New Algorithms for Learning
IN Presence of Errors

Sanjeev Arora, Rong Ge

Princeton University

Hard(?) Problems

Hard(?) Problems

Hard(?) Problems

Hard(?) Problems

Hard(?) Problems

Hard(?) Problems

Learning Parities with Noise

Learning Parities with Noise

Secretu =(1,0,1,1,1)

Learning Parities with Noise

Secretu=(1,0,1,1,1)

Learning Parities with Noise

Secretu=(1,0,1,1,1)

Learning Parities with Noise

Secret u = (1,0,1,1,1) u-(0,1,0,1,1)=0

Learning Parities with Noise

Secret u = (1,0,1,1,1) u- (0,1,0,1,1; = (1)
u- =

Learning Parities with Noise

Secret u = (1,0,1,1,1) u-(0,1,0,1,1)=0
u-(1,1,1,0,1) = 1
u-(0,1,1,1,0)=1

Learning Parities with Noise

Learning Parities with Noise

Secret vector u in GF(2)"

Learning Parities with Noise

Secret vector u in GF(2)"
Oracle returns random a and b=u-a

Learning Parities with Noise

Secret vector u in GF(2)"
Oracle returns random a and b=u-a
u-a Is incorrect with probabillity p

Learning Parities with Noise

Secret vector u in GF(2)"
Oracle returns random a and b=u-a
u-a Is incorrect with probabillity p

Best known algorithm: 20(log) IBKW’03]

Learning Parities with Noise

Secret vector u in GF(2)"
Oracle returns random a and b=u-a
u-a Is incorrect with probabillity p

Best known algorithm: 20(log) IBKW’03]

Used in designing public-key crypto
[Alekhnovich’03]

Learning Parities with Structured Noise

Learning Parities with Structured Noise

Secretu=(1,0,1,1,1)

Learning Parities with Structured Noise

Secretu=(1,0,1,1,1)

Learning Parities with Structured Noise

Secretu=(1,0,1,1,1)

in 1 i
—_ - O

Learning Parities with Structured Noise

Secretu =(1,0,1,1,1) -(0,1,0,1,1) =0

u
u_/l/,nqg;_a
u

+(0,1,1,0,0) =~

Learning Parities with Structured Noise

Learning Parities with Structured Noise

Secret vector u

Learning Parities with Structured Noise

Secret vector u

Oracle returns random at, a2, ..., a™ and b,=u-a‘,
b,=u-a, ..., b,=u-am

Learning Parities with Structured Noise

Secret vector u

Oracle returns random at, a2, ..., a™ and b,=u-a‘,
b,=u-a, ..., b,=u-am

“Not all inner-products are incorrect”

Learning Parities with Structured Noise

Secret vector u

Oracle returns random at, a2, ..., a™ and b,=u-a‘,
b,=u-a, ..., b,=u-am

The error has a certain structure

Learning Parities with Structured Noise

Secret vector u

Oracle returns random at, a2, ..., a™ and b,=u-a‘,
b,=u-a, ..., b,=u-am

The error has a certain structure

Can the secret be learned
In_polynomial time?

Our Results

Our Results

Learning parities with structured noise
= n°) time, adversarial noise

Our Results

Learning parities with structured noise
= n° time, adversarial noise

Learning With Errors
m Subexp algorithm when noise < n1/2
= Open problem since [Regev'05]

Our Results

Learning parities with structured noise
= n° time, adversarial noise

Learning With Errors

m Subexp algorithm when noise < n1/2

= Open problem since [Regev'05]

Majority of 3 parities

m Can inverse with O(n?log n) queries.

= Pseudorandom generator purposed in [ABW’10]

Structures as Polynomials

Structures as Polynomials

c.=1 iff i-th inner-product is incorrect
| bi — a.i U+ Ci

Structures as Polynomials

c.=1 iff i-th inner-product is incorrect
| bi — a.i -u + Ci
P(c) = 0 if an answer pattern is allowed

Structures as Polynomials

c.=1 iff I-th inner-product Is incorrect
H bi = a.i U+ Ci
P(c) = 0 if an answer pattern is allowed

“At least one of the inner-products is correct”
= P(c) =c,Cc,C3...c,, =0

Structures as Polynomials

c.=1 iff I-th inner-product Is incorrect
[bi — ai U+ Ci

P(c) = 0 if an answer pattern is allowed

“At least one of the inner-products is correct”
= P(c) =c,C,Cs...Cc,, =0
“No 3 consecutive wrong inner-products”

= P(c) = c,c,c3t+C,CoCyt...+C ,C 1 Cy = O

Notations

Subscripts are used for indexing vectors

® U, C

Superscripts are used for a list of vectors

= a

High dimensional vectors are indexed like Zi
a, b are known constants, u, c are unknown

constants used in analysis, X, y, Z are variables
In equations.

