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Learning Parities with Noise

Secret vector u in GF(2)"
Oracle returns random a and b=u-a
u-a Is incorrect with probabillity p

Best known algorithm: 20(log ) IBKW’03]

Used in designing public-key crypto
[Alekhnovich’03]
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Learning Parities with Structured Noise

Secret vector u

Oracle returns random at, a2, ..., a™ and b,=u-a‘,
b,=u-a, ..., b,=u-am

The error has a certain structure

Can the secret be learned
In_polynomial time?
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Our Results

Learning parities with structured noise
= n° time, adversarial noise

Learning With Errors

m Subexp algorithm when noise < n1/2

= Open problem since [Regev'05]

Majority of 3 parities

m Can inverse with O(n?log n) queries.

= Pseudorandom generator purposed in [ABW’10]
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Structures as Polynomials

c.=1 iff I-th inner-product Is incorrect
[ bi — ai U+ Ci

P(c) = 0 if an answer pattern is allowed

“At least one of the inner-products is correct”
= P(c) =c,C,Cs...Cc,, =0
“No 3 consecutive wrong inner-products”

= P(c) = c,c,c3t+C,CoCyt...+C ,C 1 Cy = O




Notations

Subscripts are used for indexing vectors

® U, C

Superscripts are used for a list of vectors

= a

High dimensional vectors are indexed like Zi
a, b are known constants, u, c are unknown

constants used in analysis, X, y, Z are variables
In equations.
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|_Inearization

Answers b. = ¢ +alx C,C,C3 =0
\ J
|

(@t-x+b,)(@*x+by)(a*x+bz) = 0(*)

Degree 3 polynomial over x
Linearization Yi = Xg, Y2=Xo,.-4, Y12 = X1 X5, 45 Y1 237X X5X3
alja%,a’zy, 5 5F...+b,byby = 0 (*%)

Linear Equations overy

() = L((*)
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Canonical Solution

(atx+b,)(@%x+b,)(ax+bs) = 0(*)
= Always satisfied when x; = u,
a'1a%a%y, 5 3t tb by = 0 (%)
= Always satisfied when y,=u,,y,=U,,...,y; », 3=U;UsU5

Canonical Solution: y,=u,,y,=U,,...,y; », 3=U;U,U5

Coming up: This is the only solution to the
system of linear equations
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Proof Outline

Express (*) and (**) in a special form
= Tensor-Expansion

Change view: treat y as constants, a as
variables

Pr[fix y sat. all equations] = extremely small
Union bound over all “non-canonical” solutions.
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Tensor-expansion

(al-x+b,)(a2-x+b,)(a%x+b,) = O(*) | Problem: b depends on a
(al-(x+u)+cy)(a®(x+u)+c,)(as(x+u)+cy) =0

(al-X+c,)(a2-X+c,)(a%X+c;) =0 | a,c:numbers; X: variable

21a2a3-X3=0 (@' -x)a’-x)=(a' ®a*)(x VD x)

Linearize

v Let Z3ik = L((Xi+ui)(X+Uu;) (Xk+Uk))
(@ ®a’®a’)Z’ =0

Z3 =0 < y is the canonical solution
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Change View

(al Ra’*® a3)Z3 = () Linear Equation over y variables

Z3 (ay1 X a2 X a3) =S\ Polynomial over a’s
Uniformly random

Lemma

= When Z3#0 (y non-canonical), the equation is a non-
zero polynomial over a’s

Schwartz-Zippel
® The polynomial is non-zero w.p. at least 2
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No Non-Canonical Solutions

Non-zero Z3 vector, = 0 for all equations

Schwartz-Zippel Union Bound

With High Probability

L1
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Adversarial Noise

Structure = “not all inner-products are incorrect”

Secretu =(1,0,1,1,1) u-(0,1,0,1,1)=011
u-(1,1,0,1,00=00 1
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Adversarial Noise

The adversary can fool ANY algorithm for some
structures.

Thm: If exists ¢ that cannot be represented as
c = ¢cl+c?, P(ct)=P(c?)=0,

the secret can be learned in n°M time
otherwise no algorithm can learn the secret
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Handling Adversarial Noise

C P = C,C,+C,C3+C3C,

For each oracle answer (A,b), generate a group
of oracle answers (A, b+c’) for all P(c’) = 0.
b = (1,0,1)
b=(0,01),(,0,1),(1,1,1), (1,0,0)
Apply the white-noise algorithm

Canonical Solution: still satisfied
Non-Canonical: cannot be satisfied because
noise c = (0,0,0) is always present
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Learning With Errors

Used Iin designing new crypto systems
Resistant to “side channel attacks”

Provable reduction from worst case lattice
problems




Learning With Errors




Learning With Errors

Secret u in Zq“




Learning With Errors

Secret u in Zq“
Oracle returns random a and a-u+c




Learning With Errors

Secret u in an
Oracle returns random a and a-u+c

c IS chosen from Discrete Gaussian distribution
with standard deviation 0




Learning With Errors

Secret u in Zq”
Oracle returns random a and a-u+c

c IS chosen from Discrete Gaussian distribution
with standard deviation 0




Learning With Errors

Secret u in an
Oracle returns random a and a-u+c

c IS chosen from Discrete Gaussian distribution
with standard deviation 0

When & = Q(n'/?) lattice problems can be
reduced to LWE [Regev09]
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Learning With Structured Errors

Structure specifies a set of possible errors
meg.|c] <&’
= Still represented using polynomial P(c) =0

Thm: When the polynomial has degree d < g/4,
the secret can be learned in n°@ time.

Cor: When & = o(n¥?), LWE has a sub-
exponential time algorithm
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Structure:
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Structure:
c| < K &2

n LWE:

Prilc>K 87] <(exp(-0(K?5%)| -

L K &2 K 52

# of equations:

NNO(K 82)) <lexp(O(K?62)) K =100 log n
.




Thm =» Cor

Structure:
c| < K &2

n LWE: .

Pr[|c|>K 62] </ exp(-O(K?62)) .
: _ -K &2 K &2

# of equations:

NNO(K 82)) <lexp(O(K?62)) K =100 log n

=

Negligible difference between LWE and LWSE,
Algorithm still success with high probability




Open Problems

Non-trivial algorithm for the original model using
linearization

Possible lower bound for special kind of linear
equation systems

Improve the algorithm for learning with errors?




Thank You

Questions?



