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Non-commutative cryptography

1. Adopting “commutative problems” (most notably, the discrete
logarithm problem) in non-commutative situation. Example:
Ko-Lee et. al. (CRYPTO 2000) use the conjugacy search
problem: recover an x ∈ G from given g ∈ G and
h = gx = x−1gx.

2. Using problems specific to non-commutative (semi)groups.
Example: Anshel-Anshel-Goldfeld (Math. Res. Lett., 1999).
Here the common secret key is of the form xyx−1y−1 = [x, y].

3. Using non-recursive decision problems, thus making
cryptographic products secure against computationally
unbounded adversary. (New mentality is required !)
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Advantages of a non-commutative platform

1. Larger arsenal of (allegedly) computationally hard problems.

2. Introducing non-recursive decision problems to cryptography.

3. Larger key space, at a low cost.

4. Efficient multiplication (in some groups).
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Weaknesses of a non-commutative platform

1. Factors are not “naturally” hidden in a product. Compare:
3 · 7 = 21, whereas x · y = xy. Therefore, a “normal form” is
required for hiding information.

2. “Marketing” disadvantage: security models are not well
established, especially if the platform (semi)group is infinite.
(New security model, based on the generic case complexity, is
emerging.)

3. Insufficient accumulation of information on generic properties
of elements, subgroups, etc.
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What to do?

1. Combine commutative and non-commutative platforms to get
“the best of both worlds”, e. g. use matrices over something
commutative. Example: Tillich-Zémor hash function
(CRYPTO 1994)

2. Identify various types of attacks specific to non-commutative
situation. Examples: “length-based” attacks
(Hofheinz-Steinwandt, PKC 2003, and others), using one
normal form to “unscramble” the other
(Myasnikov-Shpilrain-Ushakov, CRYPTO 2005), etc.
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In this talk:

A heuristic attack on the Anshel-Anshel-Goldfeld key exchange
protocol (Math. Res. Lett. 1999, CT-RSA 2001):

• 99% success rate in recovering private keys

• 98% success rate in recovering shared keys.
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Braid Group

Bn is a group of braids on n strands. It has a finite presentation by
generators and relators:

Bn =

〈
x1, . . . , xn−1; xixj = xjxi if |i− j| > 1,

xixi+1xi = xi+1xixi+1

〉

A braid word w is a finite sequence

w = xε1
i1

. . . xεk
ik

,

where 1 ≤ ij ≤ n− 1 and εj = ±1.

Each element of Bn can be represented by a braid word. Hence, we
work with elements of Bn as with braid words.
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The Anshel-Anshel-Goldfeld protocol

(a.k.a. Arithmetica key exchange)

• Bn – fixed braid group

• k,m ∈ Z – fixed parameters.

1) Alice chooses randomly:

• braid words {a1, . . . , ak} – generators of Alice’s public
subgroup.

• a product A = aε1
i1

. . . aεm
im

– Alice’s private key.

2) Bob chooses randomly:

• braid words {b1, . . . , bk} – generators of Bob’s public subgroup.

• a product B = bδ1
j1

. . . bδm
jm

– Bob’s private key.
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Arithmetica key exchange

The protocol

1) Alice sends normal forms b̂i = N(A−1biA) (i = 1, . . . , k) to Bob.

2) Bob sends normal forms âi = N(B−1aiB) (i = 1, . . . , k) to Alice.

3) Alice computes KA = A−1 · âε1
i1
· . . . · âεm

im
.

4) Bob computes KB =
[
b̂δ1
j1
· . . . · b̂δm

jm

]−1

·B−1.

Then KA = KB = A−1B−1AB in Bn.
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Security of the protocol

Relies on the computational difficulty of the Multiple Conjugacy
Search Problem:

• Given (a1, . . . , ak), (â1, . . . , âk) ∈ Bk
n, and (b1, . . . , bk) ∈ Bk

n :

• Find an element B ∈ 〈b1, . . . , bk〉 such that B−1aiB = âi

(provided that at least one such B exists).
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Arithmetica key exchange (parameters)

Initially (1999):

• Braid group - B80

• k = 20; m = 100

• 5 ≤ |ai| ≤ 8.

Later (2001):

• Braid group - B150

• k = 20; m = 100

• 13 ≤ |ai| ≤ 15.
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Subgroup attack

Idea. Transform the pair (a1, . . . , ak) , (â1, . . . , âk) of conjugate
tuples to another pair (c1, . . . , cK), (ĉ1, . . . , ĉK) of conjugate tuples,
such that:

• For all X ∈ Bn

X−1aiX = âi (i = 1, . . . , k) ⇐⇒ X−1cjX = ĉj (j = 1, . . . , k).

• (c1, . . . , cK) is “simpler” than (a1, . . . , ak) (its elements are
shorter).
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Experiments

1) Generated 100 random pairs of conjugate tuples of braid words

(a1, . . . , ak), (â1, . . . , âk)

(k = 20, ai ∈ B80, 5 ≤ |ai| ≤ 8);

2) For each pair used a sequence of transformations to obtain pairs

(c1, . . . , cK), (ĉ1, . . . , ĉK)

of conjugate tuples as above, such that (c1, . . . , cK) is:

• (x1, . . . , x79) in 63 cases

• (x1, . . . , xi−1, x
2
i , xi+1, . . . , x79) in 25 cases

• (x1, . . . , xi−1, x
2
i , xi+1, . . . , xj−1, x

2
j , xj+1, . . . , x79) in 5 cases

• (x1, . . . , xi−1, x
2
i , xix

2
i+1xi, xi+2, . . . , x79) in 5 cases

• (x1, . . . , xi−1, x
2
i , xix

2
i+1xi, xi+1, . . . , xj−1, x

3
j , xj+1, . . . , x79) in 1 case

• (x1, . . . , xi−1, x
−1
i xi+1xi, xi+2 . . . , x79) in 1 case
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Experimental results

Therefore, we obtained equivalent pairs of tuples which:

• in 99% cases consists of short positive words

• in 100% the summit set of (c1, . . . , cK) is small

• in 100% the pointwise centralizer of (c1, . . . , cK) coincides with
the center of Bn (generated by ∆2).
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Impact on the security of the Arithmetica key exchange

We have a simplified pair of tuples: (c1, . . . , cK), (ĉ1, . . . , ĉK)
• apply the cycling technique described in [Lee, Lee] for

(ĉ1, . . . , ĉK) to obtain a tuple

(ĉ′1, . . . , ĉ
′
K)

conjugated to (ĉ1, . . . , ĉK) (with actual conjugator) which
belongs to the summit set of (c1, . . . , cK);

• using technique described in [Gonzalez-Meneses] construct the
summit set of (c1, . . . , cK) and solve the conjugacy problem for

(ĉ′1, . . . , ĉ
′
K) and (c1, . . . , cK);

• combine the obtained conjugators and denote the result by X.
X = B ·∆2s since in all cases the centralizer of (c1, . . . , cK) is〈
∆2

〉
. Therefore, X is “as good as” Bob’s private key B.
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Would increasing the parameters
save Arithmetica key exchange?

Probably not, but there is no proof at this time.

Conjecture: Asymptotically, k-generated subgroups of Bn are free
(n, k - fixed, l →∞).

The only hope for Arithmetica key exchange: Find a threshold
function F (n, k, l) = 0 such that: if F (n, k, l) < 0, then most of
k-tuples of braid words of length l generate Bn, and if
F (n, k, l) > 0, then most of k-tuples of braid words of length l do
not generate Bn (as n →∞).
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