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Free groups

Let X be a set and X±1 = X ∪ X−1.

A word w in X±1 is reduced if it does not contain subwords
xx−1, x−1x where x ∈ X .

F (X ) = the set of all reduced words in X±1.

Reduction process: w → red(w) by subsequent deletions of
xx−1, x−1x .

A free group F (X ) with basis X is the set F (X ) with
multiplication of u, v ∈ F (X ) defined as reduction of the
concatenation of u and v .
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Generators and relators

Let R ⊆ F (X ). Then

ncl(R) = {
n∏

i=1

s−1i ri si | ri ∈ R±1, si ∈ F (X ), n ∈ N}

is the smallest normal subgroup of F (X ) containing R.

We say that a set of generators X and a set of relators R define
the factor group G = F (X )/ncl(R) and write G = 〈X | R〉.

Notice, if u, v ∈ F (X ) then u = v in G if v can be obtained from
u by a sequence of insertions and deletions of xx−1, x−1x , r ∈ R±1.
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Area and Dehn functions in G = F (X )/ncl(R)

A word w ∈ F (X ) is equal to 1 in G if and only if

w =
n∏

i=1

s−1i r±1i si

for some product from ncl(R).

The area Area(w) of w is the minimal such n.

The Dehn function of G is defined by

fG (n) = max{Area(w) | w ∈ F (X ), |w | = n}.
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The Word Problem

Fix a group G = 〈X | R〉.

The Word Problem in G : for a given w ∈ (X ∪ X−1)∗ verify if
w = 1 in G or not.

In crypto: encode a bit string b = b1b2 . . . bk by a word

$w1$w2$ . . . $wk

where wi = 1 in G if bi = 1 and wi 6= 1 in G if bi = 0.

To break: solve the word problem for wi in G .

[ Magyarik and Wagner, Shpirain-Zapata, etc]
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Word Problem in random groups

Theorem [Gromov]

A random finitely presented group is hyperbolic.

A group is hyperbolic if it has a linear Dehn function, i.e., the area
Area(w) of every word w = 1 in G is bounded by a fixed linear
function on the length of w .

The word problem is linear time in hyperbolic groups.

So random choice of a group is not going to work. One needs to
choose groups carefully.
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Groups with undecidable WP

In 1947 Markov and Post constructed independently first finitely
presented semigroups with undecidable EP.

In 1955 Novikov, and soon after W.W. Boone, constructed
independently finitely presented groups with undecidable EP.
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More examples of undecidable WP

Now there are much shorter examples of semigroups with
undecidable word problem constructed by G. S. Tseitin, D. Scott,
Matiyasevich, Makanin.

Other examples of groups with undecidable Word Problem are due
to J. L. Britton, V.V. Borisov, and D.J. Collins.

An excellent exposition of the results in this area with complete
and improved proofs is given in the survey by S.I. Adian and V.G.
Durnev.
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Groups with undecidable WP

All the classical examples of groups with undecidable WP are
based on the same idea:

given a Turing machine M one constructs a group G (M) such that
the WP in G simulates the Halting Problem of M.
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Groups with undecidable WP

The Halting Problem for M

For a given initial configuration C of the tape decide whether or
not M halts when started on C .

Turing: The Halting Problem for a universal Turing machine is
undecidable.

Simulation: For a given configuration C one effectively constructs
a word wC in the generators of G (T ) such that M halts on C if
and only if wC = 1 in G .

Hence, if the Halting Problem for M is undecidable then the WP
in G (M) is undecidable.
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Classical examples

Theorem [M., Ushakov, Won]

WP is PTime decidable on a generic set of inputs in all classical
examples of groups (semigroups) with undecidable WP.

We need something else.
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Generic complexity

WP is generically decidable in a group G with a finite generating
set X if there is a correct partial algorithm A that solves the Word
Problem in G on most words from F (X ).

That is, the halting set of A is generic with respect to the
stratification of F (X ) given by the standard length function | · | on
F (X ).
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Generic sets

Recall, that T ⊆ F (X ) is generic in F (X ) if

ρn(T ) =
|T ∩ Sn|
|Sn|

→ 1 for n→∞,

where Sn = {w ∈ F (X ) | |w | = n}.

