$

 \mathbb{F} is a finite field. Field operations: $m^3 N^2$.

$$(2^{2Nm}t^m)\cdot\mathsf{LK}(\frac{\mathsf{K}}{\mathsf{K}})\in\mathsf{GL}_{\binom{N}{2}}(\mathbb{F}).$$

 \therefore Suffices to break BDH KEP over $G = \mathsf{LK}[\mathsf{B}_N]/\langle p, f(t) \rangle \leq \mathsf{GL}_{\binom{N}{2}}(\mathbb{F}).$

$$n:=\binom{N}{2}$$
, roughly N^2 . Henceforth, $G \leq \operatorname{GL}_n(\mathbb{F})$.

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

BDH Problem. $(g^a, g^b) \mapsto g^{ab} (a \in A, b \in B)$.

Cheon-Jun 2003. Representation attack.

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

Cheon-Jun 2003. Representation attack.

Assume $G \cong^{\mathsf{eff}}$ matrix group. Think G is a matrix group.

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

Cheon-Jun 2003. Representation attack.

Assume $G \cong^{\mathsf{eff}}$ matrix group. Think G is a matrix group.

$$g^a = a^{-1}ga \iff a \cdot g^a = g \cdot a$$

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

Cheon-Jun 2003. Representation attack.

Assume $G \cong^{\mathsf{eff}}$ matrix group. Think G is a matrix group.

$$\boxed{g^a} = a^{-1}ga \iff a \cdot \boxed{g^a} = g \cdot a$$

$$\begin{cases} a \cdot \left| g^a \right| &= g \cdot a \\ a \cdot B &= B \cdot a \end{cases}$$

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

Cheon-Jun 2003. Representation attack.

Assume $G \cong^{\mathsf{eff}}$ matrix group. Think G is a matrix group.

$$\boxed{g^a} = a^{-1}ga \iff a \cdot \boxed{g^a} = g \cdot a$$

$$\begin{cases} a \cdot g^{a} = g \cdot a \\ a \cdot B = B \cdot a \end{cases} \implies \tilde{a} \in M_{n}(\mathbb{F}) \text{ s.t. } \begin{cases} \tilde{a} \cdot g^{a} = g \cdot \tilde{a} \\ \tilde{a} \cdot B = B \cdot \tilde{a} \end{cases}$$

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

Cheon-Jun 2003. Representation attack.

Assume $G \cong^{\mathsf{eff}}$ matrix group. Think G is a matrix group.

$$\boxed{g^a} = a^{-1}ga \iff a \cdot \boxed{g^a} = g \cdot a$$

$$\begin{cases} a \cdot g^{a} = g \cdot a \\ a \cdot B = B \cdot a \end{cases} \implies \tilde{a} \in M_{n}(\mathbb{F}) \text{ s.t. } \begin{cases} \tilde{a} \cdot g^{a} = g \cdot \tilde{a} \\ \tilde{a} \cdot B = B \cdot \tilde{a} \end{cases}$$

Then
$$\left[g^{b}\right]^{\tilde{a}} =$$

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

Cheon-Jun 2003. Representation attack.

Assume $G \cong^{\mathsf{eff}}$ matrix group. Think G is a matrix group.

$$\boxed{g^a} = a^{-1}ga \iff a \cdot \boxed{g^a} = g \cdot a$$

$$\begin{cases} a \cdot g^{a} = g \cdot a \\ a \cdot B = B \cdot a \end{cases} \implies \tilde{a} \in M_{n}(\mathbb{F}) \text{ s.t. } \begin{cases} \tilde{a} \cdot g^{a} = g \cdot \tilde{a} \\ \tilde{a} \cdot B = B \cdot \tilde{a} \end{cases}$$

Then
$$g^b|^{\tilde{a}} = g^{b\tilde{a}} =$$

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

Cheon-Jun 2003. Representation attack.

Assume $G \cong^{\mathsf{eff}}$ matrix group. Think G is a matrix group.

$$\boxed{g^a} = a^{-1}ga \iff a \cdot \boxed{g^a} = g \cdot a$$

$$\begin{cases} a \cdot g^{a} = g \cdot a \\ a \cdot B = B \cdot a \end{cases} \implies \tilde{a} \in M_{n}(\mathbb{F}) \text{ s.t. } \begin{cases} \tilde{a} \cdot g^{a} = g \cdot \tilde{a} \\ \tilde{a} \cdot B = B \cdot \tilde{a} \end{cases}$$

Then
$$\left[g^{b}\right]^{\tilde{a}} = g^{b\tilde{a}} = g^{\tilde{a}b} =$$

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

Cheon-Jun 2003. Representation attack.

Assume $G \cong^{\mathsf{eff}}$ matrix group. Think G is a matrix group.

$$\boxed{g^a} = a^{-1}ga \iff a \cdot \boxed{g^a} = g \cdot a$$

$$\begin{cases} a \cdot g^{a} = g \cdot a \\ a \cdot B = B \cdot a \end{cases} \implies \tilde{a} \in M_{n}(\mathbb{F}) \text{ s.t. } \begin{cases} \tilde{a} \cdot g^{a} = g \cdot \tilde{a} \\ \tilde{a} \cdot B = B \cdot \tilde{a} \end{cases}$$

Then
$$g^b = g^{b\tilde{a}} = g^{b\tilde{a}} = g^{\tilde{a}b} = (g^{\tilde{a}})^b =$$

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

Cheon-Jun 2003. Representation attack.

Assume $G \cong^{\mathsf{eff}}$ matrix group. Think G is a matrix group.

$$\boxed{g^a} = a^{-1}ga \iff a \cdot \boxed{g^a} = g \cdot a$$

$$\begin{cases} a \cdot g^{a} = g \cdot a \\ a \cdot B = B \cdot a \end{cases} \implies \tilde{a} \in M_{n}(\mathbb{F}) \text{ s.t. } \begin{cases} \tilde{a} \cdot g^{a} = g \cdot \tilde{a} \\ \tilde{a} \cdot B = B \cdot \tilde{a} \end{cases}$$

Then
$$g^b^{\tilde{a}} = g^{b\tilde{a}} = g^{\tilde{a}b} = (g^{\tilde{a}})^b = g^{\tilde{a}b} = g^{\tilde{a}b}$$

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

Cheon-Jun 2003. Representation attack.

