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Why Construct Crypto Primitives 

Based on Knapsacks? 

 Substantially different from number 

theoretic constructions 

 Seem to resist quantum attacks 

 Possibly faster 

 Very interesting security guarantee 

 
Can we have the same properties and practicality? 
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Equivalent to polynomial multiplication in the ring R = Zq[x]/(xn+1) 

as1 + s2 = b 



Hardness of the  

Compact Knapsack Problem 

hardness 

||(s1,s2)|| 

0 ~ q√n ~ q/√n ~ n ~ √q 

as1 + s2 = b  mod q 



Hardness of the  

Compact Knapsack Problem 

hardness 

||(s1,s2)|| 

0 ~ q√n ~ q/√n ~ n ~ √q 

Reduction from  

worst-case  

ideal lattice problems  

as1 + s2 = b  mod q 

M '02, PR '08, LM '08 



Hardness of the  

Compact Knapsack Problem 

hardness 

||(s1,s2)|| 

0 ~ q√n ~ q/√n ~ n ~ √q 

Quantum reduction 

from worst-case  

ideal lattice problems  

Reduction from  

worst-case  

ideal lattice problems  

as1 + s2 = b  mod q 

M '02, PR '08, LM '08 SSTX '09, LPR '10 



Cryptographic Primitives 

hardness 

||(s1,s2)|| 

0 ~ q√n ~ q/√n ~ n ~ √q 

Quantum reduction 

from worst-case  

ideal lattice problems  

Reduction from  

worst-case  

ideal lattice problems  

M '02, PR '08, LM '08 SSTX '09, LPR '10 

One-way functions 

Collision resistant hash functions 

Identification schemes 

Digital signatures 

(minicrypt) 

Public-Key Encryption 

Identity-Based Encryption 

Homomorphic Encryption 

 … 

 (cryptomania) 



Practical Cryptographic Primitives? 

hardness 

||(s1,s2)|| 

0 ~ q√n ~ q/√n ~ n ~ √q 

Quantum reduction 

from worst-case  

ideal lattice problems  

Reduction from  

worst-case  

ideal lattice problems  

M '02, PR '08, LM '08 SSTX '09, LPR '10 

One-way functions 

Collision resistant hash functions 

Identification schemes 

Digital signatures 

(minicrypt) 

Public-Key Encryption  

Identity-Based Encryption 

Homomorphic Encryption 

 … 

 (cryptomania) 



Practical Cryptographic Primitives? 

hardness 

||(s1,s2)|| 

0 ~ q√n ~ q/√n ~ n ~ √q 

Quantum reduction 

from worst-case  

ideal lattice problems  

Reduction from  

worst-case  

ideal lattice problems  

M '02, PR '08, LM '08 SSTX '09, LPR '10 

One-way functions 

Collision resistant hash functions 

Identification schemes 

Digital signatures 

(minicrypt) 

Public-Key Encryption  

Identity-Based Encryption 

Homomorphic Encryption 

 … 

 (cryptomania) 



Digital Signatures 

                                                    

                 

                                              

                         

                  

                                                     

                             

                                                    

                                               

                                            



Digital Signatures 

 Arguably the most important application of public 

key cryptography 

                                              

                         

                  

                                                     

                             

                                                    

                                               

                                            



Digital Signatures 

 Arguably the most important application of public 

key cryptography 

 Signature lengths for ~ 80 bits of security  

 Lattices: ~ 60,000 bits 

 RSA: ~ 1000 bits 

                                                     

                             

                                                    

                                               

                                            



Digital Signatures 

 Arguably the most important application of public 

key cryptography 

 Signature lengths for ~ 80 bits of security  

 Lattices: ~ 60,000 bits 

 RSA: ~ 1000 bits 

 If we want lattices to be a viable alternative, we 

must make signatures smaller 

                                                    

                                               

                                            



Digital Signatures 

 Arguably the most important application of public 

key cryptography 

 Signature lengths for ~ 80 bits of security  

 Lattices: ~ 60,000 bits 

 RSA: ~ 1000 bits 

 If we want lattices to be a viable alternative, we 

must make signatures smaller 

 In my opinion, this, and constructing 'practical' 

fully-homomorphic encryption are the two most 

important problems in lattice-based crypto  
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In this Talk 

 A new way to construct lattice-based 

signature schemes 

 For ~ 80 bits of security: 

 public key ~ 12,000 bits 

 secret key ~ 1700 bits 

 signature size ~ 9000 bits 

 much faster than RSA/EC signatures 
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Two Properties 

Sign 
M Verify 

  S 

YES 

1. Correctness 

2. Security 

Unless M has been signed, cannot find an S such that   

Verify 
YES 

M 

S 

  sk pk 

pk 
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The Ring R 

 R = Zq[x]/(xn + 1)  

n is a power of 2 

q is a prime (q = 1 mod 2n) 

Elements in R are polynomials of degree < n 

Coefficients in the range [-(q-1)/2, (q-1)/2] 

 Rk = { polynomials in R with coefficients in   

   the range [-k,k] } 
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(The Search Version) 

SCK( k ): 

 pick random a in R 

 pick random s1, s2 in Rk 

 output (a, b=as1 + s2 ) 

Given (a,b), find s1,s2 in Rk such that as1+s2 = b 

(note: there could be more than one solution) 
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The Compact Knapsack Problem 
(The Decision Version) 

DCK( k ): 

 pick random a,u in R 

 pick random c in {0,1} 

 pick random s1, s2 in Rk  

 output (a, b=as1 + s2 + cu) 

Given (a,b), find c (be correct with probability > 1/2) 

 Note: if k is too big, the problem is vacuously 

hard 
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      - If b is random, then the coefficients of 

            u1b  are also random (thus probably `large') 
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Thank You! 

 


