
Stevens online post-quantum cryptography seminar

Algebraic (numerical) solvers for certain
lattice-related problems

Jintai Ding

University of Cincinnati

Feb. 23, 2012

Outline

1 Introduction

2 Algorithm for BSIS

3 Algorithm for BLWE

4 The REAL motivation and new results

Outline

1 Introduction

2 Algorithm for BSIS

3 Algorithm for BLWE

4 The REAL motivation and new results

This worked was most done in 2006 while visiting TU
Darmsatdt as a Humboldt fellow.

I would like to thank the people with whom I had useful
discussions, in particular,
Richard Lindner, Alexander May, Ralf-Philipp Weinmann.

Part of results were presented in IEEE Information Theory
Workshop 2011 in Paraty, Brazil

Part is a joint work with Dieter Schmidt.

Certain shortest vector problem (SVN) in a lattice

The SIS problem.

Let q be a prime number.

A ∈ Zn×m
q , where A is chosen from a uniform distribution over

Zn×m
q .

Λ⊥q (A) = {~x ∈ Zm : A~x ≡ ~0 ∈ Zn (mod q)} is an
m-dimensional lattice.
The SIS problem is to find a vector ~v ∈ Λ⊥q (A) with
‖~v‖p ≤ β.

The lattice

Let V1, ...,Vd be a basis of Λ⊥q (A) over F = Fq.
The lattice over integer ring is spanned by

V t
1

.

.

.
V t

d

qE1

.

.
qEm

,

where

Ei = (0, .., 1, 0, .., 0).

d= m-n.

The NTRU lattice

The NTRU lattice is spanned by the rows of matrix in the
following form: (

In H
0n qIn

)
,

where In is the nxn identity matrix, 0n is the nxn identity matrix
and q is not necessarily a prime number.

The NTRU lattice

The key property here is that there is a nonesero short vector v in
the space

v = (v1, ..., vn),

where |vi | ≤ 1, namely vi can only be 1,0,-1, and there should 1/3
of them to be 1,0,-1 equally.
Namely we have that

‖~v‖∞ ≤ 1 = β.

The NTRU lattice

To break NTRU can be reformulated as certain type of SIS
problem due to Coppersmith and Shamir.

This is the origin motivation of our work in Darmstadt.

The BSIS problem

The BSIS problem.

p = ∞, 2β + 1 < q

m > or ≈ Q(m − n,D),

where
D = 2β + 1 < q,

Q(y) =

(
D

y + D

)
=

(y + D)!

D!(y − 1)!
.

The LWE problem

LWE problem can be described as follows.

a parameter n, a prime modulus q , and an ”error” probability
distribution κ on the finite field F with q elements.

Let ΠS ,κ on Fq be the probability distribution obtained by
selecting an element A in F n

q randomly and uniformly,
choosing e ∈ Fq according to κ, and outputting
(A, < A,S > +e), where + is the addition that is performed
in Fq.

An algorithm solves LWE with modulus q and error
distribution κ, if, for any S in F n

q , with an arbitrary number
of independent samples from ΠS ,κ, it outputs S (with high
probability).

The lattice

The lattice is spanned the rows of

A = (

(A1,−b1)

.

.

.
(AN ,−bn)

)t .

(S , 1)× A = −E ,

where

E = (r1, , .., rN).

The BLWE problem

BLWE problem can be described as follows.

A subclass of the LWE problems, which, we call, the learning
with bounded errors (LWBE) problems, namely the errors
from the queries do not span the whole finite field but a fixed
known subset of size D (D < q).

Outline

1 Introduction

2 Algorithm for BSIS

3 Algorithm for BLWE

4 The REAL motivation and new results

How to solve BSIS

3 parameter n, m, a prime modulus q, and a fixed positive integer
β and 2β + 1 < q.

The vector ~X is a short solution to the equation:

A~(x) = 0.

where

~x = (x1, x2, ·, ·, ·, xm)t .

~v is bounded in the l∞ norm β implies that

j=β∏
j=−β

(xi − j) = 0. (1)

This is a set of m degree D equations with m − n variables.

How to solve BSIS

By linear substitution, we have a set of
1) m degree D equations;
2) m-n variables.

In general, we can also try to solve this set of equations by
Groebner basis solvers, and the complexity can be vastly
different.

If the short vector entries can only be 0, 1, we have a set of
quadratic equations, which therefore relies on the same
security assumption as the multivariate public key
crytosystems.