Assume $G \cong^{\mathsf{eff}}$ matrix group. Think G is a matrix group.

$$\boxed{g^a} = a^{-1}ga \iff a \cdot \boxed{g^a} = g \cdot a$$

$$\begin{cases} a \cdot g^{a} = g \cdot a \\ a \cdot B = B \cdot a \end{cases} \implies \tilde{a} \in M_{n}(\mathbb{F}) \text{ s.t. } \begin{cases} \tilde{a} \cdot g^{a} = g \cdot \tilde{a} \\ \tilde{a} \cdot B = B \cdot \tilde{a} \end{cases}$$

Then
$$g^b^{\tilde{a}} = g^{b\tilde{a}} = g^{\tilde{a}b} = (g^{\tilde{a}})^b = g^{ab} = g^{ab} = g^{ab}$$

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

Cheon-Jun 2003. Representation attack.

Assume $G \cong^{\mathsf{eff}}$ matrix group. Think G is a matrix group.

$$\boxed{g^a} = a^{-1}ga \iff a \cdot \boxed{g^a} = g \cdot a$$

$$\begin{cases} a \cdot g^{a} = g \cdot a \\ a \cdot B = B \cdot a \end{cases} \implies \tilde{a} \in M_{n}(\mathbb{F}) \text{ s.t. } \begin{cases} \tilde{a} \cdot g^{a} = g \cdot \tilde{a} \\ \tilde{a} \cdot B = B \cdot \tilde{a} \end{cases}$$

Then
$$g^b^{\tilde{a}} = g^{b\tilde{a}} = g^{\tilde{a}b} = (g^{\tilde{a}})^b = g^{ab} = K!$$

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

Cheon-Jun 2003. Representation attack.

Assume $G \cong^{\mathsf{eff}}$ matrix group. Think G is a matrix group.

$$\boxed{g^a} = a^{-1}ga \iff a \cdot \boxed{g^a} = g \cdot a$$

Solve

$$\begin{cases} a \cdot g^{a} = g \cdot a \\ a \cdot B = B \cdot a \end{cases} \implies \tilde{a} \in M_{n}(\mathbb{F}) \text{ s.t. } \begin{cases} \tilde{a} \cdot g^{a} = g \cdot \tilde{a} \\ \tilde{a} \cdot B = B \cdot \tilde{a} \end{cases}$$

Then
$$g^b^{\tilde{a}} = g^{b\tilde{a}} = g^{\tilde{a}b} = (g^{\tilde{a}})^b = g^{ab} = K!$$

Possibly, $\tilde{a} \notin G$, but this works!

BDH Problem. $(g^a, g^b) \mapsto g^{ab} \ (a \in A, b \in B)$.

Cheon-Jun 2003. Representation attack.

Assume $G \cong^{\mathsf{eff}}$ matrix group. Think G is a matrix group.

$$\boxed{g^{a}} = a^{-1}ga \iff a \cdot \boxed{g^{a}} = g \cdot a$$

Solve

$$\begin{cases} a \cdot g^{a} = g \cdot a \\ a \cdot B = B \cdot a \end{cases} \implies \tilde{a} \in M_{n}(\mathbb{F}) \text{ s.t. } \begin{cases} \tilde{a} \cdot g^{a} = g \cdot \tilde{a} \\ \tilde{a} \cdot B = B \cdot \tilde{a} \end{cases}$$

Then
$$g^b^{\tilde{a}} = g^{b\tilde{a}} = g^{\tilde{a}b} = (g^{\tilde{a}})^b = g^{ab} = K!$$

Possibly, $\tilde{a} \notin G$, but this works! Complexity: $(n^2)^3 = N^{12}$.

Second Braid Diffie-Hellman KEP

Second Braid Diffie-Hellman KEP

Cha-Ko-Lee-Han-Cheon 2001.

Alice	Public	Bob
$a_1 \in A_1, a_2 \in A_2$	$A_1,A_2,B_1,B_2 \leq G,g \in G$	$b_1 \in B_1, b_2 \in B_2$
	a_1ga_2	~
<	b_1gb_2	·

$$K = a_1 b_1 g b_2 a_2$$

$$K = b_1 \boxed{a_1 g a_2} b_2$$

Second Braid Diffie-Hellman KEP

Cha-Ko-Lee-Han-Cheon 2001.

Alice Public Bob $a_1 \in A_1, a_2 \in A_2 \qquad A_1, A_2, B_1, B_2 \leq G, g \in G \qquad b_1 \in B_1, b_2 \in B_2$ $\boxed{a_1 g \, a_2}$ $\boxed{b_1 g \, b_2}$

$$K = a_1 b_1 g b_2 a_2$$

$$K = b_1 \boxed{a_1 g a_2} b_2$$

Cheon-Jun 2003. Similar representation attack:

$$c = a_1 g a_2 \iff \left| a_1^{-1} \right| \cdot c = g \cdot a_2.$$

Problem. Find an invertible matrix in a subspace of $M_n(\mathbb{F})$.

Problem. Find an invertible matrix in a subspace of $M_n(\mathbb{F})$.

Cheon-Jun Heuristic. Pick "random" elements until invertible.

Problem. Find an invertible matrix in a subspace of $M_n(\mathbb{F})$.

Cheon-Jun Heuristic. Pick "random" elements until invertible.

Ts. Assume span $\{A_1,\ldots,A_m\}\cap \mathsf{GL}_n(\mathbb{F})\neq 0$. Then

$$\Pr(|\alpha_1 A_1 + \cdots + \alpha_m A_m| \neq 0) \geq 1 - \frac{n}{|\mathbb{F}|}.$$

Problem. Find an invertible matrix in a subspace of $M_n(\mathbb{F})$.

Cheon-Jun Heuristic. Pick "random" elements until invertible.

Ts. Assume span $\{A_1,\ldots,A_m\}\cap \operatorname{GL}_n(\mathbb{F})\neq 0$. Then

$$\Pr(|\alpha_1 A_1 + \cdots + \alpha_m A_m| \neq 0) \geq 1 - \frac{n}{|\mathbb{F}|}.$$

Proof: $f(x_1, ..., x_m) := |x_1 A_1 + \cdots + x_m A_m| \in \mathbb{F}[x_1, ..., x_m]$, nonzero, degree n.

Problem. Find an invertible matrix in a subspace of $M_n(\mathbb{F})$.

Cheon-Jun Heuristic. Pick "random" elements until invertible.

Ts. Assume span $\{A_1,\ldots,A_m\}\cap \operatorname{GL}_n(\mathbb{F})\neq 0$. Then

$$\Pr(|\alpha_1 A_1 + \cdots + \alpha_m A_m| \neq 0) \geq 1 - \frac{n}{|\mathbb{F}|}.$$

Proof: $f(x_1, \ldots, x_m) := |x_1 A_1 + \cdots + x_m A_m| \in \mathbb{F}[x_1, \ldots, x_m]$, nonzero, degree n.