Furthermore, T is exponentially generic if ρn(T ) converges to 1
exponentially fast.
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Groups with hard WP

Question

What are groups G = 〈X | R〉 with really hard WP?

Known:

There are groups G (M) with undecidable word problem.

For a universal Turing machine M the WP in G (M) is as hard
as possible: WP(G) is an m-complete c.e. set.

However, in all classical examples of groups G (M) the WP is
linear time decidable on some generic sets of inputs.
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Groups with hard WP

Question: Are there finitely (or recursively) presented groups with
WP hard on most inputs?

Theorem [Hamkins and Myasnikov]

The halting problem for Turing machines is easy (linear time) on
most inputs.
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Generic Complexity of the Word Problem

Theorem [Grigorchuk, Kesten]

Let G = 〈X | R〉 be an infinite group. Then

The set of nontrivial elements in G is generic.

If G is non-amenable then the set of nontrivial elements in G
is exponentially generic.
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Generic Complexity of the Word Problem

Theorem [Miasnikov, Ushakov]

Let G = 〈X | R〉 be a group a group given by a reduced
symmetrized presentation. Then a random word w such that
w = 1 is ”hyperbolic”, i.e., Area(w) is bounded by a fixed linear
function.

Theorem [Miasnikov, Ushakov]

Let G = 〈X | R〉 be a group given by a reduced symmetrized
presentation. Then the Search Word Problem in G is in PTime on
random inputs w (with w = 1 in G ).

A presentation 〈X | R〉 is reduced if the generators x ∈ X are
non-trivial, and relations r ∈ R do not contain proper trivial
subwords.

So random choice of wi = 1 is not going to work.
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Amplification of hardness

I will discuss three types of amplification:

Amplification by cloning.

Amplification via immune sets.

Amplification by compression.
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Amplification in semigroups

Let
S = 〈a1, . . . , an|r1 = s1, . . . , rk = sk〉 = 〈A | R〉

For a letter x 6∈ A put

Sx = 〈A, x |R, x = xa1, . . . , x = xan, x = xx〉.

Theorem [Myasnikov, Rybalov]

If the word problem in S is undecidable then the word problem in
Sx is super-undecidable (undecidable on every generic subset of
inputs).
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An easy reduction

Let Ax = A ∪ {x}.

Lemma

For any u, v ∈ A∗ and u′, v ′ ∈ A∗x the following holds:

uxu′ = vxv ′ in S⇔ u = v in Sx .

The Word Problem in Sx is Linear Time reducible to the Word
Problem in S.

So what are we gaining here? A lot of hard inputs!
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The essence of amplification

The essence of amplification: cloning

The clone of (u, v) ∈ A∗ × A∗ is

C (u, v) = {(uxp, vxq) | p, q ∈ A∗x}.

Lemma

For every (u, v) ∈ A∗ × A∗ the clone C (u, v) is computably
enumerable and non-negligible.

Non-negligible here: the size of a pair (p, q) ∈ A∗x × A∗x is equal to
|p|+ |q|.

The probability to hit a pair from C (u, v) (u, v are fixed) of a
given length n is

1

|Ax ||u|+|v |+2
+ o(n)
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The essence of amplification

The main idea: For a partial algorithm M for WP in Sx design a
new algorithm Mx for WP in S:

for (u, v) ∈ A∗ × A∗ start enumerating the clone

C (u, v) = {(u1, v1), (u2, v2), . . .}

and apply M to each instance (ui , vi ).
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Tseitin Example

Example

In 1956 Tseitin constructed a semigroup T presented by 5
generators and 7 relations with unsolvable word problem:

T = 〈a, b, c , d , e | ca, ad = da, bc = cb, bd = db,

ce = eca, de = edb, cca = ccae〉.

In this case the super-undecidable semigroup Tx has 6 generators
and 13 relators whose total length is equal to 49.
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Amplification in groups

Theorem (Gilman, Myasnikov, Osin)

Let G be a finitely presented amenable group with an unsolvable
word problem. The word problem for G is not solvable on any
exponentially generic set of inputs.

