
Asymptotic algebra and modern cryptanalysis

Alexei Myasnikov

McGill University (Montreal)

Algebraic Cryptography Center (Stevens Inst.)

1

In this series of three lectures I am going to discuss two recent

developments in modern cryptanalysis: generic complexity and

asymptotic dominance.

The first one concerns with behavior of algorithms on most typ-

ical or ”generic” inputs, while the second one deals with the

asymptotically most dominant properties of algebraic objects.

The goal is three-fold:

to develop a framework (standards?) for rigorous cryptanalysis

of algebraic cryptosystems;

to study new interesting pure algebraic problems coming out of

modern cryptography;

to study generic complexity.

Plan

Lecture 1. Generic complexity and cryptanalysis

Lecture 2. Generic complexity of the classical algorithmic

problems in groups

Lecture 3. Asymptotic dominance and cryptanalysis

Generic complexity and cryptanalysis

Plan

1. Schemes of public key exchange

2. Generic complexity

3. Generic vs standard complexity measures

4. Black Holes

1. Schemes of public key exchange

• Quest for new cryptosystems

• Group based cryptosystems

• Security assumptions

Public key exchange: general description

Alice and Bob want to exchange messages publicly (via the in-

ternet) to get a private (secret) shared key:

Alice chooses a secret key a, encodes it into a∗ and sends a∗
publicly to Bob.

Bob chooses a secret key b, encodes it into b∗ and sends b∗
publicly to Alice.

Alice and Bob compute (separately) a shared private key p.

Remark: the functions of encoding and computing the shared

key are public.

Diffie-Hellman Key Exchange

Public: a prime number p and a number q.

Alice: chooses a private number (key) a ∈ N encodes and sends:

a∗ = qa(mod p)

Bob: chooses a private number (key) b ∈ N encodes and sends:

b∗ = qb(mod p)

Shared secrete key:

(b∗)a = (qb)a = qba = (qa)b = (a∗)b = qab(mod p)

Why Practical?

”Easy” to compute a∗ = qa(mod p).

Why secure?

Hard to solve equations of the type

qx = a∗(mod p),

i.e., the discrete logarithm function

x = logqa
∗

is ”hard” to compute in Zp.

RSA public key exchange:

RSA = Rivest-Shamir-Adleman (1978)

Public: n, e

Encoding: m → m∗ = me(mod n)

Security: hard to solve equations of the type

xe = m∗(mod n)

i.e., the discrete root function

x = (m∗)1/e(mod n)

is hard to compute.

Usually,

n = pq

where p, q are primes.

If p, q are known then computing

x = (m∗)1/e(mod pq)

is much easier.

The discrete root function is easy modulo the

Factorization Problem: decompose n into a product of primes.

Quest for new cryptosystems

Recent concerns with RSA:

Encoding is not fast enough - secret keys are too long;

Security of RSA is not known

Factorization Problem looks weaker than before:

primality test is in polynomial time;

fast quantum algorithms for the Factorization Problem;

if RSA is broken tomorrow what will we do?

Group based cryptosystems

To be concrete I will discuss one particular non-commutative

cryptosystem (based on groups), though the methods apply to

the general case.

Base of the cryptosystem:

A finitely generated group G = 〈X〉

Hiding Machine: a given algorithm to compute ”normal forms”

of elements of G (viewed as words in generators X ∪X−1)

w ∈ (X ∪X−1)∗ → w̄ ∈ (X ∪X−1)∗

Group-based Diffie-Hellman (Ko-Lee, 2000)

Public: A group G, a fixed element q ∈ G,

and two finitely generated subgroups A, B ⊂ G with [A, B] = 1.

Alice takes (secret) a ∈ A, encodes a → qa = a∗, and makes a∗
public.

Bob takes (secret) b ∈ B, encodes b → qb = b∗, and makes b∗
public.

Common (private) key:

(b∗)a = (qb)a = qba = qab = (qa)b = (a∗)b

Anshel-Anshel-Goldfeld (1999)

New idea (does not exist in commutative case).

Public: Group G with two finitely generated subgroups

A = 〈a1, . . . , am〉, B = 〈b1, . . . , bn〉

Alice: takes a (secret) element a ∈ A as a word a = u(a1, . . . , am)

in the generators of A, computes the conjugates

ba
1, . . . , ba

n

encodes them (by the normal forms), and sends publicly.

Bob: takes a (secret) element b ∈ B as a word b = v(b1, . . . , bn)
in the generators of B, computes the conjugates

ab
1, . . . , ab

m,

encodes them (by normal forms), and sends publicly:

To decode:

Alice computes ab = u(ab
1, . . . , ab

m)

Bob computes ba = v(ba
1, . . . , ba

n)

Shared secret key:

[a,b] = a−1(b−1ab) = a−1ab

[a,b] = (a−1b−1a)b = (ba)−1b

Requirements on the Hiding Machine

The set of normal forms in G has to satisfy the following condi-

tions:

• computing w → w̄ is ”easy”.

• ”hard” to recover w from w̄.

Security of AAG scheme

The Conjugacy Problem (CP) in G is ”hard” ...

More precisely, the Search Conjugacy Problem (SCP), i.e.,
the problem of finding a solution of a conjugacy equation wx =
w∗, is ”hard” in G.

Notice, (SCP) may be much harder then (CP)!