Schwartz 1980-Zippel 1989 Lemma.

$$f(x_1,\ldots,x_m)\in \mathbb{F}[x_1,\ldots,x_m]$$
 nonzero degree n .

$$\Pr(f(x_1,\ldots,x_m)\neq 0)\geq 1-\frac{n}{|\mathbb{F}|}.$$

Problem. Find an invertible matrix in a subspace of $M_n(\mathbb{F})$.

Cheon-Jun Heuristic. Pick "random" elements until invertible.

Ts. Assume span $\{A_1,\ldots,A_m\}\cap \operatorname{GL}_n(\mathbb{F})\neq 0$. Then

$$\Pr(|\alpha_1 A_1 + \cdots + \alpha_m A_m| \neq 0) \geq 1 - \frac{n}{|\mathbb{F}|}.$$

Proof: $f(x_1, \ldots, x_m) := |x_1 A_1 + \cdots + x_m A_m| \in \mathbb{F}[x_1, \ldots, x_m]$, nonzero, degree n.

Schwartz 1980-Zippel 1989 Lemma.

$$f(x_1,\ldots,x_m)\in \mathbb{F}[x_1,\ldots,x_m]$$
 nonzero degree n .

$$\Pr(f(x_1,\ldots,x_m)\neq 0)\geq 1-\frac{n}{|\mathbb{F}|}.$$

In our case, $|\mathbb{F}| > 2^n \gg n$.

The Commutator Key Exchange Protocol

Anshel-Anshel-Goldfeld 1999.

The Commutator Key Exchange Protocol

Anshel-Anshel-Goldfeld 1999.

Alice	Public	Bob
$\mathbf{v}(x_1,\ldots,x_k)\in F_k$	$\langle a_1,\ldots,a_k\rangle\leq G$	$w(x_1,\ldots,x_k)\in F_k$
$a = v(a_1, \ldots, a_k)$	$\langle b_1, \dots, b_k \rangle \leq G$ b_1^a, \dots, b_k^a	$b = w(b_1, \ldots, b_k)$
	a_1^b, \ldots, a_k^b	

$$K = a^{-1}v(a_1^b, \dots, a_k^b)$$
 $K = w(b_1^a, \dots, b_k^a)^{-1}b$

The Commutator Key Exchange Protocol

Anshel-Anshel-Goldfeld 1999.

 $K = a^{-1}v(a_1^b, \dots, a_k^b)$

Alice Public Bob
$$v(x_1, ..., x_k) \in F_k \qquad \langle a_1, ..., a_k \rangle \leq G \qquad w(x_1, ..., x_k) \in F_k$$

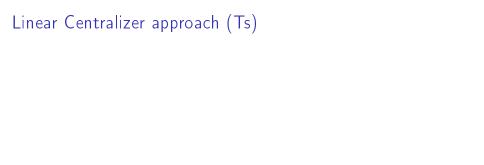
$$a = v(a_1, ..., a_k) \qquad \langle b_1, ..., b_k \rangle \leq G \qquad b = w(b_1, ..., b_k)$$

$$b_1^a, ..., b_k^a$$

$$a_1^b, ..., a_k^b$$

$$K = w(b_1^a, ..., b_k^a)^{-1}b$$

$$a^{-1}v(a_1{}^b,\ldots,a_k{}^b)=a^{-1}a^b=a^{-1}b^{-1}ab=(b^a)^{-1}b=w(b_1{}^a,\ldots,b_k{}^a)^{-1}b$$



Assume $G \leq M = M_n(\mathbb{F})$ (eq., eff. representable).

Assume $G \leq M = M_n(\mathbb{F})$ (eq., eff. representable).

Key observations.

1. Can't constraint solutions of linear equations to groups, can constraint solutions to subspaces of M!

Assume $G \leq M = M_n(\mathbb{F})$ (eq., eff. representable).

Key observations.

- 1. Can't constraint solutions of linear equations to groups, can constraint solutions to subspaces of M!
- 2. $H = \langle g_1, \ldots, g_k \rangle \leq G \Rightarrow C_G(H) \subseteq C_M(H) = C_M(g_1, \ldots, g_k)$.

Assume $G \leq M = M_n(\mathbb{F})$ (eq., eff. representable).

Key observations.

- 1. Can't constraint solutions of linear equations to groups, can constraint solutions to subspaces of M!
- 2. $H = \langle g_1, \dots, g_k \rangle \leq G \Rightarrow C_G(H) \subseteq C_M(H) = C_M(g_1, \dots, g_k)$. $C_M(H)$ computable by solving

$$\begin{cases} xg_1 = g_1x \\ \vdots \\ xg_k = g_kx \end{cases}$$

linear equations in the n^2 entries of x, kn^6 operations.

Assume $G \leq M = M_n(\mathbb{F})$ (eq., eff. representable).

Key observations.

- 1. Can't constraint solutions of linear equations to groups, can constraint solutions to subspaces of M!
- 2. $H = \langle g_1, \dots, g_k \rangle \leq G \Rightarrow C_G(H) \subseteq C_M(H) = C_M(g_1, \dots, g_k)$. $C_M(H)$ computable by solving

$$\begin{cases} xg_1 = g_1x \\ \vdots \\ xg_k = g_kx \end{cases}$$

linear equations in the n^2 entries of x, kn^6 operations.

3. $C_M(g_1, \ldots, g_k)$ is a vector subspace of M.

Assume $G \leq M = M_n(\mathbb{F})$ (eq., eff. representable).

Key observations.

- 1. Can't constraint solutions of linear equations to groups, can constraint solutions to subspaces of M!
- 2. $H = \langle g_1, \dots, g_k \rangle \leq G \Rightarrow C_G(H) \subseteq C_M(H) = C_M(g_1, \dots, g_k)$. $C_M(H)$ computable by solving

$$\begin{cases} xg_1 = g_1x \\ \vdots \\ xg_k = g_kx \end{cases}$$

linear equations in the n^2 entries of x, kn^6 operations.

- 3. $C_M(g_1, \ldots, g_k)$ is a vector subspace of M.
- 4. $C_M(C_M(H))$ computable: $\dim(C_M(H)) \leq n^2$ equations.

Assume $G \leq M = M_n(\mathbb{F})$ (eq., eff. representable).

Key observations.

- 1. Can't constraint solutions of linear equations to groups, can constraint solutions to subspaces of M!
- 2. $H = \langle g_1, \dots, g_k \rangle \leq G \Rightarrow C_G(H) \subseteq C_M(H) = C_M(g_1, \dots, g_k)$. $C_M(H)$ computable by solving

$$\begin{cases} xg_1 = g_1x \\ \vdots \\ xg_k = g_kx \end{cases}$$

linear equations in the n^2 entries of x, kn^6 operations.