How to solve BSIS

By linear substitution, we have a set of
1) m degree D equations;
2) m-n variables.

If m is sufficiently large in comparison with m − n, GB solver
becomes solving by linearization.

Outline

1 Introduction

2 Algorithm for BSIS

3 Algorithm for BLWE

4 The REAL motivation and new results

How to solve BLWE

Let
S = (x1, x2, ·, ·, ·, xn).

(S , 1)× (Ai ,−bi)
t = ri ,

implies

D∏
k=1

(
∑

ai ,jxj − bi + ek) = 0, (2)

where Ai = (ai ,j), {ei} is the set of all possible errors.

How to solve BLWE

we have
1) n variables;
2) N degree D equations.

In general, we can also try to solve this set of equations by
Groebner basis solvers, and the complexity can be vastly
different.

How to solve BLWE

we have
1) n variables;
2) N degree D equations.

N is much large than n, GB solver becomes solving by
linearization.

Outline

1 Introduction

2 Algorithm for BSIS

3 Algorithm for BLWE

4 The REAL motivation and new results

The NTRU with message in tenary

parameters: n, p and q, where p and q have to be relatively
prime. q is either a prime number or q = 2n, but here we will
concentrate on the case where q = 2n, which is the case
suggested for practical applications.

p = 3.

The NTRU with message in tenary

One works over the ring

R = Zq[x]/(xn − 1)

with the coefficients defined over the ring (or field)
Z/qZ = Zq.

The polynomials are expressed the form

a(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1

with the coefficients represented in the symmetric form, that is

bq − 1

2
c ≤ aj ≤ bq

2
c for j = 0, . . . , n − 1.

The NTRU with message in tenary

We select two ”small” polynomials f and g such that a third
of the coefficients are chosen to be -1, another third 1, and
rest are set to 0.

f has to be invertible mod q and also mod p, that is,
polynomials fq and fp have to be found so that

fq × f = 1 mod q

and
fp × f = 1 mod p.

The NTRU with message in tenary

To simplify, one usually select instead a small polynomial F
and to set then f = 1 + pF so that automatically fp = f . One
then computes h = pfq × g mod q.

The public key is h.
The secret key is F and g .

The NTRU with message in binary

In this case, one selects:

p = 2 + x .

F and g can be selected with coefficients either 0 or 1.

The NTRU attack in terms of lattice

H a nxn circular matrix.

Find a short vector S such that
S is short;
S × H(mod(q)) is also short.

The NTRU lattice

Let

A =

(
In H
0n qIn

)
Find

X = (x1, .., x2n)

such that Y = X × A is short.

A new attack

We will look only at the binary case.

To find the secret key is to factor

h(x) = pg(x)× fq(x)

Let
F (x) = F0 + F1x + ... + Fn−1x

n−1,

and
g(x) = g0 + g1x + ... + gn−1x

n−1.

Then we have

h(x)× (1 + pF (x)) = pg(x).

We will derive a set of n linear equations over Zq in the
variables Fi and gi .

A new attack

Because the choice of the coefficients is only (1,0) for Fi and
gi , we also have

Fi (Fi − 1) = (Fi − 0)(Fi − 1) = 0,

gi (gi − 1) = (gi − 0)(gi − 1) = 0.

This means we can solve a set of n linear equations with 2n
quadratic equations to find the secret key.

We can solve by GB type of solvers over a ring.

This is in general very difficult since it is over Zq.

This work was done in 2006 in Darmstadt for the tenary case,
where we tried to solve degree 3 equations over a finite field.

A new attack

Let us look again at the set the equation:

h(x)× f (x) = pg(x),

over R.

Let
R̄ = Z (x)/(xn − 1).

Then the equations above become a set of equations over R̄
in the form

h(x) + ph(x)× F (x) = pg(x) + qG (x), (3)

where the part qG (x) comes from the modular operation in
the original equations, and

G (x) = G0 + G1x + · · ·+ Gn−1x
n−1.

A new attack

If we know the statistical range of G (x) then we can build a
set of new equations in the form of

d∏
i=1

(Gj − ai) = 0,

so that the coefficients Gj are now restricted to the set of
integers a1, . . . , ad .

When we represent elements in Zq, we represent them in the
form

−q/2 + 1, . . . , 0, . . . , q/2.

Therefore the range of G (x) should not be large statistically.

A new attack

Numerical experiment results.

