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s is a random " small' vector in Zq'“
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Given (A,b), find small s' such that
As'=b mod g
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. Why Construct Crypto Primitives
Based on Knapsacks?
. Substantially different from number
theoretic constructions

. Seem to resist quantum attacks

- Possibly faster

| . Very interesting security guarantee

Can we have the same properties and practicality?
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Digital Signatures

Arguably the most important application of public
key cryptography

Signature lengths for ~ 80 bits of security

Lattices: ~ 60,000 bits
RSA: ~ 1000 bits

If we want lattices to be a viable alternative, we
must make signatures smaller

In my opinion, this, and constructing 'practical’
fully-homomorphic encryption are the two most
important problems in lattice-based crypto
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In this Talk

. A new way to construct lattice-based
signature schemes
. For ~ 80 bits of security:
~ public key ~ 12,000 bits
- secret key ~ 1700 bits
- signhature size ~ 9000 bits
- much faster than RSA/EC signatures
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Two Properties

1. Correctness

M. sign\ > — veriD -
sk : / pk__.

2. Security
Unless M has been signed, cannot find an S such that

M
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The Ring R

R = Zq[x]/(xn +1)
nis a power of 2
q is a prime (9 = 1 mod 2n)
Elements in R are polynomials of degree < n
Coefficients in the range [-(q-1)/2, (q-1)/2]

R, = { polynomials in R with coefficients in
the range [-k k] }
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The Compact Knapsack Problem

(The Search Version)

SCK( k):
- pickrandom a inR
- pick random s, s, in R,
- output (a, b=as, + s, )
Given (a,b), find s;,s, in R, such that as;+s, = b

(note: there could be more than one solution)
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The Compact Knapsack Problem

(The Decision Version)

DCK( k ):
- pick random a,u in R
- pick random c in {O,1}
- pick random s,, s, in R,
- output (a, b=as, + s, + cu)
Given (a,b), find c (be correct with probability > 1/2)

- Note: if kis too big, the problem is vacuously
hard
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2. ¢ = H(ay,*y, , m) Range of H: sparse polynomials in R,
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4. if z,,z, are not in R, 5, , go back to step 1

5. output (21, Z,, c) Happens with probability ~ (1-32/k)2"
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sk: s,,s,inR; pkiainR, b=as;+s,

sign(m)
I, pick randomy,y, inR, (k ~ n)
2. c¢=H(aysry, ,m)
3. ZiFCSp*Y1. Z,7CSpYY,
4. if z,,z, are not in R, 5, , go back to step 1
| 5. output (z,, z,, ¢)

: signature size ~ nlog(2k)+nlog(2k)+160
verify(z,,z,,c) 7 7 ?

check that z,,z, are in R, 5, and c=H(az, + z, - bc, m)
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sk: s,,s,inR; pkiainR, b=as;+s,

sign(m)
I, pick randomy,y, inR, (k ~ n)
2. ¢ =H(ay,+y, , m)
3. Z{TCSyHYq . Z,7CS,tY,
4. if z,,z, are not in R, 5, , go back to step 1

| 5. output (z,, z,, ¢)
verify(z,,z,,c)

check that z,,z, are in R, 5, and c=H(az, + z, - bc, m)
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1. pick random y,y, inR, (k ~ n) Pick random c in Range(H)

2. ¢ = H(ay,+y, , m) Pick random z,,z, inR, ;,

3. Zz,7CS+Y,, Z,=CS,*Y, Program H(az,+z, - bc, m) = ¢

4. if z,,z, are not inR, 5, , go back fo step1  output (z,, z,, ¢)
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check that z,,z, are in R, 5, and c=H(az, + z, - bc, m)
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ski s,,s,inR; pkiainR,b=as+s, ski s,,s,inR,. pkiainR, b=as+s,
sign(m) sign(m)

1. Pick random c in Range(H) 1. Pick random c in Range(H)

2. Pick random z,,z, inR, 5, 2. Pick random z,,z, inR, 5,

3. Program H(az;+z, - bc, m) = ¢ 3. Program H(az+z, - bc, m) = ¢

4. output (z,, z,, ¢) 4. output (z,, z,, ¢)

verify(z,,z,,c)
check that z,,z, are inR, 5, and c=H(az, + z, - bc, m)
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ski s,,s,inR, pk:ainR, bzas+s, We can ob.’rain from a forger
two signatures of m
sign(m) (z,,z,.c)and (z',,2',.c")
such that

1. Pick random c in Range(H) C .
az,+z,-bc=az ;+z', - bc
2. Pick random z,,z, inR, 5,
Plugging in b=as +s, ...
3. Program H(az;+z, - bc,m)=c¢

4. output (2, 2,, c) a(z,-cs;-z ;+¢'s;) + (z,-¢S,-2 ,+c's,) = 0
|\ Y J |\ v 7
Uy u,

verify(z,,z,,c)
check that z,,z, are inR, 5, and c=H(az, + z, - bc, m)

N e . S




Security Proof

ski s,,8,inR,. pkiainR, b=as+s,
sign(m)
1. Pick random c in Range(H)

2. Pick random z,,z, inR, 5,

3. Program H(az;+z, - bc,m)=c¢

4. output (z,, z,, ¢)

verify(z,,z,,c)

N ——— e .

We can obtain from a forger
two signatures of m
(z,,z,,c)and (z';,z',,c")

such that
az+z, - bc=az'+z', - bc’

Plugging in b=as +s, ...

a(z,-cs;-z' +¢'s)) + (z,-¢s,-z ,+¢'s,) = 0

(¢ J (& J
Y Y

Uy u,

(Because s, ,s, are not unique, u, and u, are not both 0)

check that z,,z, are inR, 5, and c=H(az, + z, - bc, m)
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Security Proof

Given " small’ u,, u, such that au;+u, = 0, one
can solve the DCK problem.

Given (a,b), compute u,b

- If b=;s1,.2 for "small’ s1s2, then
| 1b_ lasl, 1s2 . 2sl+uls2 isalso ~small
- If b is random, then the coefficients of

ulb are also random (thus probably " large")
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Open Problems

. More efficient signatures?
- Is the decision assumption necessary?

. Can we construct other efficient lattice-
based primitives using this idea?

Thank Youl