- 3. $C_M(g_1, \ldots, g_k)$ is a vector subspace of M.
- 4. $C_M(C_M(H))$ computable: $\dim(C_M(H)) \leq n^2$ equations.
- 5. Complexity: $kn^6 + n^2n^6 = n^8$.

 $\mathbf{a} \in \langle a_1, \dots, a_k \rangle, \mathbf{b} \in \langle b_1, \dots, b_k \rangle \leq G \leq \mathsf{GL}_n(\mathbb{F}).$

Commutator KEP Problem. $(b_1^a, \ldots, b_k^a, a_1^b, \ldots, a_k^b) \mapsto a^{-1}b^{-1}ab$.

 $\mathbf{a} \in \langle a_1, \ldots, a_k \rangle, \mathbf{b} \in \langle b_1, \ldots, b_k \rangle \leq G \leq \mathsf{GL}_n(\mathbb{F}).$

Commutator KEP Problem. $(b_1^a, \ldots, b_k^a, a_1^b, \ldots, a_k^b) \mapsto a^{-1}b^{-1}ab$.

Attack (Ts):

1. Compute a basis for $C_M(C_M(b_1,\ldots,b_k))$.

$$\mathbf{a} \in \langle a_1, \ldots, a_k \rangle, \mathbf{b} \in \langle b_1, \ldots, b_k \rangle \leq G \leq \mathsf{GL}_n(\mathbb{F}).$$

Commutator KEP Problem. $(b_1^a, \ldots, b_k^a, a_1^b, \ldots, a_k^b) \mapsto a^{-1}b^{-1}ab$.

Attack (Ts):

- 1. Compute a basis for $C_M(C_M(b_1,\ldots,b_k))$.
- 2. Solve

$$b_{1}a = a \cdot b_{1}^{a} \qquad a_{1}b = b \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}a = a \cdot b_{k}^{a} \qquad a_{k}b = b \cdot a_{k}^{b}$$

with a invertible, $b \in C_M(C_M(b_1, ..., b_k))$ invertible.

$$\mathbf{a} \in \langle a_1, \ldots, a_k \rangle, \mathbf{b} \in \langle b_1, \ldots, b_k \rangle \leq G \leq \mathsf{GL}_n(\mathbb{F}).$$

Commutator KEP Problem. $(b_1^a, \ldots, b_k^a, a_1^b, \ldots, a_k^b) \mapsto a^{-1}b^{-1}ab$.

Attack (Ts):

- 1. Compute a basis for $C_M(C_M(b_1,\ldots,b_k))$.
- 2. Solve

$$b_{1}a = a \cdot b_{1}^{a} \qquad a_{1}b = b \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}a = a \cdot b_{k}^{a} \qquad a_{k}b = b \cdot a_{k}^{b}$$

with a invertible, $b \in C_M(C_M(b_1, \ldots, b_k))$ invertible.

3. \exists solution: (a, b). Let (\tilde{a}, \tilde{b}) be one.

$$b_{1}\tilde{a} = \tilde{a} \cdot b_{1}^{a} \qquad a_{1}\tilde{b} = \tilde{b} \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}\tilde{a} = \tilde{a} \cdot b_{k}^{a} \qquad a_{k}\tilde{b} = \tilde{b} \cdot a_{k}^{b}$$

 $\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}$ invertible, $\tilde{\boldsymbol{b}} \in C_M(C_M(b_1, \dots, b_k))$.

$$b_{1}\tilde{a} = \tilde{a} \cdot b_{1}^{a} \qquad a_{1}\tilde{b} = \tilde{b} \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}\tilde{a} = \tilde{a} \cdot b_{k}^{a} \qquad a_{k}\tilde{b} = \tilde{b} \cdot a_{k}^{b}$$

 $\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}$ invertible, $\tilde{\boldsymbol{b}} \in C_M(C_M(b_1, \ldots, b_k))$.

 $\left[\tilde{a}a^{-1},b_1
ight]=1$ (since \tilde{a},a conjugate b_1 to the same thing):

$$b_{1}\tilde{a} = \tilde{a} \cdot b_{1}^{a} \qquad a_{1}\tilde{b} = \tilde{b} \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}\tilde{a} = \tilde{a} \cdot b_{k}^{a} \qquad a_{k}\tilde{b} = \tilde{b} \cdot a_{k}^{b}$$

 $\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}$ invertible, $\tilde{\boldsymbol{b}} \in C_M(C_M(b_1, \ldots, b_k))$.

 $\left[\tilde{a}a^{-1},b_1\right]=1$ (since \tilde{a},a conjugate b_1 to the same thing):

$$b_1\tilde{a} = \tilde{a} \cdot b_1^{a}$$

$$b_{1}\tilde{a} = \tilde{a} \cdot b_{1}^{a} \qquad a_{1}\tilde{b} = \tilde{b} \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}\tilde{a} = \tilde{a} \cdot b_{k}^{a} \qquad a_{k}\tilde{b} = \tilde{b} \cdot a_{k}^{b}$$

 \tilde{a}, \tilde{b} invertible, $\tilde{b} \in C_M(C_M(b_1, \ldots, b_k))$.

$$[\tilde{a}a^{-1}, b_1] = 1$$
 (since \tilde{a}, a conjugate b_1 to the same thing):

$$b_1 \tilde{a} = \tilde{a} \cdot b_1^{a}$$

$$b_1 \tilde{a} = \tilde{a} a^{-1} \cdot b_1 a$$

$$b_1\tilde{a} = \tilde{a}a^{-1} \cdot b_1$$

$$b_{1}\tilde{a} = \tilde{a} \cdot b_{1}^{a} \qquad a_{1}\tilde{b} = \tilde{b} \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}\tilde{a} = \tilde{a} \cdot b_{k}^{a} \qquad a_{k}\tilde{b} = \tilde{b} \cdot a_{k}^{b}$$

$$\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}$$
 invertible, $\tilde{\boldsymbol{b}} \in C_M(C_M(b_1,\ldots,b_k))$.

$$[\tilde{a}a^{-1}, b_1] = 1$$
 (since \tilde{a}, a conjugate b_1 to the same thing):

$$b_1 \tilde{a} = \tilde{a} \cdot b_1^a$$

$$b_1 \tilde{a} = \tilde{a} a^{-1} \cdot b_1 a$$

$$b_1 \cdot \tilde{a} a^{-1} = \tilde{a} a^{-1} \cdot b_1$$

$$b_{1}\tilde{a} = \tilde{a} \cdot b_{1}^{a} \qquad a_{1}\tilde{b} = \tilde{b} \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}\tilde{a} = \tilde{a} \cdot b_{k}^{a} \qquad a_{k}\tilde{b} = \tilde{b} \cdot a_{k}^{b}$$

 $\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}$ invertible, $\tilde{\boldsymbol{b}} \in C_M(C_M(b_1, \ldots, b_k))$.