Figure: Frequency of nonzero values for coefficients Gi

The REAL attack

We can find F (x) and g(x) by solving a set of equations
consisting of
n linear equations;
2n quadratic equations;
n degree d over Z .

We can use Newton type of numerical method to solve
this set of equations.

We could first do substitutions from the linear equations. If
we substitute all the variables Fi , we would have a set of
equations consisting of 2n quadratic equations and n degree d
over Z .

The ”REAL” attack

We will now work with the assumption that |Gi | ≤ d for
i = 0, . . . , n − 1.

With the given public key

h(x) = h0 + h1x + · · ·+ hn−1x
n−1

and knowing that the function f (x) has the form
f (x) = 1 + (2 + x)F (x), we have

p(x)× h(x)× F (x)− p(x)× g(x)− qG (x) + h(x) = 0 (4)

This gives a system of linear equations in the form Ay + c = 0
with the unknown vector of coefficients given by

y = (F0,F1, . . . ,Fn−1, g0, g1, . . . , gn−1,G0,G1, . . . ,Gn−1)
t

and
c = (h0, h1, . . . , hn−1)

t .

The REAL attack

The system of equations to be solved is therefore

Ay + c = 0

Fi (Fi − 1) = 0

gi (gi − 1) = 0

Gi

d∏
j=1

(Gi − j)(Gi + j) = 0.

The REAL attack

We can use numerical routines to solve the system of
nonlinear equations.

MATLAB provides such a routine and it is called fsolve. It
requires two parameters, a reference to the function and an
initial guess.

The optional parameter allows for the setting of various
options, for example the tolerance in the function evaluations
and/or the tolerance in the x values, before MATLAB decides
that a solution has been found.

Another parameter is the number of function evaluations and
it can be set to a large value, since in our case the given
functions are easy to evaluate.

The ”REAL” attack

If the Hessian of the system of equations can be computed
explicitly, which is true in our case, this can also be given as a
parameter instead of asking MATLAB to find the Hessian
numerically.

Options can also be set on how much MATLAB should report
on the progress of finding a root.

The underlying method uses the sum of the squares of the
equations and then tries to minimize this function.

The Levenberg–Marquardt algorithm is used but the faster
but less robust Gauss–Newton algorithm can also be selected.

The ”REAL” attack

As expected the choice of the initial guess places a significant
role in finding the solution, since the function to be minimized
has lots of local minima.

Even for this small example finding the correct solution is not
guaranteed unless one starts within a reasonable distance from
the actual solution.

Starting with the zero vector as initial guess, fsolve usually
returns with an answer which is closer to zero than the actual
solution.

Similar things will happen when we start with a vector of all
elements set to one, except that after rounding to the nearest
integers not all elements will be one.

It is clear that we have to find a better initial condition. The
LLL?

A simplified ”REAL” attack

We have investigated what happens when some of the
parameters of variables are known in advance.

For example assume that all of the Gi ’s are known in advance.

In this case the values for the Fi ’s are usually close to the
actual solution, so that after rounding them to the nearest
integer (0 or 1) we obtain the correct values for the Fi ’s.

A simplified ”REAL” attack

Examples

In the first example, we use n = 167 and q = 512 and start
with an initial vector for y with the elements set to zero or
one at random.
The running time was 0.7 seconds.

When looking at the coefficients found for F most of them are
within 10−6 of their actual values so that rounding them gives
the correct answer.

A simplified ”REAL” attack

Examples

For the second example, we use n = 809 and q = 2048.

We have chosen the zero vector as the starting point, which
usually speeds up the convergence to a solution.

MATLAB completed in 44.9 seconds.

Despite the claim of MATLAB that it did not converge to a
root, the coefficients of F in the solution vector are again
close enough to their correct integer values. After rounding
them we can find the values for the gi ’s.

A simplified ”REAL” attack

With this approach we are able to recover the coefficients Fi

and gi even for large systems starting with the zero vector as
the initial guess.

The numerical routine fsolve is surprisingly fast and it might
even work for larger systems.

The only problem seems to be that it uses single precision in
order to preserve memory, and thus has its own limitations.

Equations over real

Using Newton method directly is not sufficient.

The modular part very important.

What we can do and what next

Better approximation on G?

Better solver?

New direction – LLL with Newton

Acknowledgment

Thank you and any question?

	Outline
	Introduction
	Algorithm for BSIS
	Algorithm for BLWE
	The REAL motivation and new results