Finitely presented amenable groups with an unsolvable word
problems exist [Kharlampovich].
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Algorithmically finite groups

A finitely generated group G is algorithmically finite if there is no
any algorithmic way to produce an infinite set of pairwise distinct
elements of G .

More precisely, let G be be a group generated by a finite set X and
η : F (X )→ G the canonical projection.

Definition

A group G is algorithmically finite if for every infinite computably
enumerable subset W ⊆ F (X ) there exist at least two distinct
words u, v ∈W such that η(u) = η(v).
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Algorithmically finite groups

Independence of generators

If a finitely generated group G is algorithmically finite with respect
to some finite generating set X then it is algorithmically finite with
respect to any finite generating set of G .

Hence, algorithmic finiteness is a property of a group, not a
presentation.

Clearly every finite group is algorithmically finite.
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Dehn Monsters

Theorem [Myasnikov, Osin]

There exists a recursively presented infinite algorithmically finite
group.

We will see later that WP in algorithmically finite groups is
decidable only on negligible sets of inputs (sets of measure zero).

Motivated by this observation, we call recursively presented infinite
algorithmically finite groups Dehn monsters.
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Dehn Monsters

The proof of this result is based on new ideas and does not
interpret any machines.

Instead, it uses Golod-Shafarevich presentations as a tool to
control consequences of relations and simple and immune sets
from computability theory.

These groups are not finitely presented.
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What is decidable in a Dehn monster?

Theorem

Let G = 〈X | R〉 be a Dehn monster. Then:

Every computably enumerable subset W ⊆ F (X ) with
decidable WP in G is negligible, i.e.,

lim
n→∞

ρn(W ) = 0.

If G is non-amenable, then W is exponentially negligible, i.e.,
there exists t > 1 such that

ρn(W ) = O(t−n).

Here, as before, ρn(W ) = |W∩Sn|
|Sn| .
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Golod-Shafarevich and algorithmically finite groups

Theorem [Myasnikov, Osin]

For every Golod-Shafarevich group 〈X | S〉 there exists a simple set
of relations R ⊆ F (X ) such that the quotient 〈X | S ∪ R〉 is again
Golod-Shafarevich algorithmically finite group.

Corollary

There exists a recursively presented non-amenable algorithmically
finite group (Dehn Monsters).
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Compression and amplification

Idea: compress inputs to force the algorithm to work with short
images of very long inputs, so the time allocated for computation
is much smaller.

Compression in crypto:

Compress your keys

Public manipulation with images should be efficient

Legitimate decoding should be efficient
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Compression of integers

In Peano arithmetic, as well as in ZFC axiomatic of set theory,
natural numbers are presented in the unary form.

n = 11 . . . 1 (here 1 occurs n times), so the length of the
representation is n.

Binary representation gives an exponential compression:
n = b1b2 . . . bk , where bi ∈ {0, 1} and k ∼ log2n.
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Prime factorization in unary

Prime factorization is in PTime if the numbers are given in the
unary notation.

Perhaps, Prime Factorization is not a number theory problem!

Alexei Miasnikov (Stevens Institute) Compression and Complexity



Plandowski Compression

Compress words by straight line programs.

This method resembles Lempel-Ziv compression.

A straight line program P:

X9 = X8X7 babbababbabbababbababbabbababbabba = w(P)
X8 = X7X6 babbababbabbababbabab
X7 = X6X5 babbababbabba
X6 = X5X4 babbabab
X5 = X4X3 babba
X4 = X3X2 bab
X3 = X2X1 ba
X2 = b
X1 = a

P computes a single word, w(P).

The size of P is the number of lines of code.

an = w(P ′) for some P ′ of size O(log n).
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Computations

It is convenient to operate on compressed words without
decompressing them.

The following operations are feasible for compressed words.

1 Compute the length of w(P)

2 Find the i th letter of w(P)

3 Compressed string matching: Given P1 and P2, find the first
occurrence and the number of occurrences of w(P1) in w(P2).
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Applications to group theory

The word problem for Aut(Fn) can be solved in polynomial time.
(Schleimer, 2007).

Let φ = φ1φ2 . . . φk ∈ Aut(G ) be a product of elementary
automorphisms.