 $[\tilde{a}a^{-1}, b_1] = 1$ (since \tilde{a}, a conjugate b_1 to the same thing):

$$b_1 \tilde{a} = \tilde{a} a^{-1} \cdot b_1 a$$

$$b_1 \cdot \tilde{a} a^{-1} = \tilde{a} a^{-1} \cdot b_1$$

 $b_1\tilde{a} = \tilde{a} \cdot b_1^{a}$

$$b_{1}\tilde{a} = \tilde{a} \cdot b_{1}^{a} \qquad a_{1}\tilde{b} = \tilde{b} \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}\tilde{a} = \tilde{a} \cdot b_{k}^{a} \qquad a_{k}\tilde{b} = \tilde{b} \cdot a_{k}^{b}$$

 \tilde{a}, \tilde{b} invertible, $\tilde{b} \in C_M(C_M(b_1, \ldots, b_k))$.

 $[\tilde{a}a^{-1}, b_1] = 1$ (since \tilde{a}, a conjugate b_1 to the same thing):

$$b_1\tilde{a} = \tilde{a} \cdot b_1^{a}$$

$$b_1\tilde{a} = \tilde{a}a^{-1} \cdot b_1 a$$

$$b_1 \cdot \tilde{a}a^{-1} = \tilde{a}a^{-1} \cdot b_1$$

$$\therefore \tilde{\mathbf{a}}\mathbf{a}^{-1} \in C_M(b_1, \dots, b_k).$$

$$b_{1}\tilde{a} = \tilde{a} \cdot b_{1}^{a} \qquad a_{1}\tilde{b} = \tilde{b} \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}\tilde{a} = \tilde{a} \cdot b_{k}^{a} \qquad a_{k}\tilde{b} = \tilde{b} \cdot a_{k}^{b}$$

 \tilde{a}, \tilde{b} invertible, $\tilde{b} \in C_M(C_M(b_1, \ldots, b_k))$.

 $\left[\tilde{a}a^{-1},b_{1}
ight]=1$ (since \tilde{a},a conjugate b_{1} to the same thing):

$$b_1 \tilde{a} = \tilde{a} \cdot b_1^{a}$$

$$b_1 \tilde{a} = \tilde{a} a^{-1} \cdot b_1 a$$

$$b_1 \cdot \tilde{a} a^{-1} = \tilde{a} a^{-1} \cdot b_1$$

$$\therefore \tilde{\mathbf{a}}\mathbf{a}^{-1} \in C_M(b_1, \dots, b_k) \cdot \therefore [\tilde{b}, \tilde{\mathbf{a}}\mathbf{a}^{-1}] = 1.$$

$$b_{1}\tilde{a} = \tilde{a} \cdot b_{1}^{a} \qquad a_{1}\tilde{b} = \tilde{b} \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}\tilde{a} = \tilde{a} \cdot b_{k}^{a} \qquad a_{k}\tilde{b} = \tilde{b} \cdot a_{k}^{b}$$

 $\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}$ invertible, $\tilde{\boldsymbol{b}} \in C_M(C_M(b_1, \ldots, b_k))$.

 $\left[\tilde{a}a^{-1},b_1
ight]=1$ (since \tilde{a},a conjugate b_1 to the same thing):

$$b_1 \tilde{a} = \tilde{a} \cdot b_1^{a}$$

$$b_1 \tilde{a} = \tilde{a} a^{-1} \cdot b_1 a$$

$$b_1 \cdot \tilde{a} a^{-1} = \tilde{a} a^{-1} \cdot b_1$$

$$\therefore \tilde{a}a^{-1} \in C_M(b_1,\ldots,b_k) :: [\tilde{b},\tilde{a}a^{-1}] = 1.$$

$$\tilde{a}^{-1}\tilde{b}^{-1}\tilde{a}\tilde{b}$$

$$b_{1}\tilde{a} = \tilde{a} \cdot b_{1}^{a} \qquad a_{1}\tilde{b} = \tilde{b} \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}\tilde{a} = \tilde{a} \cdot b_{k}^{a} \qquad a_{k}\tilde{b} = \tilde{b} \cdot a_{k}^{b}$$

 $\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}$ invertible, $\tilde{\boldsymbol{b}} \in C_M(C_M(b_1, \dots, b_k))$.

 $[\tilde{a}a^{-1}, b_1] = 1$ (since \tilde{a}, a conjugate b_1 to the same thing):

$$b_1 \tilde{a} = \tilde{a} \cdot b_1^a$$

$$b_1 \tilde{a} = \tilde{a} a^{-1} \cdot b_1 a$$

$$b_1 \cdot \tilde{a} a^{-1} = \tilde{a} a^{-1} \cdot b_1$$

$$\therefore \tilde{\mathbf{a}}\mathbf{a}^{-1} \in C_M(b_1, \dots, b_k) \cdot \therefore [\tilde{\mathbf{b}}, \tilde{\mathbf{a}}\mathbf{a}^{-1}] = 1.$$

$$\tilde{a}^{-1}\tilde{b}^{-1}\tilde{a}\tilde{b} = \tilde{a}^{-1}\tilde{b}^{-1}(\tilde{a}a^{-1}a)\tilde{b}$$

$$b_{1}\tilde{a} = \tilde{a} \cdot b_{1}^{a} \qquad a_{1}\tilde{b} = \tilde{b} \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}\tilde{a} = \tilde{a} \cdot b_{k}^{a} \qquad a_{k}\tilde{b} = \tilde{b} \cdot a_{k}^{b}$$

 $\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}$ invertible, $\tilde{\boldsymbol{b}} \in \mathcal{C}_{M}(\mathcal{C}_{M}(b_{1}, \ldots, b_{k}))$.

