
Generic Complexity

Robert Gilman

Stevens Institute of Technology

Methods of Logic in Mathematics III
St. Petersburg

June 2006

Introduction

Generic complexity is a new way to measure the difficulty of a
computational problem.

The definition emerged in the last few years from the study of
certain problems in combinatorial group theory.

The main idea is to focus attention on what happens most of the
time instead of in the worst case or on average.

We are just beginning to understand the implications of this
approach.

Generic Properties

The idea of ignoring rare cases is not new. Gromov’s 1987 seminal
paper on word hyperbolic groups contains

Theorem

Let k ∈ Z (k ≥ 2) and let A = {a1
1, a

1
2, · · · , a1

k} be an alphabet.
Let i ∈ Z (i ≥ 0) and let (n1, · · · , ni) be a sequence of positive
integers. Let N = N(k, i , n1, · · · , ni) be the number of group
presentations G = 〈a1, · · · , ak | r1, · · · , ri 〉 such that r1, · · · , ri are
reduced words in the alphabet A such that the length of rj is nj for
j = 1, 2, · · · , i . If Nh is the number of hyperbolic groups in this
collection and if n = min{n1, · · · , ni} then limn→∞Nh/N = 1.

Proved by Ol′shanskii (1992)

In other words hyperbolicity is generic.

Other authors include Arzhantseva, Champetier Cherix, Ghys,
Kapovich, Myasnikov, Schupp, Shpilrain, Ollivier, Zuk.

Generic versions of the Freiheitssatz for all finitely presented
groups were proved by Arzhantseva, Ol′shanskii (1996) and by
Cherix, Schaeffer, Gilles (1998).

Complexity

Around the same time as the developments mentioned above
several people including Dima Bormotov, Roger Kuhlman, Alexei
Myasnikov, Roger Needham, Hamish Short, Vladimir Shpilrain
were working under the leadership of Gilbert Baumslag on the
Magnus Computational Group Theory Package, a symbolic algebra
package for problems in combinatorial group theory.

The Magnus Package was designed for experiments and solutions
to instances of recursively unsolvable problems, and it had what
was then an advanced feature, a graphical user interface.

Quotpick by Derek Holt and Sarah Rees was another step in this
direction.

Combinatorial group theory has its own computational tradition
extending back for more that a century. Almost all the problems
are recursively unsolvable. Here is an example.

The Word Problem

Given a presentation G = 〈a, b, c | r , s, t〉 and a word w in the
generators decide if w represents the identity in G .

The people working on Magnus noticed that simple strategies
could work well for many instances of difficult or recursively
unsolvable problems. Computer scientists had come to similar
conclusions a little earlier.

Garey and Johnson in their book Computers and Intractability
state that while the worst case complexities of the simplex
algorithm for linear programming and of the branch and bound
algorithm for the knapsack problem are exponential, nevertheless
these algorithms run quickly in practice. They also say that
examples like these are quite rare.

Experience with Magnus suggested however that this phenomenon
might not be uncommon. The difficult instances of a problem
might be hard to find while the set of easy instances might be
ubiquitous.

This theme was developed in the paper

Generic case complexity - decision problems in group theory and
random walks, by Kapovich, Myasnikov, Schupp, and Shpilrain.

They define generic complexity and show that for a large class of
finitely generated groups the word, conjugacy and membership
problems are generically linear time.

That is, there is an algorithm which runs in linear time on a
generic set of inputs.

Generic Sets

Generic complexity depends on the notion of a generic set.

A subset S of A∗ is generic if

lim
n→∞

|S ∩ Bn|
|Bn|

= 1

where Bn is the set of all words in A∗ of length at most n and | |
denotes cardinality.

If the limit converges exponentially fast, S is exponentially generic.

In general for any countable set X express X as an ascending union
of finite subsets.

X = ∪Bn

Bn may be thought of as the elements of size at most n.

A subset S of X is generic if

lim
n→∞

|S ∩ Bn|
|Bn|

= 1

If the limit exists and is equal to ρ, S has asymptotic density ρ. If
ρ = 0, S is called negligible.

More generally consider probability distributions µn : Bn → [0, 1]

and require limn→∞
µn(S∩Bn)

µn(Bn)
= 1. But we restrict ourselves to the

uniform case above.

A Sample Generic Set

Fix A = {a, a−1, b, b−1, . . .}

Let f : A∗ → Z be a surjective monoid homomorphism from A∗ to
the integers, Z , under addition.