Then the image φ(w) on a word w can be exponentially long
relative to the length of w

But it can be presented by a straight program of size |w |.
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Inverting automorphisms

Fix a group G = 〈X | R〉.

Inverting automorphisms: Given an automorphism φ ∈ Aut(G ) by
its images on the generators wi = φ(xi ), xi ∈ X find the inverse
automorphism φ−1 (its images on the generators).

In free groups: Nielsen, Whitehead,

It is known to be in PTime in free groups.
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Inverting automorphisms in crypto

In crypto:

Let E be a finite generating set of Aut(G ). For every
automorphism from E its inverse is known.

choose a sequence φ1, φ2, . . . , φk of φi ∈ E .

compose them into φ = φ1φ2 . . . φk ∈ Aut(G ). Notice, that
φ−1 = φ−1k . . . φ−11 is easy to find (knowing φ1, φ2, . . . , φk).

encode w by φ(w).

Decode w by applying φ−1 to φ(w).

[Moh, Romankov, . . . ]
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Inverting compressed automorphisms

As above, let E be a finite set of generators of Aut(F ) where F is
a free group with basis X .

Let φ = φ1φ2 . . . φk , where φ ∈ E .

If φ is given by the compressed images on the generators from X ,
then complexity of the inverting of φ is unknown (conjectured to
be exponential).
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Compressing tuples of elements

Non-deterministic straight line programs (NSLP) allow several
productions of the type Xi → XjXk with the same left-hand part.

Her we view the straight line programs as a set of productions (not
as circuits).

The size |P| of P is the number of productions in P.

Let P be a NSLP. Every derivation in P yields a word in the
alphabet of terminals A.

By Eval(P) we denote the set of all words in A∗ produced by P.

Alexei Miasnikov (Stevens Institute) Compression and Complexity



Compressing tuples of elements

Lemma

Let U = (P1, . . . ,Pn) be a tuple of deterministic SLP,
Eval(Pi ) = ui . Then there exists a NSLP PU such that

Eval(PU) = {uε1
1 uε2

2 . . . uεn
n | εi ∈ {0, 1}}.

Moreover, |PU | = |P1|+ . . .+ |Pn|+ 2n.
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Compressed triviality problem

Let G be a group generated by a finite set A.

Compressed triviality problem in G : given a NSLP P over A
determine if Eval(P) contains a word that defines the identity in G .

Theorem

Let G = 〈A〉 be a group with an element of infinite order. Then
the classical Subset Sum Problem is polynomial time reducible to
the Compressed Triviality Problem in G .
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Reduction in free products

Let G = 〈A〉 and H = 〈B〉 be groups.

Then elements in the free product G ∗ H can be presented in the
form

w = u1v1u2v2 . . . ukvk

where ui ∈ A∗, vi ∈ B∗, i = 1, . . . , k.

The word is reduced if all ui , vj are non-trivial in the corresponding
factors.
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Reduction in free products

Let P and Q are NSLP such that Eval(P) = (u1, . . . , uk) and
Eval(Q) = (v1, . . . , vm).

(P,Q) represents the word u1v1 . . . ukvmvk+1 . . . vm if k ≤ m; or
the word u1v1 . . . ukvmuk+1 . . . um, otherwise.

We denote this word by w(P,Q).
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Complexity of the reduction problem

Compressed Reducibility Problem in G ∗ H: given two NSLP P,Q
over the alphabets A,B verify if the word w(P,Q) is reduced or
not.

Theorem

If GandH have elements of infinite order then the Compressed
Reducibility Problem is NP-hard.
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Compressed MP in free groups

Compressed MP: given a subgroup H by its compressed generators
in a free group F and a compressed word w determine if w ∈ H or
not.

Complexity of the Compressed MP in F is not known, it seems
very hard.

If so, The Length Based Attack is not efficient.

Alexei Miasnikov (Stevens Institute) Compression and Complexity



Super compression in integers

One can represent integers by algebraic circuits with operations
+,−, x · 2y .

Such circuits represent numbers in finite towers of exponents.

Theorem [Myasnikov, Ushakov]

For each n there is a unique circuit Pn computing n;

This Pn can be found quickly.

One can do manipulations over circuits in PTime
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