 $[\tilde{a}a^{-1}, b_1] = 1$ (since \tilde{a}, a conjugate b_1 to the same thing):

$$b_1 \tilde{a} = \tilde{a} \cdot b_1^{a}$$

$$b_1 \tilde{a} = \tilde{a} a^{-1} \cdot b_1 a$$

$$b_1 \cdot \tilde{a} a^{-1} = \tilde{a} a^{-1} \cdot b_1$$

$$\therefore \tilde{\mathbf{a}}\mathbf{a}^{-1} \in C_M(b_1, \ldots, b_k) \cdot \therefore [\tilde{b}, \tilde{\mathbf{a}}\mathbf{a}^{-1}] = 1.$$

$$\tilde{\mathbf{a}}^{-1}\tilde{b}^{-1}\tilde{\mathbf{a}}\tilde{b} = \tilde{\mathbf{a}}^{-1}\tilde{b}^{-1}(\tilde{\mathbf{a}}\mathbf{a}^{-1}\mathbf{a})\tilde{b} = \tilde{\mathbf{a}}^{-1}(\tilde{\mathbf{a}}\mathbf{a}^{-1})\tilde{b}^{-1}\mathbf{a}\tilde{b}$$

Linear Centralizer attack on Commutator KEP (contd.)

$$b_{1}\tilde{a} = \tilde{a} \cdot b_{1}^{a} \qquad a_{1}\tilde{b} = \tilde{b} \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}\tilde{a} = \tilde{a} \cdot b_{k}^{a} \qquad a_{k}\tilde{b} = \tilde{b} \cdot a_{k}^{b}$$

 $\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}$ invertible, $\tilde{\boldsymbol{b}} \in C_M(C_M(b_1, \dots, b_k))$.

 $[\tilde{a}a^{-1}, b_1] = 1$ (since \tilde{a}, a conjugate b_1 to the same thing):

$$b_1 \tilde{a} = \tilde{a} \cdot b_1^{a}$$

$$b_1 \tilde{a} = \tilde{a} a^{-1} \cdot b_1 a$$

$$b_1 \cdot \tilde{a} a^{-1} = \tilde{a} a^{-1} \cdot b_1$$

Similarly for b_2, \ldots, b_k .

$$\therefore \tilde{\mathbf{a}}^{-1} \in C_M(b_1, \ldots, b_k) \cdot \therefore [\tilde{\mathbf{b}}, \tilde{\mathbf{a}}^{-1}] = 1.$$

$$\tilde{\mathbf{a}}^{-1}\tilde{\mathbf{b}}^{-1}\tilde{\mathbf{a}}\tilde{\mathbf{b}} = \tilde{\mathbf{a}}^{-1}\tilde{\mathbf{b}}^{-1}(\tilde{\mathbf{a}}\mathbf{a}^{-1}\mathbf{a})\tilde{\mathbf{b}} = \tilde{\mathbf{a}}^{-1}(\tilde{\mathbf{a}}\mathbf{a}^{-1})\tilde{\mathbf{b}}^{-1}\mathbf{a}\tilde{\mathbf{b}} = \mathbf{a}^{-1}\mathbf{a}^{\tilde{\mathbf{b}}}$$

Linear Centralizer attack on Commutator KEP (contd.)

$$b_{1}\tilde{a} = \tilde{a} \cdot b_{1}^{a} \qquad a_{1}\tilde{b} = \tilde{b} \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}\tilde{a} = \tilde{a} \cdot b_{k}^{a} \qquad a_{k}\tilde{b} = \tilde{b} \cdot a_{k}^{b}$$

 $\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}$ invertible, $\tilde{\boldsymbol{b}} \in \mathcal{C}_M(\mathcal{C}_M(b_1,\ldots,b_k))$.

 $\left[\tilde{a}a^{-1},b_1
ight]=1$ (since \tilde{a},a conjugate b_1 to the same thing):

$$b_1 \tilde{a} = \tilde{a} \cdot b_1^{a}$$

$$b_1 \tilde{a} = \tilde{a} a^{-1} \cdot b_1 a$$

$$b_1 \cdot \tilde{a} a^{-1} = \tilde{a} a^{-1} \cdot b_1$$

Similarly for b_2, \ldots, b_k .

$$\therefore \tilde{\mathbf{a}}\mathbf{a}^{-1} \in C_M(b_1, \dots, b_k) \cdot \therefore [\tilde{\mathbf{b}}, \tilde{\mathbf{a}}\mathbf{a}^{-1}] = 1.$$

$$\tilde{\mathbf{a}}^{-1}\tilde{b}^{-1}\tilde{\mathbf{a}}\tilde{b} = \tilde{\mathbf{a}}^{-1}\tilde{b}^{-1}(\tilde{\mathbf{a}}\mathbf{a}^{-1}\mathbf{a})\tilde{b} = \tilde{\mathbf{a}}^{-1}(\tilde{\mathbf{a}}\mathbf{a}^{-1})\tilde{b}^{-1}\mathbf{a}\tilde{b} = \mathbf{a}^{-1}\mathbf{a}^{\tilde{b}} = \mathbf{a}^{-1}\mathbf{a}^{b}$$

Linear Centralizer attack on Commutator KEP (contd.)

$$b_{1}\tilde{a} = \tilde{a} \cdot b_{1}^{a} \qquad a_{1}\tilde{b} = \tilde{b} \cdot a_{1}^{b}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$b_{k}\tilde{a} = \tilde{a} \cdot b_{k}^{a} \qquad a_{k}\tilde{b} = \tilde{b} \cdot a_{k}^{b}$$

 $\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}$ invertible, $\tilde{\boldsymbol{b}} \in \mathcal{C}_M(\mathcal{C}_M(b_1,\ldots,b_k))$.

 $[\tilde{a}a^{-1}, b_1] = 1$ (since \tilde{a}, a conjugate b_1 to the same thing):

$$b_1 \tilde{a} = \tilde{a} \cdot b_1^{a}$$

$$b_1 \tilde{a} = \tilde{a} a^{-1} \cdot b_1 a$$

$$b_1 \cdot \tilde{a} a^{-1} = \tilde{a} a^{-1} \cdot b_1$$

Similarly for b_2, \ldots, b_k .

$$\therefore \tilde{\mathbf{a}}\mathbf{a}^{-1} \in C_M(b_1, \dots, b_k) \cdot \therefore [\tilde{b}, \tilde{\mathbf{a}}\mathbf{a}^{-1}] = 1.$$

$$\tilde{a}^{-1}\tilde{b}^{-1}\tilde{a}\tilde{b} = \tilde{a}^{-1}\tilde{b}^{-1}(\tilde{a}a^{-1}a)\tilde{b} = \tilde{a}^{-1}(\tilde{a}a^{-1})\tilde{b}^{-1}a\tilde{b} = a^{-1}a^{\tilde{b}} = a^{-1}a^{b} = K !$$

 n^8 for computing $C_M(C_M(b_1,\ldots,b_k))$.

 n^8 for computing $C_M(C_M(b_1,\ldots,b_k))$.

Can be preprocessed!

 kn^6 for solving the equations.

 n^8 for computing $C_M(C_M(b_1,\ldots,b_k))$.

Can be preprocessed!

 kn^6 for solving the equations.

Field operations: $m^3 N^2 = m^3 n$.

 n^8 for computing $C_M(C_M(b_1,\ldots,b_k))$.

Can be preprocessed!

 kn^6 for solving the equations.

Field operations: $m^3 N^2 = m^3 n$.