Since Z is infinite, we expect that a random word w ∈ A∗ is very
unlikely to have image 0 (or any other fixed integer) in Z . Our
intuition is correct.

The set of all words with non-zero image in Z is generic in A∗.

An Unsolvable Problem with Linear Generic Time
Complexity

Let A∗ → G be a choice of generators for a group G and assume
G has an infinite cyclic quotient, G → Z .

For example G = H × Z where H has unsolvable word problem.

Let f : A∗ → Z be the composition of A∗ → G → Z .

Algorithm

Given w compute f (w).
If f (w) 6= 0, we say ”w does not represent 1 in G”
Else say ”Don’t know”.

The Algorithm succeeds in linear time on a generic set.

The paper by Kapovich, Myasnikov, Schupp, and Shpilrain has
more and deeper results along these lines.

If we were building a cryptosystem which could be broken by
solving the word problem for G , we would be on shaky ground if we
knew only that the word problem for G were recursively unsolvable.

Two Generic Complexity Results

The positive word problem. This is a search problem in
which the input is a word defining the identity
G = 〈a, b, c | r , s, t〉 and the output is a sequence of
conjugates of relators whose product is w . In his dissertation
Alexander Ushakov shows that the problem is generically
polynomial and there is a practical algorithm.

The Halting Problem. Joel Hamkins and Alexei Myasnikov
have shown that the Halting Problem is generically decidable
in polynomial time for Turing machines with a semi-infinite
tape. Alexander Rybalov has shown that convergence cannot
be exponential.

Notice that for the positive word problem we have a complexity
result on a non-recursive set of inputs.

Post Correspondence Problem

PCP

Input a finite set of pairs of words {(w1, v1) < . . .} over {a, b}∗.
Decide if wi1 · · ·wik = vi1 · · · vik for some sequence of indices.

Bn is the collection of inputs with n pairs of words of length
between 1 and n

Algorithm

Check if for some (wi , vi) one is a prefix of the other.
If yes, say “Don’t Know”
Else say “No”

PCP is exponentially generically linear.

The Subset Sum Decision Problem

Subset Sum

Decide for a sequence of natural numbers c ,w1, . . . ,wn whether
the equation

∑
xiwi = c has a solution with xi = 0, 1.

Subset Sum is NP-complete, but the corresponding optimization
problem is routinely solved in practice and gives a solution to the
decision problem. It seems that difficult instances of subset sum
are rare.

Theorem

Subset sum is generically linear.

How to define an appropriate generic set?

Bn be the set of inputs of length n where length means the
number of bits.

Pick an alphabet {0, 1, 1̂} and consider the language L of all
strings beginning with 1̂.

For any string in L, a substring which begins with 1̂ and continues
up to but not including the next 1̂ is interpreted as a binary
number by taking 1̂ = 1.

For example c = 5,w1 = 3,w2 = 4 is encoded as 1̂011̂11̂00.

Bn consists of all words in L of length at most n; and a subset
M ⊂ L is generic if

lim
n→∞

|M ∩ Bn|
|Bn|

= 1.

Let Sn be the sphere of radius n; that is, S consists of the 3n−1

strings in L of length exactly n. It is straightforward to show that
M is generic if

lim
n→∞

|M ∩ Sn|
|Sn|

= 1.

Algorithm

Input c ,w1, . . . ,wn.
If c is equal to some wi , say “Yes”
Else “Don’t know”.

Check that the set of inputs for which c matches some wi is
generic.

Equivalently check that the set of inputs for which c does not
match some wi is negligible.

1 There is no match if c is the whole input. The fraction of Sn

for which this happens is (2/3)n−1.

2 A similar count works if c is sufficiently large. In fact if c
includes at least m = b(log n)/2 log 3c bits.

3 Otherwise c involves at most m bits. The input may be
viewed as a product of words of length m (with a little bit left
over) in which the first word occurs only once.

Another version of Subset Sum

Here is a practical algorithm which is generic with respect to a
different formulation of Subset Sum.

Consider only instances in which all weights w satisfy w ≤ b for
some fixed number b.

Bn consists of all instances with n weights w1, . . . ,wn and
1 ≤ c ≤ nb.

The following algorithm is adapted from one by G. d’Atri and C.
Puech.

Algorithm

Compute w1 + w2 + · · · until one of the following happens.

