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Motivation: key establishment problem

How do Alice and Bob securely establish a shared key?

In practice, they can use the Diffie—Hellman protocol.

@ But can we do any better? what about quantum adversaries?
Efficiency? Diversity?

@ Perhaps we can use matrix groups in some way...?



Outline of talk

We will look at two schemes:

@ A symmetric key transport protocol by Baumslag, Camps, Fine,
Rosenberger and Xu (BCFRX, 2006).

© A public key agreement protocol by Habeeb, Kahrobaei
and Shpilrain (HKS, 2010).

Both schemes suggest using matrix groups as a secure platform.

We provide a concrete description of each scheme, followed by a
cryptanalysis in the passive adversary model.



Before we start: some terminology

We will consider 2-party key establishment protocols. Some flavours:
o Key agreement protocol: key is a function of both parties.
o Key transport protocol: key is a function of just one party.
@ public protocol: Alice and Bob do not share any secrets.

@ symmetric protocol: Alice and Bob apriori share a secret.
They wish to use it to establish a new session key.



The BCFRX Scheme

@ This is a symmetric key transport protocol.

@ Various abstract platform groups proposed
(e.g. Aut(F,), surface braid groups)

e We consider their matrix group proposal: SL4(Z).

@ We describe (and cryptanalyse) the BCFRX protocol based on
SL4(Z).



The BCFRX Scheme

@ Loosely speaking, inside the BCFRX scheme over SL4(Z) there are
two simpler schemes, Scheme A and Scheme B:

Scheme A C Scheme B ¢ BCFRX Scheme.

@ We cryptanalyse Scheme A followed by Scheme B followed by
the BCFRX scheme.



The BCFRX Scheme

@ Loosely speaking, inside the BCFRX scheme over SL4(Z) there are
two simpler schemes, Scheme A and Scheme B:

Scheme A C Scheme B ¢ BCFRX Scheme.

@ We cryptanalyse Scheme A followed by Scheme B followed by
the BCFRX scheme.

@ Scheme A is a public version of BCFRX over SLa(p).
@ Scheme B is a symmetric version of BCFRX over SL4(p).

@ Let's look at Scheme A..



Scheme A description

The scheme requires two commuting subgroups of SLs(p).

Alice samples the subgroup (SLé(P) /2)

Bob samples the subgroup (’5 SLg(p)>.

These subgroups are known to an adversary.



Scheme A description

@ Flow 1: Bob picks a key K € SLa(p) and S22, S5, € SLa(p),

and sends to Alice
L 0 L 0
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Scheme A description

@ Flow 1: Bob picks a key K € SLa(p) and S22, S5, € SLa(p),
and sends to Alice
_ (ko )
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@ Flow 2: Alice picks Ri1, R{; € SLa(p) and replies
o= (32)<(51)
_ (R O R, 0
= (%5) (8) % (8) (F2)
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Scheme A description

@ Flow 3: Bob replies

(kO L 0

E=(ss2)0(0s%)

_ (kO L 0 Ri1 0 R, 0O L 0 L o
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=(a)e(%2):

@ Alice computes
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Scheme A description

@ Flow 3: Bob replies
0 L 0
E_(0522>D(05'2_21)
L 0 L 0 Ri1 0 R, O L 0 L 0
=(os) (85) (B2) x (%2) (6) (552)
Ri1 O R, O
= (B2 (%n):

@ Alice computes

0 2 0 2 2
K

b



Scheme A: a cryptanalysis

@ Goal of passive adversary: to compute K from the 3 transmitted
matrices C, D, E.

@ For a general 4 x 4 matrix Z, write Z in block form as:

_ ([ Zu Z12
Z - <221 Zzz)'
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Scheme A: a cryptanalysis
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Scheme A: a cryptanalysis
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o Flow2: D = (
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@ To find Kiaz, we find X such that X(R11K12552) = K125§2.
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Scheme A: a cryptanalysis

o Flow1: C=(§,) (127%) (851) = (snkn smiints,)-
o Flow2: D = ({1t el ).

o Flow 3: E = (Rﬁgﬁﬁil RI&ZH) . So Eve knows Ki1, Kas.

e To find Kiz, we find X such that X(R11K125),) = K125,.

@ This implies X(R11K12) = K12.
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o Flow1: C=(§,) (127%) (851) = (snkn smiints,)-
o Flow2: D = ((Giefls Sindt).

o Flow 3: E = (Rﬁgﬁﬁil RI&ZH) . So Eve knows Ki1, Kas.

@ To find Kiaz, we find X such that X(R11K12552) = K125§2.
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Scheme A: a cryptanalysis

. _ L 0 K11 Kio L 0 _ K11 K12S£2
o Flow 1: C - (0 522) (K21 K22> <0 Séz T\ S»Kx 522K225£2 )

Ri1K11R{; R11K12S)
Flow 2: D = il 22 ).
D o SnKo1Ri1 $2K3,55,

Ri1K11R!, R1K
Sl 3 15 = ( uKu Ry Ru 12). So Eve knows Ki1, Koo
—_ Ko1Ri1 Koo 11, 22

To find Kip, we find X such that X(R11K12552) = K125§2.
This implies X(R11K12) = Kia. So Eve knows Ki».

