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Motivation: key establishment problem

How do Alice and Bob securely establish a shared key?

In practice, they can use the Diffie–Hellman protocol.

But can we do any better? what about quantum adversaries?
Efficiency? Diversity?

Perhaps we can use matrix groups in some way...?
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Outline of talk

We will look at two schemes:

1 A symmetric key transport protocol by Baumslag, Camps, Fine,
Rosenberger and Xu (BCFRX, 2006).

2 A public key agreement protocol by Habeeb, Kahrobaei
and Shpilrain (HKS, 2010).

Both schemes suggest using matrix groups as a secure platform.

We provide a concrete description of each scheme, followed by a
cryptanalysis in the passive adversary model.
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Before we start: some terminology

We will consider 2-party key establishment protocols. Some flavours:

Key agreement protocol: key is a function of both parties.

Key transport protocol: key is a function of just one party.

public protocol: Alice and Bob do not share any secrets.

symmetric protocol: Alice and Bob apriori share a secret.
They wish to use it to establish a new session key.
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The BCFRX Scheme

This is a symmetric key transport protocol.

Various abstract platform groups proposed
(e.g. Aut(Fn), surface braid groups)

We consider their matrix group proposal: SL4(Z).

We describe (and cryptanalyse) the BCFRX protocol based on
SL4(Z).
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The BCFRX Scheme

Loosely speaking, inside the BCFRX scheme over SL4(Z) there are
two simpler schemes, Scheme A and Scheme B:

Scheme A ⊂ Scheme B ⊂ BCFRX Scheme.

We cryptanalyse Scheme A followed by Scheme B followed by
the BCFRX scheme.

Scheme A is a public version of BCFRX over SL4(p).

Scheme B is a symmetric version of BCFRX over SL4(p).

Let’s look at Scheme A..
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Scheme A description

The scheme requires two commuting subgroups of SL4(p).

Alice samples the subgroup
(

SL2(p) 0
0 I2

)
.

Bob samples the subgroup
(

I2 0
0 SL2(p)

)
.

These subgroups are known to an adversary.
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Scheme A description

Flow 1: Bob picks a key K ∈ SL4(p) and S22, S
′
22 ∈ SL2(p),

and sends to Alice

C =
(

I2 0
0 S22

)
K
(

I2 0
0 S ′22

)
.

Flow 2: Alice picks R11, R
′
11 ∈ SL2(p) and replies

D =
(

R11 0
0 I2

)
C
(

R′11 0
0 I2

)

=
(

R11 0
0 I2

)(
I2 0
0 S22

)
K
(

I2 0
0 S ′22

)(
R′11 0
0 I2

)
=
(

I2 0
0 S22

)(
R11 0
0 I2

)
K
(

R′11 0
0 I2

)(
I2 0
0 S ′22

)
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Scheme A description

Flow 3: Bob replies

E =
(

I2 0

0 S−1
22

)
D
(

I2 0

0 S ′−1
22

)

=
(

I2 0

0 S−1
22

)(
I2 0
0 S22

)(
R11 0
0 I2

)
K
(

R′11 0
0 I2

)(
I2 0
0 S ′22

)(
I2 0

0 S ′−1
22

)
=
(

R11 0
0 I2

)
K
(

R′11 0
0 I2

)
.

Alice computes(
R−1

11 0
0 I2

)
E
(

R′−1
11 0
0 I2

)

=
(

R−1
11 0
0 I2

)(
R11 0
0 I2

)
K
(

R′11 0
0 I2

)(
R′−1

11 0
0 I2

)
= K .
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Scheme A: a cryptanalysis

Goal of passive adversary: to compute K from the 3 transmitted
matrices C , D, E .

For a general 4× 4 matrix Z , write Z in block form as:

Z =
(

Z11 Z12
Z21 Z22

)
.
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Scheme A: a cryptanalysis

Flow 1: C =
(

I2 0
0 S22

)(
K11 K12
K21 K22

)(
I2 0
0 S ′22

)

=
(

K11 K12S ′22

S22K21 S22K22S ′22

)
.

Flow 2: D =
(

R11K11R′11 R11K12S ′22

S22K21R11 S22K ′22S
′
22

)
.

Flow 3: E =
(

R11K11R′11 R11K12

K21R11 K22

)
. So Eve knows K11, K22.

To find K12, we find X such that X (R11K12S
′
22) = K12S

′
22.

This implies X (R11K12) = K12. So Eve knows K12.

Exercise: compute K21.

So Eve can compute K and Scheme A is broken.
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So far so good..

Recall: Scheme A ⊂ Scheme B ⊂ BCFRX Scheme, where:

Scheme A is a public version of BCFRX over SL4(p).

Scheme B is a symmetric version of BCFRX over SL4(p).

Let’s look at Scheme B..
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Scheme B description

Alice and Bob share a secret matrix M ∈ SL4(p).

We still require commuting subgroups of SL4(p).

Now Alice samples the subgroup M−1
(

SL2(p) 0
0 I2

)
M.

And Bob samples the subgroup M−1
(

I2 0
0 SL2(p)

)
M.

An adversary does NOT know these subgroups.

The rest of the protocol is exactly the same..
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Scheme B description
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Scheme B description

Flow 3: Bob replies

E = M−1
(

I2 0

0 S−1
22

)
MDM−1

(
I2 0

0 S ′−1
22

)
M

= M−1
(

R11 0
0 I2

)
MKM−1

(
R′11 0
0 I2

)
M.