Total: $n^9 m = N^{18} m^3$ offlien; $kn^7 m^3 = kN^{14} m^3$ online.

 n^8 for computing $C_M(C_M(b_1,\ldots,b_k))$.

Can be preprocessed!

 kn^6 for solving the equations.

Field operations: $m^3 N^2 = m^3 n$.

Total: $n^9 m = N^{18} m^3$ offlien; $kn^7 m^3 = kN^{14} m^3$ online.

Using $\omega = \log_2 7$: $N^{16.8}m^3$ offlien; $kn^7m^3 = kN^{13}m^3$ online.

Not practical: $100^{16.8} = 2^{111}$ (times m^3 and logarithmic factors...).

```
n^8 for computing C_M(C_M(b_1,\ldots,b_k)).
```

Can be preprocessed!

 kn^6 for solving the equations.

Field operations: $m^3 N^2 = m^3 n$.

Total: $n^9 m = N^{18} m^3$ offlien; $kn^7 m^3 = kN^{14} m^3$ online.

Using $\omega = \log_2 7$: $N^{16.8}m^3$ offlien; $kn^7m^3 = kN^{13}m^3$ online.

Not practical: $100^{16.8} = 2^{111}$ (times m^3 and logarithmic factors...). But:

Ju t.

1. Worst-case polytime.

 n^8 for computing $C_M(C_M(b_1,\ldots,b_k))$.

Can be preprocessed!

 kn^6 for solving the equations.

Field operations: $m^3 N^2 = m^3 n$.

Total: $n^9 m = N^{18} m^3$ offlien; $kn^7 m^3 = kN^{14} m^3$ online.

Using $\omega = \log_2 7$: $N^{16.8}m^3$ offlien; $kn^7m^3 = kN^{13}m^3$ online.

Not practical: $100^{16.8} = 2^{111}$ (times m^3 and logarithmic factors...). But:

- 1. Worst-case polytime.
- 2. First provable attack for small braid index N.

 n^8 for computing $C_M(C_M(b_1,\ldots,b_k))$.

Can be preprocessed!

 kn^6 for solving the equations.

Field operations: $m^3 N^2 = m^3 n$.

Total: $n^9 m = N^{18} m^3$ offlien; $kn^7 m^3 = kN^{14} m^3$ online.

Using $\omega = \log_2 7$: $N^{16.8}m^3$ offlien; $kn^7m^3 = kN^{13}m^3$ online.

Not practical: $100^{16.8} = 2^{111}$ (times m^3 and logarithmic factors...). But:

- 1. Worst-case polytime.
- 2. First provable attack for small braid index N.
- 3. Just cubic in m. :)

The Centralizer KEP (Shpilrain–Ushakov 2006)

K =

Alice	Public	Bob
$a_1 \in G$	$g\in G$	$b_2 \in G$
	$B \leq C_G(a_1)$	
*	$A \leq C_G(\frac{b_2}{2})$	
a ₂ ∈ A		$b_1 \in B$
	a_1ga_2	→
<	b_1gb_2	
$a_1b_1gb_2a_2$		$K = b_1 a_1 g a_2 b_2$

 $g, a_1, b_2 \in G, B \leq C_G(a_1), A \leq C_G(b_2), a_2 \in A, b_1 \in B.$

Shpilrain-Ushakov Problem. $(a_1ga_2, b_1gb_2) \mapsto a_1b_1ga_2b_2$.

 $g, a_1, b_2 \in G, B \leq C_G(a_1), A \leq C_G(b_2), a_2 \in A, b_1 \in B.$

Shpilrain-Ushakov Problem. $(a_1ga_2, b_1gb_2) \mapsto a_1b_1ga_2b_2$.

 $a_2 \in A \Rightarrow a_2 \in C_M(C_M(A)) \iff a_2^{-1} \in C_M(C_M(A)).$

 $g, a_1, b_2 \in G, B \leq C_G(a_1), A \leq C_G(b_2), a_2 \in A, b_1 \in B.$

Shpilrain-Ushakov Problem. $(a_1ga_2, b_1gb_2) \mapsto a_1b_1ga_2b_2$.

$$a_2 \in A \Rightarrow a_2 \in C_M(C_M(A)) \iff a_2^{-1} \in C_M(C_M(A)).$$

$$A \leq C_G(b_2) \Rightarrow b_2 \in C_G(A) \subseteq C_M(A) \Rightarrow [C_M(C_M(A)), b_2] = 1.$$

 $g, a_1, b_2 \in G, B \leq C_G(a_1), A \leq C_G(b_2), a_2 \in A, b_1 \in B.$

Shpilrain-Ushakov Problem. $(a_1ga_2, b_1gb_2) \mapsto a_1b_1ga_2b_2$.

$$a_2 \in A \Rightarrow a_2 \in C_M(C_M(A)) \iff a_2^{-1} \in C_M(C_M(A)).$$

$$A \leq C_G(b_2) \Rightarrow b_2 \in C_G(A) \subseteq C_M(A) \Rightarrow [C_M(C_M(A)), b_2] = 1.$$

Attack (Ts).

1. Compute bases for the subspaces $C_M(B)$, $C_M(C_M(A))$.

 $g, a_1, b_2 \in G, B \leq C_G(a_1), A \leq C_G(b_2), a_2 \in A, b_1 \in B.$

Shpilrain-Ushakov Problem. $(a_1ga_2, b_1gb_2) \mapsto a_1b_1ga_2b_2$.

$$a_2 \in A \Rightarrow a_2 \in C_M(C_M(A)) \iff a_2^{-1} \in C_M(C_M(A)).$$

$$A \leq C_G(b_2) \Rightarrow b_2 \in C_G(A) \subseteq C_M(A) \Rightarrow [C_M(C_M(A)), b_2] = 1.$$

- 1. Compute bases for the subspaces $C_M(B)$, $C_M(C_M(A))$.
- 2. Solve $a_1g = a_1ga_2 \cdot a_2^{-1}$ with $a_1 \in C_M(B), a_2^{-1} \in C_M(C_M(A))$ invertible.