@ Exercise: compute Koj.

So Eve can compute K and Scheme A is broken.
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So far so good..

@ Recall: Scheme A C Scheme B C BCFRX Scheme, where:
@ Scheme A is a public version of BCFRX over SLa(p).
@ Scheme B is a symmetric version of BCFRX over SL4(p).

@ Let's look at Scheme B..
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Scheme B description

@ Alice and Bob share a secret matrix M € SLa(p).
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Scheme B description

@ Alice and Bob share a secret matrix M € SLa(p).

We still require commuting subgroups of SL4(p).
e Now Alice samples the subgroup M1 (SL%(") 2) M.
© And Bob samples the subgroup M~ (& g %) ) M.

@ An adversary does NOT know these subgroups.

@ The rest of the protocol is exactly the same..

13/27



Scheme B description

e Flow 1: Bob picks a key K € SLa(p) and Sy, S5, € SLa(p),
and sends to Alice

C=m(§ Q) MrM (&g ) M.
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Scheme B description

e Flow 1: Bob picks a key K € SL4(p) and S22, S5, € SLa(p),
and sends to Alice

C=m(§ Q) MrM (&g ) M.

e Flow 2: Alice picks Ri1, R{; € SLa(p) and replies

D=m7 (R 2y mem (R %) m
MM (& 2 ) MM (6 g ) mmt (R D) m

1))
L 0 —-1(hk O R/, 0
(6sn) MM (G,) (% h) M
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Scheme B description

o Flow 3: Bob replies

. _1(h O 1(hL O
E=M" (5 on ) MOM™ (G o2a) M
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Scheme B description

o Flow 3: Bob replies

_ -1 - 0
E=M" (5 on ) MOM™ (G o2a) M

=Mt (B 0) k(R0 ) m,
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Scheme B description

o Flow 3: Bob replies

E:M—1<’2 0 )MDM—1<’2 0 )M

0 S, 05
— ML (RO gyt (R 0
0 l2 0 Iz :

e Since Alice knows Ri1, R{; and M, she can compute K.
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Scheme B cryptanalysis

@ Alice samples the subgroup A = M~! (SLé(p) Z) M.

@ Bob samples the subgroup B = M1 (Ié SLS@) M.
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Scheme B cryptanalysis

@ Alice samples the subgroup A = M~! (SL%(p) Z) M.

@ Bob samples the subgroup B = M1 (Ié SLS@) M.

o If Eve knows M we are in Scheme A.

@ So to break Scheme B it suffices to find M.
But it's not necessary to find M!

@ We just need to find any invertible matrix N such that:

A= N (TP O N, B= N (B Y ) N

16 /27



Scheme B cryptanalysis

Eve can compute K if she knows a matrix N such that

A= N (5P 0N, B=NT(Eg Y, ) N
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Scheme B cryptanalysis

Eve can compute K if she knows a matrix N such that

A= N (5P 0N, B=NT(Eg Y, ) N

@ Suppose Eve knows M.
@ Given transmitted matrices C, D, E, conjugate by N:
NCN—Y NDN—Y NEN-1.
o Use linear algebra to compute NKN~! (as we did for Scheme A).

17 /27



Scheme B cryptanalysis

Eve can compute K if she knows a matrix N such that

A= N (5P 0N, B=NT(Eg Y, ) N

Proof
@ Suppose Eve knows M.

@ Given transmitted matrices C, D, E, conjugate by N:

NCN—Y NDN—Y NEN-1.
o Use linear algebra to compute NKN~! (as we did for Scheme A).
e Compute K from NKN™1.

17 /27



Scheme B cryptanalysis

o Let’s focus on Alice’s subgroup A = M1 (SL%(”) Z) M.
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Scheme B cryptanalysis

o Let’s focus on Alice’s subgroup A = M1 (SL%(”) Z) M.

@ Eve needs to find a matrix N such that A = N—1 <SL%(") g) N
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@ Then
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Scheme B cryptanalysis

o Let’s focus on Alice’s subgroup A = M1 (SL%(”) Z) M.

@ Eve needs to find a matrix N such that A = N—1 <SL%(") g) N

e For some U,V € GLy(p), consider the matrix N = (§ ) M.
@ Then

N-L (SLz(p) 12) N = ML (U,l 0 ) (SLz(p) o) (‘d \o/) M

0 0o v! 0 h
— M1 (U_ISLg(p)U 0 ) M
0 v-lv

— Mt (SL%(p) g) M

18/27



Scheme B cryptanalysis

o Let’s focus on Alice’s subgroup A = M1 (SL%(”) Z) M.
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@ Then
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Scheme B cryptanalysis

o Let’s focus on Alice’s subgroup A = M1 (SL%(”) Z) M.