Since Alice knows R11, R
′
11 and M, she can compute K .
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Scheme B cryptanalysis

Alice samples the subgroup A = M−1
(

SL2(p) 0
0 I2

)
M.

Bob samples the subgroup B = M−1
(

I2 0
0 SL2(p)

)
M.

If Eve knows M we are in Scheme A.

So to break Scheme B it suffices to find M.
But it’s not necessary to find M!

We just need to find any invertible matrix N such that:

A = N−1
(

SL2(p) 0
0 I2

)
N, B = N−1

(
I2 0
0 SL2(p)

)
N.
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Scheme B cryptanalysis

Lemma

Eve can compute K if she knows a matrix N such that

A = N−1
(

SL2(p) 0
0 I2

)
N, B = N−1

(
I2 0
0 SL2(p)

)
N.

Proof

Suppose Eve knows N.

Given transmitted matrices C , D, E , conjugate by N:
NCN−1, NDN−1, NEN−1.

Use linear algebra to compute NKN−1 (as we did for Scheme A).

Compute K from NKN−1.
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Scheme B cryptanalysis

Let’s focus on Alice’s subgroup A = M−1
(

SL2(p) 0
0 I2

)
M.

Eve needs to find a matrix N such that A = N−1
(

SL2(p) 0
0 I2

)
N

For some U, V ∈ GL2(p), consider the matrix N =
(

U 0
0 V

)
M.

Then

N−1
(

SL2(p) 0
0 I2

)
N =

M−1
(

U−1 0
0 V−1

)(
SL2(p) 0

0 I2

) (
U 0
0 V

)
M

= M−1
(

U−1SL2(p)U 0

0 V−1V

)
M

= M−1
(

SL2(p) 0
0 I2

)
M

= A.

The same argument holds for B.
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Scheme B cryptanalysis

It suffices for Eve to find a matrix of the form N =
(

U 0
0 V

)
M,

for some U, V ∈ GL2(p).

Let M =
(

M11 M12
M21 M22

)
. Assume* M11 and M22 are invertible.

Set U = M−1
11 , V = M−1

22 .

So

N =

(
M−1

11 0

0 M−1
22

)(
M11 M12
M21 M22

)

=

(
I2 M−1

11 M12

M−1
22 M21 I2

)
=
(

I2 N12
N21 I2

)
.
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Scheme B cryptanalysis

So now Eve is looking for a matrix N =
(

I2 N12
N21 I2

)
.

Clearly Eve does not know N−1. So we have 8 unknowns for N and
16 unknowns for N−1: a total of 24 unknowns.

From the transmitted matrices C , D, E , one can find 8 quadratic
equations in the entries of N and N−1.

Furthermore, we require N to be invertible, so we have 16 quadratic
equations given by NN−1 = I4.

This gives us 24 quadratic equations in 24 unknowns.
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Scheme B cryptanalysis

We can solve this system of equations using Gröbner bases.

Experimentally, over 1000 trials, each Gröbner basis calculation
reveals a maximum of 6 possibilities for N (≈ 12 seconds for 300 bit
prime p on a standard PC in Magma).

Observing another run of the protocol gives us 8 new equations.
Adding these to the Gröbner basis calculation reveals a unique N.

Scheme B is broken.
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So far so good..

Recall: Scheme A ⊂ Scheme B ⊂ BCFRX Scheme, where:

Scheme A is a public version of BCFRX over SL4(p).

Scheme B is a symmetric version of BCFRX over SL4(p).

Let’s look at the BCFRX Scheme..
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BCFRX Scheme

This is Scheme B but working over SL4(Z) instead of SL4(p).
But SL4(Z) is infinite!

However we sample SL4(Z), in practice there is a bound Λ on all
matrices generated in the protocol. In particular K = K mod Λ.

When presented with matrices C , D, E from BCFRX Scheme,
pick primes pi such that

∏
pi > Λ.

Compute K mod pi as we did for Scheme B, followed by
K mod

∏
pi = K using Chinese Remainder Theorem.

BCFRX Scheme is broken over SL4(Z).
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HKS Scheme

This is a public key agreement protocol.

Quite abstact, involving semidirect products. But becomes
transparent using suggested platform group GLn(p).

We describe (and cryptanalyse) the HKS Scheme based on GLn(p)
(and in a little more generality.)
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HKS Scheme

We have public algorithms MA, MB such that on all inputs,
commuting matrices in GLn(p) are output:

A← MA, B ← MB , AB = BA.

Let b ∈ Fn
p be public.

Alice runs MA and sends Ab to Bob.

Bob runs MB and sends Bb to Alice.

Alice computes u = A(Bb). Bob computes v = B(Ab).

Since A and B commute, u = v is their shared key.
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A cryptanalysis

Goal of passive adversary: given b, u = Ab, v = Bb, compute k = ABb.
Here’s how:

Eve samples MA to obtain matrices A1, A2, . . .
These matrices are guaranteed to commute with B.

Find X such that:

XAi = AiX

Xb = v .

Note that a solution exists: X = B.
Note that X is extremely likely to commute with A.

Compute

Xu = XAb = AXb = Av = ABb = k .
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Summary

We’ve seen two insecure matrix-based key establishment protocols.

There are more! For example, Stickel’s scheme (2004),
Romanczuk–Ustimenko scheme (2010), Baba–Kotyad–Teja scheme
(eprints 2011).

Conclusion: take care with matrices.

-thanks for streaming!
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