Main Result

Main Result

For ANY non-trivial structure P of degree d, the
secret can be learned using n°@ queries and
n°@ time.

Main Result

structure P of degree d, the

trivial
secret can be learned using n°@ queries and

n°w0) time.

For ANY non

The Algorithm

The Algorithm

Query the Oracle

The Algorithm

Query the Oracle

Write out polynomial equations over X
= Solution in mind: X = u

The Algorithm

Query the Oracle

Write out polynomial equations over X
= Solution in mind: x = u

Linearize all equations to get equations overy

The Algorithm

Query the Oracle

Write out polynomial equations over X
= Solution in mind: x = u

Linearize all equations to get equations overy
Solve the equations for y (Gaussian Elimination)

The Algorithm

Query the Oracle

Write out polynomial equations over X
= Solution in mind: x = u

Linearize all equations to get equations overy
Solve the equations for y (Gaussian Elimination)

The unique solution will recover secret u

The Algorithm

Query the Oracle

Write out polynomial equations over X
= Solution in mind: x = u

Linearize all equations to get equations overy
Solve the equations for y (Gaussian Elimination)

The unique solution will recover secret u

|_Inearization

|_Inearization

Answers b. = ¢ +alx C,C,C3 =0

|_Inearization

Answers b. = ¢ +alx C,C,C3 =0
\ J
|

(alx+b,)(@2x+b,)(a%x+by) = O(*)

|_Inearization

Answers b, = ¢,+a'"x C,C,C3 =0
\ J
|

(alx+b,)(@2x+b,)(@%x+by) = O(*)

[Degree 3 polynomial over x

|_Inearization

Answers b. = ¢ +alx C,C,C3 =0
\ J
|

(@t-x+b,)(@*x+by)(a*x+bz) = 0(*)

Degree 3 polynomial over x

Linearization Yi = Xy, Yo=Xo,..0, Y10 = X Xo,..0y Y1 2 37X 1 XoX3

|_Inearization

Answers b. = ¢ +alx C,C,C3 =0
\ J
|

(@t-x+b,)(@*x+by)(a*x+bz) = 0(*)

Degree 3 polynomial over x

Linearization Yi = Xy, Yo=Xo,..0, Y10 = X Xo,..0y Y1 2 37X 1 XoX3

alja%,ad;y; , 3t+...+b;b,bs = 0 (*%)

|_Inearization

Answers b. = ¢ +alx C,C,C3 =0
\ J
|

(@t-x+b,)(@*x+by)(a*x+bz) = 0(*)

Degree 3 polynomial over x
Linearization Yi = Xg, Y2=Xo,.-4, Y12 = X1 X5, 45 Y1 237X X5X3
alja%,a’zy, 5 5F...+b,byby = 0 (*%)

Linear Equations overy

() = L((*)

Canonical Solution

Canonical Solution

(atx+b,)(a*x+by)(a*x+bs) = 0(*)
= Always satisfied when x; = u.

Canonical Solution

(atx+b,)(@%x+b,)(ax+bs) = 0(*)
= Always satisfied when x; = u,
a'1a%a%y, 5 3t tb by = 0 (%)
= Always satisfied when y,=u,,y,=U,,...,y; », 3=U;UsU5

Canonical Solution

(atx+b,)(@%x+b,)(ax+bs) = 0(*)
= Always satisfied when x; = u,
a'1a%a%y, 5 3t tb by = 0 (%)
= Always satisfied when y,=u,,y,=U,,...,y; », 3=U;UsU5

Canonical Solution: y,=u,,y,=U,,...,y; », 3=U;U,U5

Canonical Solution

(atx+b,)(@%x+b,)(ax+bs) = 0(*)
= Always satisfied when x; = u,
a'1a%a%y, 5 3t tb by = 0 (%)
= Always satisfied when y,=u,,y,=U,,...,y; », 3=U;UsU5