@ Eve needs to find a matrix N such that A = N—1 <SL%(") g) N

For some U, V € GLy(p), consider the matrix N = (g 8) M.
@ Then

N-L (SLz(p) 12) N = ML (U,l 0 ) (SLz(p) o) (‘d \o/) M

0 0 v-1 0 I
_ a1 (U SLo(p)U  ©
=M ( 02 v—1v> )
-1 ( SL 0
- M ( %(P) /2> M
=A

The same argument holds for 5.
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Scheme B cryptanalysis

o It suffices for Eve to find a matrix of the form N = (¥ 9) M,
for some U, V € GLa(p).
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Scheme B cryptanalysis

o It suffices for Eve to find a matrix of the form N = (¥ 9) M,
for some U, V € GLa(p).

o Let M = <M“ Mu). Assume* M1 and Moy are invertible.

Mz M2

o Set U= M;' V=M

e So
N = Mgt 0 M1 Mro
0 My Ma1 M

_ b My Myo
My Mo b
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Scheme B cryptanalysis

@ So now Eve is looking for a matrix N = </\5§1 ’\22>
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Scheme B cryptanalysis

@ So now Eve is looking for a matrix N = <,\g1 ’\22>

o Clearly Eve does not know N~!. So we have 8 unknowns for N and
16 unknowns for N—1: a total of 24 unknowns.

@ From the transmitted matrices C, D, E, one can find 8 quadratic
equations in the entries of N and N~1.

@ Furthermore, we require N to be invertible, so we have 16 quadratic
equations given by NN~1 = /.

@ This gives us 24 quadratic equations in 24 unknowns.
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Scheme B cryptanalysis

@ We can solve this system of equations using Grobner bases.

@ Experimentally, over 1000 trials, each Grobner basis calculation
reveals a maximum of 6 possibilities for N (a~ 12 seconds for 300 bit
prime p on a standard PC in Magma).
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Scheme B cryptanalysis

@ We can solve this system of equations using Grobner bases.

@ Experimentally, over 1000 trials, each Grobner basis calculation
reveals a maximum of 6 possibilities for N (a~ 12 seconds for 300 bit
prime p on a standard PC in Magma).

@ Observing another run of the protocol gives us 8 new equations.
Adding these to the Grobner basis calculation reveals a unique N.

@ Scheme B is broken.
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So far so good..

@ Recall: Scheme A C Scheme B C BCFRX Scheme, where:
@ Scheme A is a public version of BCFRX over SLa(p).
@ Scheme B is a symmetric version of BCFRX over SL4(p).

@ Let’s look at the BCFRX Scheme..
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BCFRX Scheme

@ This is Scheme B but working over SL4(Z) instead of SL4(p).
But SL4(Z) is infinite!
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BCFRX Scheme

@ This is Scheme B but working over SL4(Z) instead of SL4(p).
But SL4(Z) is infinite!

@ However we sample SL4(Z), in practice there is a bound A on all
matrices generated in the protocol. In particular K = K mod A.

@ When presented with matrices C, D, E from BCFRX Scheme,
pick primes p; such that [[ pi > A.

@ Compute K mod p; as we did for Scheme B, followed by
K mod [[ pi = K using Chinese Remainder Theorem.

@ BCFRX Scheme is broken over SL4(Z).
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HKS Scheme

@ This is a public key agreement protocol.

@ Quite abstact, involving semidirect products. But becomes
transparent using suggested platform group GL,(p).

@ We describe (and cryptanalyse) the HKS Scheme based on GL,(p)
(and in a little more generality.)
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HKS Scheme

@ We have public algorithms My, Mg such that on all inputs,
commuting matrices in GL,(p) are output:

A< My, B+ Mg, AB= BA.
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o Let b € Fy be public.
@ Alice runs M4 and sends Ab to Bob.
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HKS Scheme

@ We have public algorithms My, Mg such that on all inputs,
commuting matrices in GL,(p) are output:

A< My, B+ Mg, AB= BA.

Let b € Fj be public.

Alice runs M4 and sends Ab to Bob.

@ Bob runs Mg and sends Bb to Alice.

Alice computes u = A(Bb). Bob computes v = B(Ab).

Since A and B commute, u = v is their shared key.
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A cryptanalysis

Goal of passive adversary: given b, u= Ab, v = Bb, compute k = ABb.
Here's how:
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A cryptanalysis

Goal of passive adversary: given b, u= Ab, v = Bb, compute k = ABb.
Here's how:

@ Eve samples My, to obtain matrices Aj, Ao, ...
These matrices are guaranteed to commute with B.

@ Find X such that:
XA; = A X
Xb = v.

o Note that a solution exists: X = B.
Note that X is extremely likely to commute with A.
o Compute

Xu= XAb= AXb = Av = ABb = k.
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@ We've seen two insecure matrix-based key establishment protocols.

@ There are more! For example, Stickel's scheme (2004),
Romanczuk—Ustimenko scheme (2010), Baba—Kotyad—Teja scheme
(eprints 2011).
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@ There are more! For example, Stickel's scheme (2004),
Romanczuk—Ustimenko scheme (2010), Baba—Kotyad—Teja scheme
(eprints 2011).

@ Conclusion: take care with matrices.

-thanks for streaming!
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