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Abstract:

We give new algorithms for a variety of randomly-generated instances of computational problems sing a linearization 
technique that reduces to solving a system of linear equations. These algorithms are derived in the context of learning 
with structured noise, a notion introduced in this paper. This notion is best illustrated with the learning parities with 
noise (LPN) problem -well-studied in learning theory and cryptography. In the standard version, we have access to an
oracle that, each time we press a button, returns a random vector $ a \in GF(2)^n$ together with a bit $b \in GF(2)$ 
that was computed as $a\cdot u +\eta$, where $u\in GF(2)^n$ is a secret vector,and $\eta \in GF(2)$ is a noise bit that 
is $1$ with some probability $p$. Say $p=1/3$. The goal is to recover $u$. This task is conjectured to be intractable. In 
the structured noise setting we introduce a slight (?) variation of the model: upon pressing a button, we receive (say) 
$10$ random vectors $a_1, a_2, \ldots, a_{10} \in GF(2)^n$, and corresponding bits $b_1, b_2, \ldots, b_{10}$, of 
which at most $3$ are noisy. The oracle may arbitrarily decide which of the $10$ bits to make noisy. We exhibit a 
polynomial-time algorithm to recover the secret vector $u$ given such an oracle. We think this structured noise model 
may be of independent interest in machine learning.
We discuss generalizations of our result, including learning with more general noise patterns. We also give the first 
nontrivial algorithms for two problems, which we show fit in our structured noise framework. We give a slightly 
subexponential algorithm for the well-known learning with errors (LWE) problem over $GF(q)$ introduced by Regev
for cryptographic uses. Our algorithm works for the case when the gaussian noise is small; which was an open 
problem. We also give polynomial-time algorithms for learning the MAJORITY OF PARITIES function of Applebaum
et al. for certain parameter values. This function is a special case of Goldreich's pseudorandom generator.