Canonical Solution: y,=u,,y,=U,,...,y; », 3=U;U,U5

Coming up: This is the only solution to the
system of linear equations

Proof Outline

Proof Outline

Express (*) and (**) in a special form
= Tensor-Expansion

Proof Outline

Express (*) and (**) in a special form
= Tensor-Expansion

Change view: treat y as constants, a as
variables

Proof Outline

Express (*) and (**) in a special form
= Tensor-Expansion

Change view: treat y as constants, a as
variables

Pr[fix y sat. all equations] = extremely small

Proof Outline

Express (*) and (**) in a special form
= Tensor-Expansion

Change view: treat y as constants, a as
variables

Pr[fix y sat. all equations] = extremely small
Union bound over all “non-canonical” solutions.

Tensor-expansion

Tensor-expansion

(@t x+by)(@*x+b,)(@’x+bs) = 0(*)

Tensor-expansion

(al-x+b,)(@®x+b,)(a3-x+bs) = 0(*) [Problem: b depends on a]

Tensor-expansion

(al-x+b,)(@®x+b,)(a3-x+bs) = 0(*) [Problem: b depends on a]

(@b (x+u)+cy)(@* (x+u)+cy)(a’(x+u)+cs) = 0

Tensor-expansion

(al-x+b,)(@®x+b,)(a3-x+bs) = 0(*) [Problem: b depends on a]

(at(x+u)tcy)(az(x+u)tcy)(a’(x+u)tcs) = 0
(al-X+c,)(a?> X+c,) (a3 X+c;) =0

Tensor-expansion

(al-x+b,)(@®x+b,)(a3-x+bs) = 0(*) [Problem: b depends on a]

(@b (x+u)+cy)(@* (x+u)+cy)(a’(x+u)+cs) = 0

(al-X+c,)(a?X+c,)(a3X+c3) =0 [a,c:numbers; X: variable]

Tensor-expansion

(al-x+b,)(a2-x+b,)(a%x+b,) = O(*) | Problem: b depends on a

(@t (x+u)*+cy)(@*(x+u)+c,)(@*(x+u)+cs) = 0

(al-X+c,)(a2-X+c,)(a%X+c;) =0 | a,c:numbers; X: variable

ata?a3-X3+c,a?a3-X?+...+¢,C,c3 =0

Tensor-expansion

(al-x+b,)(a2-x+b,)(a%x+b,) = O(*) | Problem: b depends on a
(al-(x+u)+cy)(a®(x+u)+c,)(as(x+u)+cy) =0

(al-X+c,)(a2-X+c,)(a%X+c;) =0 | a,c:numbers; X: variable

alaz a3 .X3 — O

Tensor-expansion

(al-x+b,)(a2-x+b,)(a%x+b,) = O(*) | Problem: b depends on a
(al-(x+u)+cy)(a®(x+u)+c,)(as(x+u)+cy) =0

(al-X+c,)(a2-X+c,)(a%X+c;) =0 | a,c:numbers; X: variable

21a2a3-X3=0 (@' -x)a’-x)=(a' ®a*)(x VD x)

Tensor-expansion

(al-x+b,)(a2-x+b,)(a%x+b,) = O(*) | Problem: b depends on a
(al-(x+u)+cy)(a®(x+u)+c,)(as(x+u)+cy) =0

(al-X+c,)(a2-X+c,)(a%X+c;) =0 | a,c:numbers; X: variable

21a2a3-X3=0 (@' -x)a’-x)=(a' ®a*)(x VD x)

Linearize

v Let Z3ik = L((Xi+ui) (X+u;) (Xk+uk))

Tensor-expansion

(al-x+b,)(a2-x+b,)(a%x+b,) = O(*) | Problem: b depends on a
(al-(x+u)+cy)(a®(x+u)+c,)(as(x+u)+cy) =0

(al-X+c,)(a2-X+c,)(a%X+c;) =0 | a,c:numbers; X: variable

21a2a3-X3=0 (@' -x)a’-x)=(a' ®a*)(x VD x)

Linearize

v Let Z3ik = L((Xi+ui)(X+Uu;) (Xk+Uk))

(@ ®a’®a’)Z’ =0

Tensor-expansion

(al-x+b,)(a2-x+b,)(a%x+b,) = O(*) | Problem: b depends on a
(al-(x+u)+cy)(a®(x+u)+c,)(as(x+u)+cy) =0