Even more precisely, the Search Multiple Conjugacy Problem

(SMCP)

wx
1 = w∗1, . . . , wx

k = w∗k

is ”hard”

Security of AAG scheme

Even more precisely:

The Search Multiple Conjugacy Problem

wx = w∗

with constraints x ∈ A has to be ”hard” in G.

Homework: check that solution of the SMCP with constrains

breaks the system.

”Hardness” of algorithmic problems

Ideally for cryptography - hard to break for each key:

”hard” = ”hard on all inputs”

Impossible! One can always store some answers in the memory.

Still good:

”hard” = ”hard on most inputs”

Outcome of this discussion

Cryptography quest: find a generically hard problem.

One needs Generic Complexity of algorithmic problems.

Generic complexity = complexity on most inputs.

Generic sets

Let S be a set with a fixed measure µ.

A subset Q ⊂ S is generic if µ(Q) = 1,

Q is negligible if µ(Q) = 0.

Note: The choice of µ is very important, it should be natural in

the context of the problem (no cheating, no funny measures).

Often S occurs via some generating procedure G (random key

generator), in this case µ is the resulting distribution on S.

Generic complexity of algorithms

Let P be an algorithmic problem with the set of input S.

A partial algorithm A (with inputs from S) generically solves

the problem P if the halting set SA (where A halts) is generic in

S and A solves P on SA.

A time function f(n) is a generic upper bound for A if there

exists a generic set Q ⊂ SA such that for each w ∈ Q

TA(w) ≤ f(|w|)
where |w| is the size of w, and TA(w) - the number of steps

required for A to stop on w.

Asymptotic density

A stratification of S is a representation

S =
∞⋃

i=0

Si

of S as union of an increasing chain of subsets of S.

The limit (if it exists)

ρ(Q) = lim
i→∞

µ(Q ∩ Si)

µ(Si)

is called the asymptotic density of a subset Q of S (with respect

to the chain {Si} and the measure µ).

Q is generic (with respect to {Si} and µ) if ρ(Q) = 1.

Asymptotic density and size of inputs

Usually stratifications

S =
∞⋃

i=0

Si

correspond to a fixed size function size : S → R on S, so

Si = {w ∈ S | size(w) ≤ i}
In this case

µ(Q ∩ Si)

µ(Si)

is the probability of an element of size i from S to be in Q.

Size functions

Again, the size functions on S have to be natural in the context

of the problem in hand.

In general size of an input w ∈ S is the time required for the

generating procedure G.

Example: Whitehead problem in free groups.

Various types of generic sets

Generic sets may have different ”sizes”: some are bigger then the

others. Classification of generic sets by size is given in ”Multi-

plicative measures on groups” (Borovik, Myasnikov, Remeslen-

nikov).

Here I mention only one, very crude distinction:

recall, that Q ⊆ S is generic if

µ(Q ∩ Si)

µ(Si)
→ 1

Now, Q is strongly generic if

µ(Q ∩ Si)

µ(Si)
→ 1

exponentially fast when i →∞.

Example:

subgroups of infinite index are generic in a free group F ;

normal subgroups with non-amenable factor-groups are strongly

generic.

Wild generic sets

Theorem [Myasnikov, Ushakov] Let F be a non-abelian free

group. Then there is a subset S ⊂ F and an automorphism

α ∈ Aut(F) such that S is generic and Sα is negligible.

Hence, genericity of a set S ⊂ F may depend on the choice of

the basis in F .

Generic vs standard complexity measures

Generic complexity was introduced by Kapovich, Myasnikov, Schupp,

and Shpilrain in two papers were we studied generic and average

complexities of the classical algorithmic problems in groups.

I will mention some of these and other results in due course.

Robert Gilman in his talk later today will discuss generic com-

plexity of several classical problems from complexity theory.

Alexander Rybalov will discuss some new results on generic com-

plexity of the Halting Problem for Turing machines in his talk

tomorrow.

NP-complete problems

Karp, Cook

P = polynomial time

”Polynomial time = tractable”

NP = polynomial time by non-deterministic Turing machine.

Many real problems are in NP.

NP-complete problems = the hardest in NP

3-SAT, TSP, Hamilton cycle,...

Common belief: NP-complete problems are hard!

Generic vs NP-complete

Claim: Typical NP-complete problems are generically easy!

3-SAT, Hamilton cycle problem, ... - much more details in
Gilman’s talk.

Reason: Classical time complexity is complexity on the worst
inputs, which are typically very very sparse.

Classical example: the Dantzig’s Simplex Algorithm for linear
programming is of exponential time (worst case) but nevertheless
it is used hundreds of times daily and in practice almost always
works quickly.

NP-completeness is not a proper measure for crypto secu-
rity

Average case complexity

Let µ be a measure on the set of inputs S of the algorithm A.

Expected running time of the algorithm A on the set S:∫

S
TA(w)µ(w)

Levin (1986), Gurevich (1987)

Average P and NP.

Average case NP-complete problems.

Common belief: Average case NP-complete problems are
very hard!

Average Case vs Worst Case:

Gurevich - Shelah (1987):

To find a Hamilton cycle (a closed path that contains every

vertex exactly once) in a finite graph is linear time on average.

Some NP-complete problems are linear on average!

Generic vs Average:

Average Case: the algorithm solves the problem on all inputs

Generic Case: the algorithm solves the problem only on a

generic subset

There are exponential on average problems with linear generic

case complexity.

Theorem [Gurevich-Shelah, Hamkins-Myasnikov] There are

NP-complete on average problems with polynomial generic

case complexity.