1 If w1 + w2 + · · ·+ wj = c , say “Yes” and halt.

2 If w1 + w2 + · · ·+ wn < c , say “No” and halt.
3 If w1 + w2 + · · ·+ wj−1 < c < w1 + w2 + · · ·+ wj , then

1 If w1 + w2 + · · ·+ wj−1 + wk = c for some k with j < k ≤ n,
say “yes” and halt.

2 Else say “Don’t know” and halt.

Clearly the Algorithm is correct and runs in linear time.

Estimate the probability of a “Don’t know” answer.

Since c is chosen uniformly from the interval [1, nb], the
probability of w1 + w2 + · · ·+ wj−1 < c < w1 + w2 + · · ·+ wj , is
(wj − 1)/nb ≤ 1/n.

Further the probability that there is no suitable xk is
((b − 1)/b)(n−j).

Thus the probability of “Don’t know” is at most∑n
j=1(1/n)((b − 1)/b)(n−j) ≤ b/n.

The Algorithm says “Yes” or “No” on a generic set.

3-Satisfiability

Consider the following heuristic argument for 3-Sat. An instance is
a finite sequence of clauses

[10′ ∨ 101 ∨ 1] ∧ [110 ∨ 11′ ∨ 111] ∧ · · ·

where the variables are 1, . . . , n (base 2) and ′ means negation.

If the eight different clauses involving variables 1, 10, 11 and their
negations all appear in the input, then the formula is not
satisfiable.

Think of inputs as finite words over the countable alphabet of
clauses.

The set of finite words which omit some fixed letter of the
alphabet should be asymptotically negligible, and likewise for the
set of words omitting any of the eight clauses just mentioned.

The algorithm which searches the input for all these clauses should
find them in linear time on a generic set of inputs.

To make this argument more rigorous start with the regular
language of clauses

R = [1(0 + 1)∗(∨+′ ∨)1(0 + 1)∗(∨+′ ∨)1(0 + 1)∗(]+′])

over the finite alphabet Σ = {[, 0, 1,∨,′]}.

Instances of 3-Sat are words in the free submonoid (R∧)∗ of Σ∗.

Let Bn be the ball of radius n in Σ∗. Instances of 3-Sat are
selected uniformly from R ∩ Bn.

It suffices to show that for any w ∈ R, there exist constants C > 0
and λ < 1 such that |(S∧)∗ ∩ Bn| ≤ Cλn|(R∧)∗ ∩ Bn| where
S = R − {w}.

Relative density of regular monoids

Lemma

Let R be a regular language over Σ and # a letter not in Σ.
Suppose R has words of length n for all n greater than some
constant. Let S be a proper subset of R. Then there exist
constants C > 0 and λ, 0 ≤ λ < 1, such that

|(S#)∗ ∪ Bn| ≤ Cλn|(R#)∗ ∪ Bn|

for n large enough.

The proof is an application of an extension of the Perron Frobenius
Theorem.

Average Case Complexity

We note that generic complexity is more general that average case
complexity in that it makes sense for recursively unsolvable
problems. Also it is not too difficult to prove that with some mild
restrictions on the probability distributions µn : Bn → [0, 1] the
following theorem.holds.

Theorem

If a computational problem has average case complexity O(f (n))
then it has generic complexity O(f (n)).

Questions

The most interesting theoretical question is what is the structure of
computational problems? Many of them seem to consist mostly of
easy cases with a so-called black hole of rare and difficult instances.
There is some indication that the concept of black hole can be
made precise. Alexei Myasnikov may discuss this point in his talks.

One may also ask about practical applications such as a systematic
approach to evaluating the difficulty of cryptoprimitives.

Another question concerns the effect of different choices of the
Bn’s.

Bibliography

G. d’Atri and C. Puech, Probabilistic analysis of the subset
sum problem, Discrete Applied Mathematics 4:329-334, 1982.

Debreu, G. and Herstein I., Nonnegative square matrices,
Econometrica, 21 1953, 597-607

M. Garey and J. Johnson, Computers and Intractability, A
Guide to NP-Completeness, W. H. Freeman, 1979.

I. Kapovich, A. Myasnikov, P. Schupp and V. Shpilrain,
Generic case complexity - decision problems in group theory
and random walks, J. Algebra vol 264 (2003) 665–694

H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems,
Springer

A. Miasnikov, V. Shpilrain and A. Ushakov, A practical attack
on a braid group based cryptographic protocol, Lecture Notes
in Computer Science 3621, CRYPTO 2005, Springer Verlag.