(al-X+c,)(a2-X+c,)(a%X+c;) =0 | a,c:numbers; X: variable

21a2a3-X3=0 (@' -x)a’-x)=(a' ®a*)(x VD x)

Linearize

v Let Z3ik = L((Xi+ui)(X+Uu;) (Xk+Uk))
(@ ®a’®a’)Z’ =0

Z3 =0 < y is the canonical solution

Change View

(al Ra’*® a3)Z3 = () Linear Equation over y variables

Change View

(al Ra’*® a3)Z3 = () Linear Equation over y variables

7 (@ ®a’®a’)=0

Change View

(al Ra’*® a3)Z3 = () Linear Equation over y variables

Z3 (ay1 X a2 X a3) =S\ Polynomial over a’s

Change View

(al Ra’*® a3)Z3 = () Linear Equation over y variables

Z3 (ay1 X a2 X a3) =S\ Polynomial over a’s
Uniformly random

Change View

(al Ra’*® a3)Z3 = () Linear Equation over y variables

Z3 (ay1 X a2 X a3) =S\ Polynomial over a’s
Uniformly random

Lemma

= When Z3#0 (y non-canonical), the equation is a non-
zero polynomial over a’s

Change View

(al Ra’*® a3)Z3 = () Linear Equation over y variables

Z3 (ay1 X a2 X a3) =S\ Polynomial over a’s
Uniformly random

Lemma

= When Z3#0 (y non-canonical), the equation is a non-
zero polynomial over a’s

Schwartz-Zippel
® The polynomial is non-zero w.p. at least 2

Main Lemma = Theorem

Main Lemma = Theorem

Non-Canonical Solution

NS

NS

Main Lemma = Theorem

Non-Canonical Solution

NS

Non-zero Z3 vector, Poly(a) = 0 for all equations

NS

Main Lemma = Theorem

Non-Canonical Solution

NS

Non-zero Z3 vector, Poly(a) = 0 for all equations

Schwartz-Zippel Union Bound

NS

Main Lemma = Theorem

Non-Canonical Solution

NS

Non-zero Z3 vector, Poly(a) = 0 for all equations

Schwartz-Zippel Union Bound

NS

Low Probability

Main Lemma = Theorem

Non-Canonical Solution

NS

Non-zero Z3 vector, Poly(a) = 0 for all equations

Schwartz-Zippel Union Bound

NS

With High Probability

Main Lemma = Theorem

No Non-Canonical Solutions

Non-zero Z3 vector, = 0 for all equations

Schwartz-Zippel Union Bound

With High Probability

Main Lemma = Theorem

No Non-Canonical Solutions

Non-zero Z3 vector, = 0 for all equations

Schwartz-Zippel Union Bound

With High Probability

L1

Adversarial Noise

Structure = “not all inner-products are incorrect”

Adversarial Noise

Structure = “not all inner-products are incorrect”
Secretu=(1,0,1,1,1)

Pretend (0,1,1,0,0)

Adversarial Noise

Structure = “not all inner-products are incorrect”
Secretu=(1,0,1,1,1)

Pretend (0,1,1,0,0)

Adversarial Noise

Structure = “not all inner-products are incorrect”

Secretu =(1,0,1,1,1) u-(0,1,0,1,1)=011
u-(1,1,0,1,00=00 1

Adversarial Noise

The adversary can fool ANY algorithm for some
structures.

Adversarial Noise

The adversary can fool ANY algorithm for some
structures.

Thm: If exists ¢ that cannot be represented as
c = ¢cl+c?, P(ct)=P(c?)=0,

the secret can be learned in n°M time
otherwise no algorithm can learn the secret

Handling Adversarial Noise

Handling Adversarial Noise

Compute polynomial R,
R(C) = 0 < ¢ = ¢, +C,, P(c,)=P(c,)=0

Handling Adversarial Noise

Compute polynomial R,

R(c) =0 < ¢ = c,+¢C,, P(c,)=P(c,)=0

For each oracle answer (A,b), generate a group
of oracle answers (A, b+c’) for all P(c’) = 0.

Handling Adversarial Noise

Compute polynomial R,

R(c) =0 < ¢ = c,+¢C,, P(c,)=P(c,)=0

For each oracle answer (A,b), generate a group
of oracle answers (A, b+c’) for all P(c’) = 0.