 $g, a_1, b_2 \in G, B \leq C_G(a_1), A \leq C_G(b_2), a_2 \in A, b_1 \in B.$

Shpilrain-Ushakov Problem. $(a_1ga_2, b_1gb_2) \mapsto a_1b_1ga_2b_2$.

$$a_2 \in A \Rightarrow a_2 \in C_M(C_M(A)) \iff a_2^{-1} \in C_M(C_M(A)).$$

$$A \leq C_G(b_2) \Rightarrow b_2 \in C_G(A) \subseteq C_M(A) \Rightarrow [C_M(C_M(A)), b_2] = 1.$$

- 1. Compute bases for the subspaces $C_M(B)$, $C_M(C_M(A))$.
- 2. Solve $a_1g = a_1ga_2 \cdot a_2^{-1}$ with $a_1 \in C_M(B), a_2^{-1} \in C_M(C_M(A))$ invertible.
- 3. \exists solution: (a_1, a_2^{-1}) . Let $(\tilde{a}_1, \tilde{a}_2^{-1})$ be one.

$$g, a_1, b_2 \in G, B \leq C_G(a_1), A \leq C_G(b_2), a_2 \in A, b_1 \in B.$$

Shpilrain-Ushakov Problem. $(a_1ga_2, b_1gb_2) \mapsto a_1b_1ga_2b_2$.

$$a_2 \in A \Rightarrow a_2 \in C_M(C_M(A)) \iff a_2^{-1} \in C_M(C_M(A)).$$

$$A \leq C_G(b_2) \Rightarrow b_2 \in C_G(A) \subseteq C_M(A) \Rightarrow [C_M(C_M(A)), b_2] = 1.$$

- 1. Compute bases for the subspaces $C_M(B)$, $C_M(C_M(A))$.
- 2. Solve $a_1g = a_1ga_2 \cdot a_2^{-1}$ with $a_1 \in C_M(B), a_2^{-1} \in C_M(C_M(A))$ invertible.
- 3. \exists solution: (a_1, a_2^{-1}) . Let $(\tilde{a}_1, \tilde{a}_2^{-1})$ be one.
- 4. $\tilde{a}_1 b_1 g b_2 \tilde{a}_2$

$$g, a_1, b_2 \in G, B \leq C_G(a_1), A \leq C_G(b_2), a_2 \in A, b_1 \in B.$$

Shpilrain-Ushakov Problem. $(a_1ga_2, b_1gb_2) \mapsto a_1b_1ga_2b_2$.

$$a_2 \in A \Rightarrow a_2 \in C_M(C_M(A)) \iff a_2^{-1} \in C_M(C_M(A)).$$

$$A \leq C_G(b_2) \Rightarrow b_2 \in C_G(A) \subseteq C_M(A) \Rightarrow [C_M(C_M(A)), b_2] = 1.$$

- 1. Compute bases for the subspaces $C_M(B)$, $C_M(C_M(A))$.
- 2. Solve $a_1g = a_1ga_2 \cdot a_2^{-1}$ with $a_1 \in C_M(B), a_2^{-1} \in C_M(C_M(A))$ invertible.
- 3. \exists solution: (a_1, a_2^{-1}) . Let $(\tilde{a}_1, \tilde{a}_2^{-1})$ be one.
- 4. $\tilde{a}_1 b_1 g b_2 \tilde{a}_2 \stackrel{!}{=} b_1 \tilde{a}_1 g \tilde{a}_2 b_2$

$$g, a_1, b_2 \in G, B \leq C_G(a_1), A \leq C_G(b_2), a_2 \in A, b_1 \in B.$$

Shpilrain-Ushakov Problem. $(a_1ga_2, b_1gb_2) \mapsto a_1b_1ga_2b_2$.

$$a_2 \in A \Rightarrow a_2 \in C_M(C_M(A)) \iff a_2^{-1} \in C_M(C_M(A)).$$

$$A \leq C_G(b_2) \Rightarrow b_2 \in C_G(A) \subseteq C_M(A) \Rightarrow [C_M(C_M(A)), b_2] = 1.$$

- 1. Compute bases for the subspaces $C_M(B)$, $C_M(C_M(A))$.
- 2. Solve $a_1g = a_1ga_2 \cdot a_2^{-1}$ with $a_1 \in C_M(B), a_2^{-1} \in C_M(C_M(A))$ invertible.
- 3. \exists solution: (a_1, a_2^{-1}) . Let $(\tilde{a}_1, \tilde{a}_2^{-1})$ be one.
- 4. $\tilde{a}_1 b_1 g b_2 \tilde{a}_2 \stackrel{!}{=} b_1 \tilde{a}_1 g \tilde{a}_2 b_2 = b_1 a_1 g a_2 b_2 = K!$

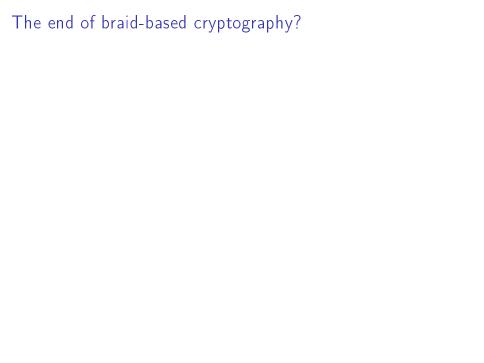
$$g, a_1, b_2 \in G, B \leq C_G(a_1), A \leq C_G(b_2), a_2 \in A, b_1 \in B.$$

Shpilrain-Ushakov Problem. $(a_1ga_2, b_1gb_2) \mapsto a_1b_1ga_2b_2$.

$$a_2 \in A \Rightarrow a_2 \in C_M(C_M(A)) \iff a_2^{-1} \in C_M(C_M(A)).$$

$$A \leq C_G(b_2) \Rightarrow b_2 \in C_G(A) \subseteq C_M(A) \Rightarrow [C_M(C_M(A)), b_2] = 1.$$

- 1. Compute bases for the subspaces $C_M(B)$, $C_M(C_M(A))$.
- 2. Solve $a_1g = a_1ga_2 \cdot a_2^{-1}$ with $a_1 \in C_M(B), a_2^{-1} \in C_M(C_M(A))$ invertible.
- 3. \exists solution: (a_1, a_2^{-1}) . Let $(\tilde{a}_1, \tilde{a}_2^{-1})$ be one.
- 4. $\tilde{a}_1 b_1 g b_2 \tilde{a}_2 \stackrel{!}{=} b_1 \tilde{a}_1 g \tilde{a}_2 b_2 = b_1 a_1 g a_2 b_2 = K!$
- 5. Complexity $N^{16.8} m^3$



The end of braid-based cryptography?

Not quite:

1. Attack impractical for practical values of N.

The end of braid-based cryptography?

Not quite:

- 1. Attack impractical for practical values of N.
- 2. There are additional braid-PKC proposals (Dehornoy et al., Kalka, Kurt ...).

The end of braid-based cryptography?

Not quite:

- 1. Attack impractical for practical values of N.
- There are additional braid-PKC proposals (Dehornoy et al., Kalka, Kurt ...).
- 3. The other problems (CSP, Multiple CSP,...) on which braid-based PKC may be based.

The Triple Decomposition KEP (Kurt 2005)

The Triple Decomposition KEP (Kurt 2005)