Apply the white-noise algorithm

Handling Adversarial Noise

C P = C,C,+C,C3+C3C,

For each oracle answer (A,b), generate a group
of oracle answers (A, b+c’) for all P(c’) = 0.

Apply the white-noise algorithm

Handling Adversarial Noise

C P = C,C,+C,C3+C3C,

For each oracle answer (A,b), generate a group
of oracle answers (A, b+c’) for all P(c’) = 0.
b = (1,0,1)
b=(0,01),(,0,1),(1,1,1), (1,0,0)

Apply the white-noise algorithm

Handling Adversarial Noise

C P = C,C,+C,C3+C3C,

For each oracle answer (A,b), generate a group
of oracle answers (A, b+c’) for all P(c’) = 0.
b = (1,0,1)
b=(0,01),(,0,1),(1,1,1), (1,0,0)
Apply the white-noise algorithm

Canonical Solution: still satisfied
Non-Canonical: cannot be satisfied because
noise c = (0,0,0) is always present

Learning With Errors

Learning With Errors

Used Iin designing new crypto systems

Learning With Errors

Used Iin designing new crypto systems
Resistant to “side channel attacks”

Learning With Errors

Used Iin designing new crypto systems
Resistant to “side channel attacks”

Learning With Errors

Used Iin designing new crypto systems
Resistant to “side channel attacks”

Provable reduction from worst case lattice
problems

Learning With Errors

Learning With Errors

Secret u in Zq“

Learning With Errors

Secret u in Zq“
Oracle returns random a and a-u+c

Learning With Errors

Secret u in an
Oracle returns random a and a-u+c

c IS chosen from Discrete Gaussian distribution
with standard deviation 0

Learning With Errors

Secret u in Zq”
Oracle returns random a and a-u+c

c IS chosen from Discrete Gaussian distribution
with standard deviation 0

Learning With Errors

Secret u in an
Oracle returns random a and a-u+c

c IS chosen from Discrete Gaussian distribution
with standard deviation 0

When & = Q(n'/?) lattice problems can be
reduced to LWE [Regev09]

Learning With Structured Errors

Learning With Structured Errors

Structure specifies a set of possible errors
meqg.|c] <&’
= Still represented using polynomial P(c) =0

Learning With Structured Errors

Structure specifies a set of possible errors
meg.|c] <&’
= Still represented using polynomial P(c) =0

Thm: When the polynomial has degree d < g/4,
the secret can be learned in n°@ time.

Learning With Structured Errors

Structure specifies a set of possible errors
meg.|c] <&’
= Still represented using polynomial P(c) =0

Thm: When the polynomial has degree d < g/4,
the secret can be learned in n°@ time.

Cor: When & = o(n¥?), LWE has a sub-
exponential time algorithm

Thm =» Cor

1o =68%

20 =95%

Thm =» Cor

Structure:
Ic| < K &2

Thm =» Cor

1o = 68%

Structure:
Ic| < K &2

20 =95%

30 = 99%
>

N
Y

-K &2 K &2

Thm =» Cor

Structure:
c| < K &2

n LWE:

drlc>K 2] < exp(-O(K?5?)) |
_K 62

Thm =» Cor

Structure:
c| < K &2

n LWE:

Prilc>K 87] < exp(-0(K?5%) - -

o K &2 K &2
of equations:
NNO(K 82)) < exp(O(K?62)) K =100 log n

Thm =» Cor

Structure:
c| < K &2

n LWE:

Prilc>K 87] <(exp(-0(K?5%)| -

L K &2 K 52
of equations:
NNO(K 82)) <lexp(O(K?62)) K =100 log n

Thm =» Cor

Structure:
c| < K &2

n LWE:

Prilc>K 87] <(exp(-0(K?5%)| -

L K &2 K 52

of equations:

NNO(K 82)) <lexp(O(K?62)) K =100 log n
.

Thm =» Cor

Structure:
c| < K &2

n LWE: .

Pr[|c|>K 62] </ exp(-O(K?62)) .
: _ -K &2 K &2

of equations:

NNO(K 82)) <lexp(O(K?62)) K =100 log n

=

Negligible difference between LWE and LWSE,
Algorithm still success with high probability

Open Problems

Non-trivial algorithm for the original model using
linearization

Possible lower bound for special kind of linear
equation systems

Improve the algorithm for learning with errors?

Thank You

Questions?

